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Compression of 3D triangular meshes with
progressive precision

Sébastien Valette, Alexandre Gouaillard and Rémy Prost

CREATIS, Lyon, France

Abstract

In this paper we introduce a novel approach for progressive transmission of 3D
triangular meshes. This algorithm is based on a new reversing approach of irregu-
lar mesh subdivision that enables a wavelet representation of any mesh geometry.
In this paper, we show how to achieve progressive compression of 3D models by
transmitting more and more wavelet coefficients computed from the original mesh
vertices coordinates. The connectivity of the reconstructed mesh remains the same
as the original one, but its geometry is progressively refined by means of Bitplane
encoding. This approach processes directly floating point coordinates which is the
most common representation for 3D meshes, and does not need quantization, which
is a lossy transformation. Experimental results are given and demonstrate the effi-
ciency of our encoding scheme versus other approaches.

Key words: triangular meshes, progressive compression, wavelets, irregular
subdivision

1 Introduction

Digital models of three-dimensional shapes are essential in numerous application domains,
including CAD, entertainment, medicine, geosciences, and architecture. In most cases, these
models are represented as 3D triangular meshes, with the native support provided by
graphics processors. However, the use of large and complex models can become an issue
when the end-user faces storage or bandwidth limitation. Data compression offers a so-
lution for these problems by providing two different approaches: The model can be com-
pressed either in a single resolution bitstream, or in a progressive bitstream. Single resolu-
tion approaches (14; 20; 24) often give the best compression rate, but progressive schemes

Email address: {valette,gouaillard,prost}@creatis.insa-lyon.fr
(Sébastien Valette, Alexandre Gouaillard and Rémy Prost).
! Funded in part by the ARC Telegeo grant. This work is within the scope of the
scientific topics of the PRC-GDR ISIS research group of the French National Center
for Scientific Research (CNRS).

Preprint submitted to Computer & Graphics 5 November 2003



(15 5; 7; 9; 11; 16; 19; 27) offer more flexibility (for a given model several resolution levels are
constructed so that progressive transmission and reconstruction are possible). Also, lower
resolution levels can be rendered faster which may be useful for huge models.

In this paper we propose a new approach for progressive transmission of 3D models based
on the decomposition of the meshe geometry on a Geometrical Wavelet Basis. The main
contribution proposed in this paper is a progressive transmission of the mesh geometry from
the lowest to the highest resolution level while keeping its connectivity unchanged. During
reconstruction of the compressed model, the geometric refinement is obtained by progres-
sively transmitting details (wavelet coefficients), and a good reconstruction is performed
with only a small proportion of the wavelet coefficients set. In sharp contrast with other
work, our approach can directly compress the vertices coordinates, without any quantiza-
tion step. The paper is organized as follows : in section 2 we briefly discuss previous works
related to 3D mesh compression. Section 3 explains why quantizing the vertices coordinates
provides a tradeoff between efficiency and accuracy. Section 4 describes the main parts of
our algorithm. Experimental results are shown, and a comparison is made versus other
approaches in section 5. Finally, section 6 concludes the paper and some perspectives are
given.

2 Related Works

Single-resolution compression schemes for 3D meshes usually create a single bitstream,
which can be split into two parts : the connectivity bitstream (which describes the mesh
connectivity graph) and the geometry bitstream (the vertices coordinates) (see figure 1.a).
Progressive transmission of meshes involves splitting both bitstreams into several compo-
nents. The connectivity bitstream usually contains a base mesh which is further refined by
reading the successive bitstreams. The geometry bitstream is also decomposed into a base
geometry and several geometrical refinements. Figure 1.b depicts how these bitstreams are
interleaved during transmission.

