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Abstract 
 

This paper considers a simple model of a capacity constrained production-inventory 

system with Poisson demand. The system is controlled by an S policy. The production 

time for a unit is modeled as a gamma distributed stochastic variable. Using M/G/1 

queuing theory it is very easy to evaluate holding and backorder costs and optimize 

the ordering policy. The suggested model may be useful when evaluating investments 

in production. 

 

Keywords: Production-inventory management, Capacity constrained, Stochastic
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1 Introduction 

In this paper we consider a simple integrated production-inventory system facing 

Poisson demand. The production capacity is constrained and the production time is 

stochastic and follows a gamma distribution. Our purpose is to illustrate in a simple 

way the impact of both capacity limitations and variations in the production times. 

Our model may be a useful tool when evaluating different capacity investments, 

which may affect both the mean and the variance of the production time. The impact 

of capacity investments can, of course, also be evaluated by simulation. However, the 

tool we provide is, in general, much simpler and quicker to use. The planning of 

capacity investments has been considered in several papers. A recent review of 

strategic capacity planning is given by Geng and Jiang (2009). Vits et al. (2007) 

provide a model to study myopic and long-term process change strategies. 

 

In this paper it is assumed that there are no ordering costs, so there is no need for 

batch-ordering. The production system can handle only one item at a time. The 

system is controlled by a so-called S policy. When the inventory position (stock on 

hand plus outstanding orders and minus backorders) has reached S no more orders are 

triggered until a new demand occurs. By outstanding orders we mean orders that have 

not yet been delivered. We consider standard holding and backorder costs and 

optimize the sum of these costs with respect to S.  

 

The paper analyzes the impact of stochastic variations in production times. In a sense 

this is related to some earlier papers that consider variations in the production load 

due to batch quantities and how these variations will affect the lead-times. Larger 

batch quantities will reduce the average production time but, on the other hand, 

increase the variations in the production load. See e.g., Jönsson and Silver (1985), 

Karmarkar (1987, 1993), Axsäter (1980, 2006), and Zipkin (1986, 2000). Another 

more recent paper dealing with a related problem is Pac et al. (2009). 

 

The outline of the paper is as follows. In Section 2 we give a detailed problem 

formulation. Section 3 describes our solution technique. In Section 4 we provide some 

numerical results and discuss how they can be interpreted. Finally we give some 

concluding remarks in Section 5. 
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2 Problem formulation  

We consider the simple production-inventory system in Figure 1. 

 

Insert Figure 1 Production-inventory system 

 

The inventory is facing Poisson demand and is replenishing from production 

according to an S policy, i.e., there are no setup costs that motivate batch-ordering. 

However, the production system can only process a single unit at a time, so it is not 

possible to have more than one order in process. If the inventory position is strictly 

less than S an order for one unit is triggered. Production is started as soon as the 

production of possible preceding units is finished. If there is no unit in production, 

production is started immediately. Production times are independent stochastic 

variables following a gamma distribution. The gamma distribution has several 

advantages in this context. The production time is always positive and we can fit the 

distribution to any mean and variance. Furthermore the demand during the stochastic 

production time will get a negative binomial distribution, which is easy to deal with. 

(See Section 3.2.) The gamma distribution is available in various software packages, 

e.g., in Excel. See Tijms (1994) for a comparison with other distributions. 

Components and/or raw materials needed in production can be obtained without any 

delay. Consequently, there are no holding costs associated with a unit before the 

production starts. Evidently, each unit produced incurs holding costs corresponding to 

the stochastic production time. However, the average holding cost in production for 

an item is clearly independent of the ordering policy. We shall therefore disregard this 

holding cost. We consider, however, standard linear holding and backorder costs 

associated with time in inventory and customer waiting time. 

 

At this stage we assume that the distributions of the stochastic production time and the 

demand are given. Our problem is then to choose the order-up-to level S in order to 

minimize the sum of expected holding and backorder costs. 

 

We introduce the following notation: 

λ = intensity of the Poisson demand, 
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µ = average production time per unit, 

σ = standard deviation of the production time per unit, 

ρ = λµ = traffic density, 

c = σ/µ = coefficient of variation for the production time, 

h = holding cost per unit and unit time, 

b = backorder cost per unit and unit time, 

S = order-up-to level, 

C = expected costs per unit of time. 

 

Evidently we must require that ρ = λµ < 1. The gamma distribution that characterizes 

the production time for a unit is completely specified by the two parameters µ and σ. 

