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Abstract We propose in this paper an extension of

the Non-Local Means (NL-Means) denoising algorithm.
The idea is to replace the usual square patches used

to compare pixel neighborhoods with various shapes
that can take advantage of the local geometry of the
image. We provide a fast algorithm to compute the
NL-Means with arbitrary shapes thanks to the fast

Fourier transform. We then consider local combinations
of the estimators associated with various shapes by us-
ing Stein’s Unbiased Risk Estimate (SURE). Experi-

mental results show that this algorithm improve the
standard NL-Means performance and is close to state-

of-the-art methods, both in terms of visual quality and

numerical results. Moreover, common visual artifacts
usually observed by denoising with NL-Means are re-
duced or suppressed thanks to our approach.

Keywords Image denoising · non-local means · spatial
adaptivity · aggregation · risk estimation · SURE

1 Introduction

As simple as it may seem, the classical problem of image

denoising in the presence of Additive White Gaussian
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Noise (AWGN) has drawn a lot of efforts from the image

processing community. A wide variety of strategies were

proposed during the last decades, from partial differ-

ential equations (PDE) to transform-domain methods
such as wavelets, approximation theory or stochastic
analysis.

In fact, a first major difficulty in image denoising

is to handle efficiently regular parts while preventing
edges from being blurred. To this end, diffusion meth-
ods [35] and variational methods [40] have shown their

effectiveness. The latter approaches introduce a prior

model of the noise-free image and search for a trade-off
between data fitting and regularization. It is crucial for
these techniques to define a suitable prior that guar-

antees both the smoothness of the denoised image and
the preservation of its structure. Total variation [40] is
an example of a prior that enforces smoothness while

preserving edges. However, such priors tend to bias the

denoised image [48], especially in texture area or when
high noise levels are considered.

Donoho and Johnstone [14] have shown that spatial

adaptive methods can be obtained by soft-thresholding
wavelet decompositions. Wavelet shrinkage can be in-
terpreted from a Bayesian perspective. It results from

an ℓ1 sparsity-promoting prior: the regularity of the sig-
nal is enforced by using sparsifying priors on the coef-

ficients in the transform domain. Indeed, wavelet and

cosine bases are well known to be able to capture most

of a signal/image with very few coefficients, a good

property for compression. For denoising applications,

such orthogonal transforms lead to a separation of sig-

nal and noise. Noise can then be strongly suppressed by
canceling the least significant coefficients. These types
of methods culminated with the BLS-GSM algorithm

[38]. Other improvements of wavelet oriented methods

have been proposed such as Shape Adaptive Domains
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[17] and over-complete [45] or geometric [25] decompo-
sitions.

Spatial adaptivity can also be reached by consider-

ing adaptive neighbor filters, as the well known Sigma
Filter [26], Yaroslavsky Filter [56] and Bilateral Fil-
ter [49]. Moreover, applications of Lepski’s method [27]

(known in signal processing as the ICI rule, Intersec-
tion of Confidence Intervals) to kernel smoothing are
also known to perform well for denoising. Their theoret-
ical performance is as good as the best wavelet shrink-

ing methods: they reach adaptive rate in the minimax
sense [19] for regular functions. In practice, Lepski’s rule
has successfully been applied to image denoising with

Adaptive Weights Smoothing [36] or Shape Adaptive
Windows [22] for instance.

Though very efficient at dealing with edges, such

methods cannot proceed efficiently in textured regions.
To overcome this drawback, many authors have pro-
posed to work with small sub-images, called patches,

to take into account the redundancy in natural im-

ages, especially in textured parts. The interest of using
patches lies in their robustness to noise. The NL-Means

(Non-Local Means) [5] and UINTA [2] algorithms are
typical examples of this approach, as is their extension
using Lepski’s method [23]. Those algorithms consist in
averaging similar pixels by measuring their similarity

through patches. Iterative versions have also been pro-

posed [4,18,12] as well as mixed methods using Total
Variation [30].

Another approach proposed by Aharon et al. [1] and
extended in [32,31] also uses patches to denoise the im-
age. Though, for these methods, the key point is to

get a good representation for each patch of the im-

age by using dictionary learning techniques, well-suited
for overcomplete representation (based for instance on

ℓ1 regularization or greedy algorithms). This leads to
a state-of-the-art denoising method called Learned Si-

multaneous Sparse Coding (LSSC) [31]. It has to be
noted that this algorithm incorporates a prior on images

by initializing a dictionary of patches on a large clean
dataset. Another state-of-the-art method in denoising
is BM3D [7]. It also relies on patches and consists of a

smart combination of classical filtering techniques, such
as wavelet denoising and Wiener’s Filter, applied in the
space of patches.