Progressive transmission for meshes, introduced by Hoppe (9), is based on successive mesh
simplification by means of edge contractions which offer optimal granularity and linear
complexity, but non-linear storage and transmission cost. Several approaches derive from
Progressive Meshes: Pajarola and Rossignac implemented an improved version of Progres-
sive Meshes (19), encoding the mesh connectivity reconstruction by edge split batches, with
an average coding cost of 7.2 bits per vertex. Karni et al (11) improved the edge con-
traction sequence and the geometry coding to enhance both the progressive transmission
rate-distortion tradeoff and the rendering speed of the processed meshes. Cohen-Or et al.
(5) propose a progressive transmission based on successive vertex removal followed by deter-
ministic retriangulation. Vertices are removed according to their valence and their geometric
properties. The deterministic retriangulation leads to an average connectivity compression
of 6 bits per vertex, but the simplified mesh becomes less and less regular due to the removal
of high valence vertices. Alliez and Desbrun (1) improved this technique by removing only
vertices with valence below 7 and using a new retriangulation approach that maintains the
mesh regularity along the simplification. The vertices can also be removed according to a
geometric criterion to improve the quality of the approximations. This approach compresses
the mesh connectivity to an average of 3.69 bits per vertex. Karni and Gotsman (12; 13)
developed spectral geometry compression, where the geometry is projected on an orthogonal
vector space, constructed with the eigenvectors of the mesh connectivity laplacian matrix.
This scheme provides good mesh approximations, even with few transmitted coefficients.
The main drawback of this scheme is the need to calculate eigenvectors of the mesh connec-
tivity graph which computational complexity is not linear to the number of triangles, but
to its cube. This drawback was solved partially in (13) where precomputed eigenvectors are
used, using a planar mapping of the mesh connectivity graph on a regular graph. In (27)
Valette and Prost introduced the Wavemesh approach, which uses an irregular subdivision
inversion scheme (26). This scheme aims at processing an inverse 1-to-4 subdivision (17)
on the input mesh whenever it is possible. The geometric approximations are performed by
wavelet decomposition, which enhances the approximation quality of the lower resolution
levels.
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Fig. 1. Different bistreams for different approaches (a) mono-resolution approach (b)
progressive approach (connectivity+geometry) (c) progressive approach (geometry
only). CB=Connectivity bitstream GB=Geometry Bitstream.

In (16), Khodakovsky et al. present a pure geometry coder, where the input model is
remeshed into a semi-regular one. This approach is very efficient, as it removes the con-
nectivity information of the input mesh when the user does not need to keep the original
connectivity of the 3D mesh. Single-rate lossy compressions that resample the surface in a
semi-regular pattern have also been proposed (23; 2).

In (8), Guskov et al. describe a new 3D representation. A Normal mesh is a mesh in which
geometry can be represented mostly by normal components and is then suitable for progres-
sive compression. Again, this approach provides very good results, at the cost of a remeshing
of the compressed model. This approach was recently improved in (15).

Note that remeshing progressive approaches (16; 8) do not retain the original connectivity of
the mesh, and the compressed bitstream mainly consists of geometrical refinements (except
the base mesh connectivity) as shown in figure 1.(c)

3 Mesh Coordinates Coding : Quantization Issues

In general, the vertices coordinates of a mesh consist of three floating point values. This
is an issue for compression schemes which often use entropy coding to remove statistical
redundancies between the coded values (e.g. difference values for predictive coding (24),
spectral coefficients (12)). As a consequence, the vertices coordinates are quantized before
the encoding stage. The quantization step depends on the desired precision on the recon-
structed model (usually geometry is quantized to 8 to 12 bits per coordinate). Hence, if one
wants to have n precision levels(corresponding to different quantization steps), then n inde-
pendent compressed bitstreams will be generated (see (10) for an example). Figure 2 shows
the progressive compression efficiency of Wavemesh(27), for different quantization steps (8,

10, 12 and 14 bits). PSNR was measured in dB as : PSNR = —20.log (BD—é‘d) where Dy, is

the Hausdorfl’s distance measured by METRO (4) and BBy is the bounding box diagonal
length of the mesh. We can see that each bitstream attains its maximum PSNR depending
on the applied quantization step. More generally (3), uniform quantization of uniformly
distributed floating-point coordinates to integers coded in g bits results in a final PSNR
equal to:

PSNR~6.q dB (1)

In figure 2 we can see that Wavemesh is a lossless coder (for a given quantization step): for
each curve, the maximum PSNR matches equation 1 (i.e. 52db for 8 bits quantization, 64dB
for 10 bits 75dB for 12 bits and 88dB for 14 bits). Moreover, with high quantization (i.e. in-
tegers coded with few bits) the PSNR will not be much greater than defined by equation (1)
and a low quantization (i.e. integers coded with many bits) results in a rate-distortion curve
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Fig. 2. Rate-distortion efficiency comparison : Wavemesh vs proposed approach :
(a) Venusbody (b) Horse

with low performances at low bitrates : For both the Venubody and the Horse mesh, at low
bitrates, 10 bits quantization is much more efficient than 14 bits quantization. As a conse-
quence, there is a tradeoff between final accuracy (when the bitstream is fully transmitted)
and performance at low bitrates.

