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A Wavelet-Based Progressive Compression Scheme

for Triangle Meshes : Wavemesh
Sébastien Valette and Rémy Prost, Member, IEEE

CREATIS∗, Lyon, France

Abstract—This paper proposes a new lossy to lossless pro-
gressive compression scheme for triangular meshes, based on a
wavelet multiresolution theory for irregular 3D meshes. Although
remeshing techniques obtain better compression ratios for geom-
etry compression, this approach can be very effective when one
wants to keep the connectivity and geometry of the processed
mesh completely unchanged. The simplification is based on the
solving of an inverse problem. Optimization of both connectivity
and geometry of the processed mesh improves the approximation
quality and the compression ratio of the scheme at each resolution
level. We show why this algorithm provides an efficient means
of compression for both connectivity and geometry of 3D meshes
and it is illustrated by experimental results on a various set
of reference meshes, where our algorithm performs better than
previously published approaches for both lossless and progressive
compression.

Index Terms—wavelets, irregular meshes, compression, mul-
tiresolution

I. INTRODUCTION

NOWADAYS, 3D models are used in a wider and wider

range of applications, from Computer Aided Design

(CAD) to online shopping, where transmission time can be

a key issue for large models. In this context, progressive

transmission gives the opportunity to render quickly a rough

approximation of the original model, which can be refined

as more data arrive at the receiver end, until the 3D object

is exactly reconstructed. Therefore, progressive transmission

algorithms must perform the best possible tradeoff between

compression, that is the smallest bit rate for the original model,

and distortion, that is the quality of the coarser models. 3D

triangular models have two main components: the geometry,

i.e. the vertex coordinates, and the connectivity, i.e. the way

vertices are linked to form the faces of the mesh. The next

section of this paper addresses briefly progressive transmission

algorithms for 3D triangular models. In section III, we present

the overview of a new progressive transmission algorithm

that we call Wavemesh, based on a wavelet scheme for 3D

irregular meshes [21], [22], which is an extension of the

regular scheme proposed by Lounsbery [15]. Sections IV and

V are respectively dedicated to connectivity and geometry

compression of the models. Section VI illustrates the efficiency

of our algorithm, from lossy progressive transmission to

lossless compression of the original model, and a conclusion

follows.

∗:Research and Applications Center for Image and Signal Processing,
CNRS research unit (UMR 5515). email: {valette,prost}@creatis.insa-lyon.fr

II. RELATED WORK

The first algorithm for progressive representation on meshes

was introduced by Hoppe [6], [7]. This progressive rep-

resentation is based on successive mesh simplification by

edge contractions, which remove one vertex at a time. The

inverse, that is the reconstruction, is achieved by vertex splits.

Edge contractions are chosen so that the approximations stay

close to the original mesh, using a given geometric criterion.

Inspired by this idea, several approaches were proposed for

progressive transmission. Pajarola and Rossignac implemented

a compressed version of progressive meshes [16], encoding

the mesh connectivity with an average of 7.2 bits per vertex.

Taubin et al. combined simultaneous vertex splits to create the

so-called progressive forest split algorithm [19], reducing the

connectivity cost to 7 bits per vertex. Karni et al. improved

the edge contraction sequence and the geometry coding to

enhance both progressive transmission rate-distortion tradeoff

and rendering speed of the processed meshes [10]. Cohen-

Or et al. [5] propose a progressive transmission based on

successive vertex removal followed by deterministic retrian-

gulation. Vertices are removed according to their valence and

their geometric properties. The deterministic retriangulation

leads to an average connectivity compression of 6 bits per

vertex.

Inspired by various single rate mesh coders [2], [20], Alliez

and Desbrun introduced a progressive mesh encoding tech-

nique [1], where the connectivity of the mesh is reconstructed

by transmitting only the valence of the vertices, plus some sup-

plementary codes called null-patch. A two-stage simplification

scheme keeps the mesh connectivity as regular as possible,

leading to an inverse
√
3 subdivision [14] for regular meshes.