These methods are already quite efficient at dealing
with smooth regions and textures. However, since they
use patches with a fixed square shape and a fixed scale

over the whole image, their performances may be lim-
ited for dealing with edges, mostly for high contrasted
edges. Indeed, high contrasted edges present few redun-

dancies and their denoising version suffer from a persis-

tence of residual noise: this is named the noise halo. In

order to overcome this drawback, more directional pri-

ors may be considered, using locally chosen scales and
orientations of shapes. Few attempts have been made
to use several patch sizes (see [32] for learning with

patches or [43] for the NL-Means).

As far as we know, the only work trying to handle

variable shapes rather than simple square has recently
been proposed by Dabov et al. [8] as a way to improve

the BM3D algorithm. The authors propose to adapt
the shapes used by the algorithm: they locally select

a shape by applying Lepski’s method, and then per-
form the same steps of the BM3D algorithm with these
shapes rather than with common square blocks (i.e.,

patches).

Recently, spatial-adaptive methods for selecting the

parameters of NL-means have been proposed in [16,15].
Both methods propose to locally select the parameters
which minimize a local estimate of the risk (i.e., the
Mean Square Error, MSE) by considering respectively

Stein’s Unbiased Risk Estimate (SURE) [46,47] or the
Cp criterion [33]. The use of SURE for NL-Means was
originally proposed in order to select the best band-

width parameter [51]. Applications of SURE emerged
for choosing the smoothing parameter in families of lin-
ear estimates [29] such as for model selection, ridge re-
gression, smoothing splines, etc. It was then widely used

in the wavelet community after the introduction of the
SURE-Shrink algorithm [14]. Solo [44] gave a general
form of SURE for an estimator defined as a minimizer

of a regular energy, especially for least square regres-
sion regularized by a Sobolev norm or the Total Vari-
ation. More recently, linear combinations of estimates

based on SURE were considered [3] instead of the selec-

tion of a single one. Moreover, Ramani et al. [39] have
proposed a Monte Carlo approach to evaluate SURE

when a closed-form expression is not available or too

computer-intensive. Our paper is in the same vein as

[51,16] and proposes to locally select or aggregate the
best shapes.

Our contributions— The aim of this paper is to in-
vestigate the potential benefit of replacing the simple

square patches with more general shapes, in the clas-

sical NL-Means filter. To this end, we propose a fast
algorithm, based on the fast Fourier transform, which
allows to compute the solution of the NL-Means for ar-

bitrary patch shapes. Then we explain how to combine

the estimators associated with each shape in a suitable
way. We select or combine locally the shape-based esti-

mates by measuring the performance of their associated
denoisers with SURE. We coin such type of algorithms
Non-Local Means with Shape-Adaptive Patches (NLM-

SAP).
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The main advantage of using adaptive patch shapes
in the context of NL-Means is to reduce the noise halo

produced around high contrasted edges. Such edges can
appear anytime in natural images and they appear com-

monly in high dynamic range images (HDR). It has
been shown that high contrasts in synthetic aperture
radar images interfere with Non-Local approaches since

these kinds of images present very high contrasted fea-
tures (known as bright scatterers) [13]. Our method is
an improvement of the NL-Means taking into account

the anisotropy of natural images. It is all the more

relevant when the images to denoise present high con-
trasted edges for which the classical NL-Means fails.

Organization of the paper — We give in Section 2
a general overview of the NL-Means method. We in-

troduce in Section 3 a more general framework using
general shapes instead of square patches to measure
the similarity between pixels. This leads in Section 4 to

the natural problem of locally selecting or combining
the best shapes in our NLM-SAP algorithm. In Section
5 we illustrate numerically, and above all visually, the

gain in aggregating various shape-based estimates in a

proper manner.

2 An overview of the NL-Means

In this section we define the model we use for the noisy
image, and we recall the definition and basic facts about
NL-Means. We also present some limitations and justify

the need to introduce variable shapes instead of the

standard fixed square patches.

2.1 The AWGN model

In this paper we are concerned with the problem of de-
noising. A noisy image Y is given and assumed to be

a version of an unobserved deterministic image f cor-

rupted by an Additive White Gaussian Noise (AWGN).
Let Ω ⊂ Z

2 be the (bounded) indexing set of the pix-
els. For any pixel x in the grid Ω, the model has the
following formulation:

Y(x) = f(x) + ε(x) , (1)

where ε is a centered Gaussian noise with known vari-

ance σ2 and the noise components ε(x) are indepen-
dent. Even if we only focus on the case of AWGN, our

methodology could be adapted to other noise models by

considering NL-Means extensions such as [24,12] and

statistical results on unbiased risk estimation [21].