4 Owur Approach

In this paper, we propose a progressive compression of the mesh geometry. The connectivity
of the reconstructed mesh is kept unchanged. The geometry is processed by an irregular
Wavelet Transform (26) and the wavelet coefficients are transmitted by order of magnitude,
to improve the rate-distortion efficiency of the approach.

We encode the wavelet coefficients with a bitplane approach (a zerotree coder, as used
in (16; 21)). bitplane encoding can be applied directly to floating point coordinates, thus
avoiding the quantization tradeoff explained in section 3. Indeed, bitplane encoding entails
progressively refining the reconstructed values. With these algorithms, one can encode any
floating-point value in a scalable manner. Figure 2 compares the performance of our ap-
proach with (27). As our approach does not need quantization, only one curve for each model
is given. We can see that avoiding quantization gives good performances in the whole range
of proposed bitrates (except low bitrates for the Horse model). For the smooth Venusbody
mesh, our approach performs better than Wavemesh for all quantization steps. Combining a
zerotree coder such as used in (21) and the Wavelet Transform for irregular meshes provides
a good means of progressively compressing meshes, as described in the following sections.

4.1  Wavelets for irreqular meshes

The wavelet decomposition is strongly related to subdivision when considering 3D meshes.
Indeed a subdivision scheme inherently creates nested vector spaces defining the 3D surface
mesh, which is mandatory in order to apply the wavelet decomposition. A mathematical
framework has been built in (18), allowing Multiresolution analysis on semi-regular meshes.
In order to apply the wavelet decomposition on irregular meshes geometry, Valette and Prost
(26) proposed to reverse an irregular subdivision scheme (25) to coarsen the input mesh.
The coarsening is repeated until the resulting mesh cannot be further simplified (for meshes
homeomorphic to a sphere the simplest mesh is a tetrahedron). A hierarchy of meshes is

constructed, from the coarsest, i.e. M? to the original mesh M”. For each mesh M7, v
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Fig. 3. Scaling functions : (a) lazy filterbank (b) lifted filterbank

is its number of vertices. Following (26), the wavelet decomposition can be applied to the
different mesh geometries which are linked by the following matrix relations:

CiTl = A1.CY (2)
Di7! = Bi.CY (3)
Cl=pl.Cci7t 4+ QDT (4)

where C7 is the v/ x 3 matrix representing the coordinates of the vertices of M7, D=1 is
the (v/ —v7~1) x 3 matrix of the wavelet coefficients at level j, A7 and B? are the analysis
filters and P’ and ()7 are the synthesis filters. Both the connectivity coarsening and the
geometrical approximation are reversible. The connectivity coarsening scheme used in this
scheme attempts to reverse 1:4 subdivision (17) on the mesh wherever possible, that is,
on semi-regular regions. For irregular meshes, this coarsening is impossible, and faces are
merged not only four by four, but also in groups of three or two faces; some faces are left
unchanged, and some edge flips are performed in order to make the simplification easier. It
is shown in (27) that to obtain the best compression ratio, a mesh MJ+! should be simplified
to a mesh M7 having the lowest possible number of vertices. The matrix filters A7, B, P?
and )7 are constructed using the lifting scheme, starting from an easy-to-build filterbank,
i.e. the "lazy” filterbank. Note that in our experiments we used two types of lifting; to
orthogonalize the lazy wavelets (hat functions), and the lazy scaling functions (wider hat
functions):

e Primal lifting : changes the shape of the wavelet functions to enhance the quality of
pr())cessed approximations during analysis. Details on primal lifting can be found in (18;
26

e Dual lifting : changes the shape of scaling functions. Hence it is an interpolating lifting,
leading to smooth reconstruction even with few transmitted coefficients. For dual lifting
we used the butterfly lifted wavelets scheme described in (22). Figure 3 shows an example
of smooth scaling function (b) created by applying dual lifting to a non-smooth lazy
scaling function (a).