 

3 Cost evaluation and optimization 

 

3.1 The gamma distribution 

Let us first for completeness define the gamma distribution, which has the density 

 

 
)r(

e)x(
)x(g

x1r

Γ
ξξ

=
ξ−−

,  x ≥ 0.                 (1) 

 

The two parameters r and ξ are both positive and Γ(r) is the gamma function 

 

 ∫
∞

−−=Γ
0

x1r dxex)r( .                    (2) 

 

Given µ and σ the parameters r and ξ are uniquely determined as  

 

 2)/(r σµ= ,                      (3) 

 2/ σµ=ξ .                       (4) 

 

It is useful to note that Γ(r) = (r-1)Γ(r-1) and that 
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+αΓ
=∫ ,                   (5) 

 

for α >  - 1 and β >  0. 

 

3.2 Distribution of the demand during the production time 

Next we consider the stochastic demand during the stochastic production time. The 

demand process and the stochastic production time are independent. Let qj be the 

probability for demand j. We obtain 
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!j
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Using (5) we get 
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i.e., for j = 0 we obtain 
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and for j > 0, 
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r

j

−++

ξ+λ

λ

ξ+λ

ξ
= .             (9) 

 

This means that qj has a negative binomial distribution that is easy to deal with. 

When, for a given µ, σ approaches 0, the distribution in (8) and (9) will, as expected, 

approach a Poisson distribution. However, for σ = 0, or σ very small, it is then 

computationally much more efficient to replace (8) and (9) by the Poisson 

distribution, i.e., to set 
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!j

e)(

!j

e)/r(
q

j/rj

j

λµ−ξλ− λµ
=

ξλ
= .               (10) 

 

Recall that we have defined the traffic density ρ = λµ, and the coefficient of variation 

for the production time c = σ/µ. The distribution qj in (9) is expressed in terms of 

three parameters λ, µ, and σ. However, it is easy to see that it can be specified 

completely by the two parameters ρ and c. Just note that λ/ξ = ρc
2
 and r = 1/c

2
. 

 

3.3 The associated queuing system 

Note now first that the optimal solution must have S ≥  0. Clearly, any S ≤  0 will give 

zero holding costs. Furthermore, S < 0 must give higher backorder costs than S = 0. 

 

Assume then that we start with S items in stock. It is obvious that each demand will 

trigger a corresponding production order to be produced as soon as all previous orders 

have been produced. The orders in production or waiting to be produced constitute a 

so-called M/G/1 queuing system, i.e., we have Poisson arrivals and a production time 

that is not exponential. Using a standard approach we can derive the steady-state 

distribution for the queue length. See e.g., Grimmett and Stirzaker (1987) for details. 

 

Consider the number of waiting orders when an order has just been finished and 

delivered to inventory. If there are k orders waiting we say that the state of the 

queuing system is k. Let 

 

pj =  steady-state probability that the state is k (0, 1, 2, ....). 

 

First we have 

 

 p0 = 1 - λµ = 1 - ρ,                    (11) 

 

i.e., the ratio of time when no production is taking place. To see this note that λµ is 

the average production time during a time unit. Consequently, 1 - λµ is the ratio of 

time when no production is going on. Next we note that 
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 ∑
+

=
+−+=

1j

1i

1ijij0j qpqpp ,                   (12) 

 

i.e., if we are in state 0 the next production concerns an order triggered by the next 

demand, but if the state is i > 0 the next production concerns one of the waiting 

orders. 

 

Reformulating (12) we get 

 

 







−−= ∑

=
+−+

j

1i

1ijjj0j

0

1j qpqpp
q

1
p   j = 0, 1, 2, ...         (13) 

 

i.e., we can easily determine the steady-state distribution recursively. Evidently pj → 

0 as j → ∞ because ρ < 1. (In (13) the sum is defined to be zero for j = 0.) 

 

We note that p0 only depends on ρ. Because qj depends only on the parameters ρ and 

c this must then be the case also for all pj. 

 

Let us conclude at this stage that it is very easy to determine the steady-state 

distribution of the number of outstanding orders. The distribution is completely 

specified by the parameters ρ and c. First we get the distribution of the demand during 

the production time from (8) and (9). Then we simply apply (11) and (13). Note that 

the distribution of the number of outstanding orders is independent of S. 

 

3.4 Evaluation of costs and optimization of S 

We are now ready to evaluate the expected costs for a given S ≥  0. If there are k 

outstanding orders, the inventory level is S – k. Consequently, the expected costs for a 

given S can be expressed as  

 

 [ ]∑
∞

=

−+ −+−=
0k

k b)kS(h)kS(pC ,               (14) 
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where x
+
 = max (x, 0) and x

-
 = max (-x, 0). 