The vertices can also be removed according to a geometric

criterion to improve the quality of the approximations. This

approach compresses the mesh connectivity to an average of

3.69 bits per vertex. Karni and Gotsman [11], [12] proposed

spectral geometry compression, where the geometry is pro-

jected on an orthogonal vector space, constructed with the

eigenvectors of the mesh connectivity laplacian matrix. This

scheme provides good mesh approximations, even with few

transmitted coefficients. However, this algorithm is not fully

progressive, as the mesh connectivity remains the same, only

the geometry of the mesh changes with the resolution. In [13],

Khodakovsky et al. present a pure geometry coder, where the

input model is remeshed and provides the best rate-distortion

tradeoffs so far, when the user does not need to keep the

original connectivity of the 3D mesh.
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Fig. 1. Possible cases of subdivision

III. A PROPOSAL FOR A WAVELET-BASED PROGRESSIVE

TRANSMISSION SCHEME : WAVEMESH

Our progressive coder is based on the wavelet scheme

construction for triangular meshes [21], [22], which is an

extension of the regular case [15]. First, a mesh M j is

simplified according to an inverse irregular subdivision scheme

where each face can be subdivided into four, three or two

faces, or remain unchanged. Figure 1 shows the possible cases

of subdivision. The algorithm performing such simplification

is described in detail in [22]. Unfortunately, some connectivity

configurations do not allow the algorithm to merge the faces

according to the subdivision cases, due to its one-pass behav-

ior. In these cases, an edge flip between two neighbor triangles

is performed so that the faces can be merged (an example of

such edge flip is shown in figure 2). This algorithm found

no mesh it could not simplify efficiently. An example of such

inverse irregular subdivision is shown in figure 3. Note that we

implemented two ways of simplifying meshes: one approach

is geometrically blind and simplifies meshes so that the mesh

connectivity is best encoded without considering the mesh

geometry. The second approach uses a Wavelet Geometrical

Criterion (WGC), which tends to improve the rate-distortion

efficiency of the algorithm for progressive compression. The

WGC takes into account both the sharpness and wavelet coef-

ficient magnitude of the candidate vertices : if a vertex to be

removed is sharp, then its corresponding wavelet coefficients

must satisfy a geometrical constraint given in detail in [22].

If the constraint is not fulfilled, then the vertex cannot be

removed in that way. Such geometry-based simplification de-

creases the connectivity compression efficiency, but improves

the rate-distortion efficiency of the algorithm.

After the simplification is complete, one can build a hierar-

chical relationship between the original mesh M j (figure 3.a)

and the simplified one. Therefore, the geometry of M j (figure

3.b) can be computed by approximation of M j by applying

Fig. 2. An edge flip for two adjacent faces

G1

G2 G3

G6
G5

G4

(a) (b)

Fig. 3. Mesh simplification by inverse irregular subdivision : (a) the original
mesh and (b) its simplified version.

the wavelet decomposition, with two analysis filters Aj and

Bj . Let us call Cj the vj × 3 matrix giving the coordinates

of each vertex of the mesh M j having vj vertices. Then we

have :

Cj−1 = Aj .Cj (1)

Dj−1 = Bj .Cj (2)

During this decomposition, two materials are computed: Cj−1,

i.e. the geometrical approximation of the mesh, and the detail

coefficients Dj−1, the so-called wavelet coefficients. Starting

from the approximation mesh M j−1, we can reconstruct

exactly the original mesh if we have all of the following

datasets:

• the type of subdivision for each face of the mesh

• the position of each performed edge flip

• the wavelet coefficients Dj−1

The first two datasets enable us to reconstruct the mesh

connectivity and to build the synthesis filters P j and Qj .

With these filters, we can reconstruct the high resolution mesh

geometry Cj given the low resolution mesh geometry Cj−1

and the wavelet coefficients Dj−1:

Cj = P j .Cj−1 +Qj .Dj−1 (3)

As a consequence, this scheme leads to an efficient pro-

gressive compression scheme, if the progressive data can be

encoded in a smart manner. Next we describe how we encode

each of the three datasets.