4.2 Connectivity coding

There are many algorithms for compressing the connectivity graph of a manifold mesh, in
a single-resolution approach (see for example (14; 20; 24)), or in a progressive approach
(1; 5; 7; 9; 11; 19; 27). We chose to encode the mesh connectivity using (27), because this
approach provides a way of applying the Wavelet Transform to irregular meshes, which is
very efficient for geometry compression. Currently, valence-driven compression schemes such
as (24) give results very close to the optimal (14). To optimize the compression efficiency of
our approach, we could encode the connectivity graph with valence-driven coders, but this
would make the decoder more complex. Indeed, applying the Wavelet Transform to irregular
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Fig. 4. Edge-based Hierarchies for zerotree coding with irregular subdivision : (a)
1:4 subdivision (b) unchanged face (c) 1:2 subdivision (d) 1:3 subdivision

meshes requires the construction of a hierarchy of meshes, which is the inverse problem of
subdivision. By coding the mesh connectivity using the connectivity coder embedded in
Wavemesh (27), the hierarchy of meshes can be built in a straightforward manner by the
decoder without the need to solve the inverse problem.

4.3 Progressive Geometry Coding with a Zerotree

Based on the properties of orthogonal transformations, an efficient encoding in terms of
PSNR is to code the highest order bits of the largest magnitude coeflicients first. Zerotree
coders, as used in (16; 21) provide efficient progressive compression by coding and refining
values from the most significant bits to the least significant ones. For each dataset D = {w;}
created by wavelet decomposition, a tree is built which gives efficient hierarchical access to
all the coefficients, for both the coder and the decoder. At the decoder end, the values
are reconstructed with a decreasing reconstruction error. In fact, zerotree coding is a type
of bitplane encoding, since it encodes the binary representation or the values, assuming
that a large number of coefficients will have low magnitude and that there is a spatial
correlation of coefficient magnitude across the resolution levels. A coefficient w; is said to
be significant if its magnitude is higher than a specified threshold T'. Highest magnitude
coefficients (which are significant according to a threshold T = Ty00 (T = 27 where
q = |logz(maz|w;|)|) are coded first. Successive refinement passes occur, which involve the
localization of newly significant coefficients and the refinement of significant coefficients,
until the desired precision is reached. Note that between each refinement pass, the threshold
T is divided by two, thus increasing the number of significant coefficients. This encoding
scheme offers minimal granularity, as the encoded bitstream consists only of ”0” or ”1”
codes which are either significance codes or refinement codes. The main difficulty in our
case is building the tree used to localize the wavelet coefficients. To be brief we are not
providing here the detailed algorithm, but the reader can refer to (21) for details. Inspired
by (16), we chose the edges of the mesh to build a tree, as wavelet coefficients have a one
to one association with the mesh edges. Then we had to define relationships linking parent
and child edges in the tree. The irregular subdivision scheme is a good framework for this
process. Figure 4 depicts the parent-child links for each case of subdivision. For compression
efficiency, we decided that an edge which is not bisected during subdivision only has one
child edge (its corresponding edge in the subdivided mesh). Figure 4.a (1:4 subdivision) only
shows parent-child relationship for one parent edge, for visibility purposes. Relationships for
the two other parent edges can be recovered by rotation. Note that in these figures, bisected
edges all have three child edges, but in the general case, an interior edge is adjacent to
two faces. As a consequence, interior parent edges will have four child edges and boundary
parent edges will have only three child edges attached.
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Fig. 5. Visual aspect at equivalent bitrates : (a) Wavemesh (10 bits quantization)
(b) Wavemesh (14 bits quantization) (c) Proposed approach

5 Results

We have tested our algorithm on several reference models. Our implementation is fast. As an
example, the compression of the Bunny mesh with 34834 vertices takes less than 10 seconds
on an Intel Pentium II laptop computer running at 400Mhz with 128Mb RAM. In figure 6,
we compared the rate-distortion efficiency of our approach when applying several different
lifting schemes : only primal lifting, only dual lifting, or both primal and dual lifting. For
the regularly sampled Venusbody (11362 vertices, figure 6.(a)), using both primal and dual
lifting significantly improves the efficiency of our approach. On the irregular Bunny (34834
vertices, figure 6.(b)), dual lifting does not improve the quality of the results; moreover, at
high bitrates, it penalizes the global performances of our approach. We believe that this
issue is caused by the Butterfly Lifted Wavelets which were initially created for regular 1:4
subdivision. Adaptation of Butterfly lifted wavelets to irregular subdivision schemes should
be considered, as explained in (6).

