A. Abel, A Polymorphic Lambda-Calculus with Sized Higher-Order Types, 2006.

T. Altenkirch, Constructions, Inductive Types and Strong Normalization, 1993.

B. Barras, Sets in coq, coq in sets, 1st Coq Workshop, 2009.

G. Barthe, B. Grégoire, and F. Pastawski, CIC $\widehat{~}$ : Type-Based Termination of Recursive Definitions in the Calculus of Inductive Constructions, Lecture Notes in Computer Science, vol.4246, pp.257-271, 2006.
DOI : 10.1007/11916277_18

F. Blanqui, A Type-Based Termination Criterion for Dependently-Typed Higher-Order Rewrite Systems, Lecture Notes in Computer Science, vol.3091, pp.24-39, 2004.
DOI : 10.1007/978-3-540-25979-4_2

URL : https://hal.archives-ouvertes.fr/inria-00100254

E. Giménez, Structural recursive definitions in type theory, Lecture Notes in Computer Science, vol.1443, pp.397-408, 1998.
DOI : 10.1007/BFb0055070

B. Grégoire and J. L. Sacchini, On Strong Normalization of the Calculus of Constructions with Type-Based Termination, 2010.
DOI : 10.1007/978-3-642-16242-8_24

J. Hughes, L. Pareto, and A. Sabry, Proving the correctness of reactive systems using sized types, Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages , POPL '96, pp.410-423, 1996.
DOI : 10.1145/237721.240882

N. D. Chin-soon-lee, . Jones, M. Amir, and . Ben-amram, The size-change principle for program termination, POPL, pp.81-92, 2001.

Z. Luo, Computation and reasoning: a type theory for computer science, 1994.

B. Paul-andrémellì-es and . Werner, A generic normalisation proof for pure type systems, LNCS, vol.1512, pp.254-276, 1996.

D. Wahlstedt, Dependent Type Theory with Parameterized First-Order Data Types and Well-Founded Recursion, 2007.