IV. CONNECTIVITY COMPRESSION

For a good survey of algorithms dealing with compression

of mesh connectivity, the reader can refer to [18]. Considering

a mesh M j with vj vertices , nj triangular faces and ej edges,
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Fig. 4. some overhead data cases : when a face is subdivided into three
faces (a), one bit has to be transmitted to subdivide the face properly. When a
face is subdivided into two faces (b), one bit is transmitted in order to know
if an edge flip is performed, and if such an edge flip has to be performed,
a second supplementary bit is transmitted in order to know where the flip is
performed

the bit amount of the uncompressed data representing the mesh

connectivity is equal (in bits per face) to:

B = 3log2(v
j) (4)

The proposed algorithm provides a good means of com-

pressing this data, as the only information needed to recon-

struct the highest resolution level connectivity is the connec-

tivity of the base mesh (the lowest resolution level) and the

different subdivision steps. Starting from the lowest resolution

level, there is no need to store or transmit the face descrip-

tions to reconstruct higher levels, only the subdivisions are

necessary, which means the amount of information needed to

reconstruct the connectivity of the mesh is an average of 1 to

3 bits per face.

For a given mesh M j , coding its subdivision step in order

to create M j+1 requires 3 types of information:

• D1: The data relating the subdivision step itself i.e. 1 bit

for each edge of the mesh, to know if a new vertex is

created on the considered edge.

• D2: Some overhead data, when one face is subdivided

into three (as shown in figure 4.a), one supplementary

bit per face subdivided into 3 is necessary.

• D3: Some overhead data showing when edge flips were

performed during the mesh simplification process. We

manage to perform edge flips only in two configurations:

between a face subdivided into 2 and an unchanged

face, or between two faces subdivided into 2. As a

consequence, the overhead data consists at most of 1 or 2

supplementary bits per face subdivided into 2. If no flip

has to be performed, a 0 is transmitted. Otherwise, a 1

is transmitted and a supplementary bit is needed in order

to know which edge to flip (figure 4.b).

Then the global amount of bits Bj
s describing the subdivi-

sion step can be majored as follows:

Bj
s < ej + 2nj (5)

Using Euler’s equation, for a mesh with few boundaries

and low genus, one can write the following assumption: the

number of vertices vj , the number of edges ej , and the number

of faces nj of a given mesh M j have the following property

[17]:

nj ≈ 2

3
ej ≈ 2vj (6)

Equation (5) now becomes :

Bj
s <

7nj

2
(7)

This amount of information creates (during the subdivision

process) nj+1−nj faces and vj+1−vj vertices. So the average

number of bits ∆F j needed per created face is equal to:

∆F j =
Bj

s

nj+1 − nj
=

Bj
s

(rj − 1)nj
(8)

where the merging ratio rj is defined as:

rj =
nj+1

nj
(9)

Combining equations (7) and (8) gives:

∆F j <
7

2(rj − 1)
(10)

We can see that the compression efficiency of the proposed

algorithm highly depends on the merging ratio rj−1.

Taking the example of the mesh M j in figure 5.a, our

algorithm selects which vertices to remove (figure 5.b) to

build a coarser mesh M j−1 (figure 5.c). The total amount

of bits required to reconstruct the higher resolution mesh M j

connectivity consists of:

• 18 bits for the creation of children vertices (1 bit for

each edge). After this step the construction of the 5 gray-

colored faces in figure 5.d is straightforward.

• 2 bits for the faces subdivided into three (figure 5.e).

• 3 bits for the faces subdivided into two (only one of the

3 bits will be equal to 1, as only one edge swap has to

be performed, figure 5.f)

• 1 bit for the edge swap (figure 5.g).

Finally, 24 bits are required to reconstruct the connectivity of

M j (figure 5.g), i.e. to add 10 faces to M j−1. So these 10

supplementary faces were coded with an average of 24

10
= 2.4

bits per face.