Figure 2 compares our approach with results obtained by the improved Wavemesh(28) us-
ing several quantization steps, on the Venusbody and the Horse (19851 vertices). Note that
for each model, only one curve is drawn for our approach, as quantization is not needed.
On the Venusbody, the proposed approach outperforms all results obtained by Wavemesh.
Good performances result from the fact that this model is very smooth and its connectivity
is highly regular. On the other hand, the Horse model has very irregular connectivity. As a
consequence, encoding the connectivity of the mesh costs much more than for the Venus-
body. That is why the rate-distortion curve begins above 4 bits/vertex (this is the encoding
cost for the connectivity). For bitrates above 5 bits/vertex, our approach achieves a good
rate/distorsion tradeoff. As an example, applying Wavemesh with 14 bits/coordinate quan-
tization gives the best results above 20 bits/vertex, but performs poorly for low bitrates.
On the other hand, our approach achieves relatively good compression for a wider range
of bitrates. Closeup views of the Venusbody mesh reconstructed by different approaches at
equivalent bitrates (= 7.2bits/vertex) are shown in figure 5 : (a) Wavemesh, 10 bits quan-
tization : the model is fully reconstructed (11362 vertices) so the connectivity information
reaches its maximum. But quantization of coordinates to 10 bits integers introduces visible
noise. (b) Wavemesh, 14 bits quantization : the model was reconstructed to a mesh with
2842 vertices; most of the data was transmitted for the mesh geometry. But the reconstruc-
tion is not smooth, because of the low number of vertices. (¢) Our approach : the model is
reconstructed to its highest connectivity level, and no quantization noise affects the visual
aspect of the mesh.

Figure 7 compares our approach with that of other progressive compression schemes: Alliez
and Desbrun (1), Karni et al. (11), Spectral Compression(12) and Wavemesh (27), for the
Venusbody model (11362 vertices, 10 bits quantization) and for the Venus head (8268 ver-
tices, 12 bits quantization). It can be seen that our approach performs similarly or better
than Spectral Compression, for a much lower computational complexity. Note that results
given for our approach were obtained without quantizing the mesh, thus guaranteeing that
we can reach higher precision than other works. Figure 10 and 8 show different reconstruc-
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Fig. 7. Rate-distortion efficiency comparison with several approaches : (a) Venus-
body (b) Venus head

tion levels for the Venusbody and Venus head meshes. Clearly, the Venus head mesh is not
smooth at low bitrates, due to its very irregular sampling. On the other hand, the Venus-
body mesh is well reconstructed even at low bitrates. Finally, we compare our approach with
the Progressive Geometry Coder (PGC) of Khodakovski et al. (16) in figure 9. This figure
shows the rate-distortion efficiency on the Venus model (50002 vertices) for PGC, and two
curves are given for our approach : the first one results from compressing the original Venus
model, and the second one results from compressing the remeshed model used by PGC.
Results clearly show that the remeshed model is significantly better compressed than the
original one. As expected, remeshing is effective when one wants to keep only the geometry
of 3D models.

6 Conclusion

We have proposed in this paper a novel approach for progressive compression of 3D tri-
angle meshes. Our approach can be applied directly to irregular meshes without applying
any remeshing or quantization step, which makes it an asymptotically lossless coder for
floating-point vertices coordinates. The algorithm applies a Wavelet Transform on vertices
coordinates, which are further encoded with a zerotree coder. Experimental results show
that our algorithm achieves good performances, with a low computational complexity. Our
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approach is based on progressive transmission of wavelet coefficients with zerotree encoding.
An irregular subdivision scheme reconstructs the original mesh connectivity graph. Further
work could address the construction of an improved Butterfly interpolating scheme adapted
to the irregular subdivision scheme, in order to improve the efficiency of the proposed ap-
proach for highly irregularly sampled models or models with sharp features.
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