 

It is easy to see that C is a convex function of S.  Consequently, to find the optimal 

solution we simply evaluate S = 0, 1, ... The first local optimum is also the global 

optimum. 

 

4 Numerical results and discussion 

We have shown that the optimal policy and the optimal costs (for given holding and 

backorder costs) only depend on the traffic density ρ and the coefficient of variation 

c. So, for example, λ = 1, µ = 0.8, and σ = 0.4 give exactly the same results as λ = 10, 

µ = 0.08, and σ = 0.04, because in both cases ρ = 0.8 and c = 0.5. Furthermore, 

concerning the costs it is obvious that it is only the ratio between the backorder cost b 

and the holding cost h that is of interest. If both costs are changed by a certain 

percentage, this will change the optimal costs by the same percentage but the optimal 

policy is not affected. Therefore, in our numerical study we assume that h =1. Two 

different values of the backorder cost b = 5 and b = 20 are considered in Table 1 and 

Table 2 respectively.  

 

Insert Table 1 Optimal policies and costs for h = 1 and b = 5. 
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Insert Table 2 Optimal policies and costs for h = 1 and b = 20. 

 

In both tables we have evaluated the costs for the same four values of ρ and five 

values of c. It is not surprising that the costs will increase both with ρ and c. From the 

tables it is also obvious that the additional cost when increasing c is much larger when 

ρ is high, and similarly the additional cost when increasing ρ is much larger when c is 

high. All such tendencies are stronger with the higher backorder cost in Table 2. 

 

We believe that our simple model may be useful in connection with evaluation of 

investments in production. Such an investment will in general reduce the average 

production time µ and also the standard deviation of the production time σ. Clearly 

this means that ρ is reduced. The coefficient of variation c may both decrease and 

increase. If, for example, µ and σ are reduced by the same percentage, this means that 

c is unchanged. Our model shows how the inventory costs are affected by the 

investment. If µ is reduced we will also get lower holding costs for the time in 

production. These costs are normally proportional to 1/µ and easy to evaluate. The 

total reduction of holding and backorder costs should then be compared to the cost for 

a considered investment. 

 

5 Conclusions 

We have suggested a simple model of a production-inventory system. The demand is 

Poisson and the production time for a unit is modeled as a gamma distributed 

stochastic variable. The system is controlled by a so-called S policy. Using M/G/1 

queuing theory it is very easy to evaluate and optimize holding and backorder costs, 

which only depend on the traffic density and the coefficient of variation for the 

production time. 

 

The considered model may be useful when evaluating different investments in the 

production system, because such investments will, in general, affect holding and 

backorder costs in a way that is easy to illustrate by our model.
1
 

                                                 
1
 I am grateful to Christian Howard for help with parts of the numerical evaluation. 
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Figure 1 Production-inventory system 

 

 

 

 

Table 1 Optimal policies and costs for h = 1 and b = 5. 

     c = 0 c = 0.5    c = 1 c = 1.5 c = 2 

ρρρρ    = 0.9     
S 

C 

8 

8.69 

11 

10.77 

17 

17.01 

26 

27.37 

40 

41.89 

ρρρρ    = 0.8 
S 

C 

4 

4.25 

5 

5.18 

8 

8.03 

12 

12.71 

17 

19.26 

ρρρρ    = 0.7 
S 

C 

3 

2.77 

3 

3.33 

5 

5.02 

7 

7.74 

10 

11.57 

ρρρρ    = 0.6    
S 

C 

2 

2.02 

2 

2.41 

3 

3.44 

4 

5.19 

6 

7.61 

 

 

 

 

 

 

Table 2 Optimal policies and costs for h = 1 and b = 20. 

     c = 0 c = 0.5    c = 1 c = 1.5 c = 2 

ρρρρ    = 0.9     
S 

C 

15 

14.74 

18 

18.28 

28 

28.89 

45 

46.56 

69 

71.29 

ρρρρ    = 0.8 
S 

C 

7 

7.15 

9 

8.78 

13 

13.62 

21 

21.70 

31 

32.98 

ρρρρ    = 0.7 
S 

C 

5 

4.65 

6 

5.65 

8 

8.49 

12 

13.30 

18 

20.01 

ρρρρ    = 0.6    
S 

C 

3 

3.41 

4 

4.00 

5 

5.95 

8 

9.02 

12 

13.39 

 

 

 

 

 

    Production system       Inventory 
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