This compact connectivity compression scheme can be

improved by using entropy coding : equation (10) shows that

the higher rj is, the higher the compression ratio will be. As

a consequence, the compression step consists in merging the

mesh faces four by four as often as possible to achieve a high

compression factor. Hence, when a high compression factor

is achieved, the bits of the dataset D1 will mostly be equal

to 1. Then we reduce the size of D1, which is the biggest of

the three datasets in our experiments, using binary arithmetic

coding.
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Fig. 5. Mesh reconstruction. With a few bits, our algorithm is able to
reconstruct the original mesh (a) starting from the simplified mesh (c) : first,
new vertices are created, and the unchanged faces and faces subdivided in four
are directly created (d), then new bits arrive to reconstruct faces subdivided
into three (e) and into two (f). Last comes the data for edge flips (g) and the
original mesh connectivity is reconstructed

V. GEOMETRY COMPRESSION

This sections show how we code the geometric properties

of the meshes. We consider vertices with integer coordinates

in order to perform lossless compression. A possible post-

processing of this geometry is a scaling, to recover the original

range of the vertices coordinates. In addition, a number of

rounding operations have to be introduced in the multiresolu-

tion analysis-synthesis scheme. For a brief demonstration, we

shall come back to the construction of the matrix filters Aj ,

Bj , P j and Qj used in equations (1), (2) and (3).

A. Exact integer analysis-synthesis scheme via the lazy filter-

bank

First, we introduce A
j
lazy , B

j
lazy , P

j
lazy and Q

j
lazy as the

”lazy” filterbank. These filters do not perform any approxi-

mation, since during the analysis (where some vertices are

removed, as the mesh is simplified) the coordinates of the

remaining vertices stay unchanged. Due to the simple structure

of the analysis matrices an exact integer analysis-synthesis

scheme can be constructed using the Rounding Transform [8],

[9]. Consider that the entries of the coordinates matrix Cj are

integer. Perfect reconstruction is possible, as A
j
lazy contains

only numbers 0 and 1 and B
j
lazy contains only numbers 0,

1 and 1

2
. The forward and inverse Rounding Transforms are

defined by (11) and (12), respectively:
[

C
j−1

lazy

D
j−1

lazy

]

=

⌊[

A
j
lazy

B
j
lazy

]

.Cj

⌋

(11)

Cj =

⌈

[

P
j
lazy|Q

j
lazy

]

[

C
j−1

lazy

D
j−1

lazy

]⌉

(12)

where
[

.

.

]

and [.|.] are block matrices and where ⌊.⌋ and ⌈.⌉
are the floor and ceiling operators, respectively. Note that the

floor operator can be used in the inverse transform if the ceiling

operator is used in the forward transform. Due to the integer

entries of A
j
lazy it results:

C
j−1

lazy = A
j
lazy.C

j (13)

In contrast as the entries of B
j
lazy are not integers we have:

D
j−1

lazy =
⌊

B
j
lazy.C

j
⌋

(14)

According to the inverse Rounding Transform (12) reconstruc-

tion is calculated as follows :

Cj =
⌈

P
j
lazy.C

j−1

lazy +Q
j
lazy.D

j−1

lazy

⌉

(15)

This scheme is illustrated by figure 6.a.

B. Exact integer analysis-synthesis with the lifting scheme

An effective filter-bank for approximation computing di-

rectly derives from the ”lazy” filter-bank modified by the

lifting scheme [18]:

Aj = A
j
lazy + αj .B

j
lazy (16)

Bj = B
j
lazy (17)

P j = P
j
lazy (18)

Qj = Q
j
lazy − P

j
lazy.α

j (19)

where αj is a vj−1 × (vj − vj−1) matrix chosen to ensure

that Cj−1 is the best approximation of Cj i.e. is built in order

to make the wavelet functions more orthogonal to the scaling

functions. By replacing Aj by its definition (16) into (11) it

follows:

Cj−1 =
⌊

A
j
lazy.C

j + αj .B
j
lazy.C

j
⌋

(20)

As all the entries of Aj .Cj are integers it results :

Cj−1 = A
j
lazy.C

j +
⌊

αj .B
j
lazy.C

j
⌋

(21)

According to equations (17) and (11):

Dj−1 =
⌊

B
j
lazy.C

j
⌋

(22)

Following [3] we modify the simultaneous processing defined

by (21) and (22) to a sequential processing :

Dj−1 =
⌊

B
j
lazy.C

j
⌋

(23)

Cj−1 = A
j
lazy.C

j +
⌊

αj .Dj−1
⌋

(24)
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Then the corresponding inverse is

Cj =
⌈

P
j
lazy.

(

Cj−1 −
⌊

αj .Dj−1
⌋)

+Q
j
lazy.D

j−1

⌉

(25)

Equations (23), (24 and (25) now give the integer-to-integer

version of the multiresolution wavelet scheme defined in

equations (1), (2) and (3), as illustrated in figure 6.b. This

scheme can then be used for progressive compression. The

wavelet decomposition transforms coordinates into wavelet

coefficients with a histogram concentrated around the zero

value, making them well suited for entropy coding. Then we

use adaptive arithmetic coding to compress the size of the

wavelet coefficients Dj−1, which are the only data to transmit

for the mesh geometry construction, as the synthesis filters

can be constructed with the mesh subdivision data already

transmitted for the connectivity reconstruction. Finally, for

short, we call our algorithm Wavemesh.

VI. RESULTS

A. Progressive Compression

During our experiments, we used our Wavemesh algorithm

in three different configurations:

• I : Without any lifting : the ”lazy” approach (see [22] for

details)

• II : With the lifting scheme (using a 0-disc wavelet

support)

• III : with the lifting scheme and WGC activated to

optimize the algorithm in a rate-distortion sense [22].

Figure 7 shows the rate-distortion curve for the Fandisk mesh

of 6475 vertices quantified to 10 bit per coordinates, for the

three different approaches. The vertical axis is the mean square

error returned by the Metro tool [4], in terms of percentage

of the mesh bounding box. The lifting scheme considerably

improves the approximation quality in comparison with the

”lazy” approach. The WGC included in the third approach

increases again the efficiency of the third, which provides the

best results in this rate-distortion competition.

Next follow the progressive compression results obtained

by our algorithm compared to other algorithms : Alliez and

Desbrun’s valence-based progressive mesh [1], Karni et al.’s

progressive meshes [10] and Spectral compression [11] (results

taken from [10]).

Figure 8 shows the results on the Venus head mesh of

8268 vertices (quantization : 12 bits per coordinate), where

our algorithm performs better than Karni et al.’s, even for

it’s ”lazy” version. The lifted versions are also close to those

obtained with the Spectral Compression, which is not a really

lossless algorithm. Note that for this mesh, the addition of

WGC didn’t improve the results for this mesh.

Figure 9 shows the results for the Venus body mesh of

11362 vertices (10 bits/coordinate quantization). Again, our

algorithm performed better than Karni & Gostman’s approach.

Our method obtains results similar to Alliez & Desbrun’s

for high bitrates, but performs significantly better for bitrates

below 40,000 bits. For this mesh, the best progressive com-

pression is obtained by Spectral Compression. Again, with this

mesh, the WGC did not significantly improve the results.

1-j
lazyC

1-j
lazyD j

lazyQ

j

lazyP + éù.
j

C

j
C

1-j
lazyC

j

lazyA

j

lazyB . 1-j
lazyD

(a)

j
C

1-j
C

j
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j
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. 1-j
D
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C
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D

+

.
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-

j

lazyQ

j

lazyP + éù.
j

C
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Fig. 6. one level integer-to-integer wavelet analysis and synthesis schemes:
(a) with lazy wavelets, (b) with lifted lazy wavelets

B. Lossless Compression

Table I shows lossless compression results obtained with our

algorithm on various reference meshes, for both 10 bits and 12

bits coordinate quantization. Some results obtained by Alliez

& Desbrun are also given. The processing time is also given

for each mesh. Our current implementation encodes meshes

with the average speed of 2000 vertices/s. For the Fandisk

mesh and the Venus head, we provide 2 different results : the

first result (a) was obtained by compressing the mesh without

WGC and the second result (b) was obtained with WGC, for

an improved progressive transmission.

In terms of connectivity compression, except for the highly

regular torus, we obtain a gain of 15% to 36% compared

to Alliez & Desbrun which had obtained previously the best
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Fig. 7. Rate-distortion curve for the Fandisk

results so far [1]. Our geometry compression scheme also leads

to smaller bitrates (up to 20% better). Also, if we compare the

results obtained with and without WGC, we can see that WGC

improves the general compression rate for the fandisk mesh

by about 0.5 bit/vertex, with a less effective connectivity com-

pression (about 0.5 more bits/vertex) but with a much more

effective geometry compression (about 1 bit/vertex below).

Then, for this mesh, using WGC, we improve both progressive

transmission and lossless compression. We do not obtain such

conclusion when considering the Venus head mesh, where

WGC improved neither the progressive transmission quality

nor the lossless compression rate. WGC may be only well

adapted to meshes with relatively flat surfaces with a low

number of sharp edges, and may not perform well on smooth

meshes, which is an issue to be further investigated.

VII. CONCLUSION

We propose a new wavelet-based lossy to lossless mesh

compression algorithm : Wavemesh, which outperforms pre-

viously reported works on both progressive and lossless

compression. This new connectivity and geometry coding

scheme comes in addition to a wavelet scheme for irregular

meshes [22], which comes as an extension of the original

wavelet scheme for subdivision connectivity meshes [15]. Our

connectivity coding strategy is based on a compact represen-

tation for an irregular subdivision scheme which allows the

reconstruction of any irregular mesh, improved by arithmetic

coding. The geometry coding scheme is based on an entropy

coding of wavelet coefficients. The current implementation

clearly demonstrates the superiority of the approach over

previous ones. Further work may introduce performance-speed

tradeoff, connectivity coding optimizations in terms of a better

inverse problem solver, color and texture coding, and near

lossless coding of the mesh geometry for better progressive

transmission performance.
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Fig. 8. Rate-distortion curve for the Venus head
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TABLE I

LOSSLESS COMPRESSION RESULTS FOR VARIOUS REFERENCE MESHES AND SEVERAL APPROACHES (RESULTS IN BITS/VERTEX)

Connectivity(bits/v) Geometry (10 bits) Geometry (12 bits)

Model Vertices AD01 Ours AD01 Ours Total Ours Total Time (s)

Blob 8036→4 ? 3.39 ? 14.35 17.74 17.39 20.78 3.56

Bunny 34834→22 ? 2.76 ? 8.5 11.26 13.48 16.24 14.5

Eight 766→15 ? 2.62 ? 15.36 17.98 21.34 23.96 0.47

Fandisk (a) 6475→4 ? 2.59 ? 10.89 13.48 15.9 18.49 2.39

Fandisk (b) 6475→4 4.99 3.16 12.34 9.94 13.1 14.76 17.92 2.98
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Rémy Prost received his doctorate degree in Elec-
tronics Engineering and his ”Docteur es Sciences”
degree from Lyon University and the National In-
stitute of Applied Sciences (INSA), Lyon, France,
in 1977 and 1987 respectively. He is currently a
professor in the Department of Electrical Engineer-
ing at INSA -Lyon. Both his teaching and research
interests include digital signal processing, inverse
problems, image data compression, multiresolution
algorithms, wavelets, and meshes processing. He
leads the ’ Volume (3D) Image Processing ’ project

in the CREATIS Laboratory (CNRS #5515) at INSA-Lyon. Since 1982 he is
a member of the IEEE.