2.2 Definition and parameters

In this section we present the usual definition of the
NL-Means procedure as introduced by Buades et al.

[5]. It is an averaging filter, i.e., for each pixel the out-

put of the procedure is a weighted average of the whole

image. The weights used are selected using a “metric”
which determines whether two pixels are similar or not.

For instance, with the Bilateral Filter [49], the “metric”

consists in comparing both pixels values and pixel lo-
cations. The core idea of the NL-Means is to create a
metric governed by patches surrounding each pixel, re-

gardless of their position, i.e., non-local in the image

space. For any pixel of interest x, an estimate of the
value f(x) is given by:

f̂(x) =

∑

x′∈Ω ω(x, x′)Y(x′)
∑

x′∈Ω ω(x, x′)
, (2)

where the weights ω(x, x′) depend on patches around x
and x′. The denominator is a normalizing factor which

ensures the weights sum to one. For a fixed (odd) width
p, a patch Px is a subimage of width p, centered around
the pixel of interest x:

Px =

(

Y(x + τ), τ ∈
s
−p − 1

2
,
p − 1

2

{2
)

. (3)

With this notation, the original weights in the NL-
Means are of the following form:

ω(x, x′) = ϕ

(

‖Px − Px′‖2
2,a

2h2

)

, (4)

where h > 0 is the bandwidth parameter, ϕ is the ker-
nel used to measure similarity between patches, ‖·‖2,a

is a weighted Euclidean norm using a Gaussian kernel,
and a is the bandwidth that controls the concentration

of the kernel around the central pixel. Let us now
briefly recall the influence of each parameter (see [16]

for a more extensive discussion on this subject).

The bandwidth h: this parameter has a smoothing

effect and plays the same role as the bandwidth for
kernel methods in statistics (cf. [55] for more details).
With our parametrization, the larger the bandwidth,

the smoother the image becomes. Choosing this

parameter is a difficult task and many solutions have
been proposed in the literature. The simplest and
most common one is to set a single h for the whole

image, whose value is determined by cross validation
on a small dataset of images. In [37,23], the authors
set this parameter according to the quantile of a χ2

distribution, due to the particular metric they consider
to compare pixels (or patches). Van De Ville and
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Fig. 1 Illustration of the noise halo appearing around high contrasted edges on images denoised by NL-means. The input
noisy images was corrupted version of the noise-free images presented on Fig. 6 damaged by AWGN with standard deviation
σ = 20. Noise halo arises from an abrupt lack of redundancy around edges sometimes referred as the rare patch effect.

Kocher [51] calculate an unbiased risk estimate of the

NL-Means to globally select the bandwidth h. Pursuing

this idea, Duval et al. [16] consider a method based on
the same approach but to locally select the bandwidth.

The main interest of the last two approaches is that
they give a closed-form expression of the SURE for
NL-Means.

The search window size ℓ: the summation defined

in Equation (2) is usually restricted to an ℓ × ℓ

search window around the pixel of interest. Defining

Ωℓ = J− ℓ−1
2 , ℓ−1

2 K2, the search window centered on
each pixel x is then x + Ωℓ. This was proposed in

the seminal work [5] for computational acceleration.

Though, some authors have also noticed that choosing
locally the best search windows [23] or restrict-
ing the average over small ones (see [16] or [41] for

more details) could benefit to the NL-Means procedure.

The kernel ϕ: function ϕ was chosen by Buades

et al. [5] as t 7→ exp(−t), but other choices may
be considered, such as compactly supported smooth
functions. It was noticed by several authors [20] that

weights with compact support yield better results. In
this paper we have restricted our experiments to the
kernel given in [5], but any other C1 kernel could be
handled by our framework.

The patch size p: this parameter is generally chosen

equal to 5, 7 or 9. Using a width p = 1 would lead to a

method close to the Bilateral Filter [49] or Yaroslavsky
Filter [56]. Moreover, in most papers the patch width
is a global fixed parameter. Few works have tried

to handle the difficult task of using several sizes of
patches for a single image. To our knowledge, the
first attempt was proposed in the context of learning

patches by [32], using Support Vector Machines (SVM).

Our approach extends the notion of patches to the

more general concept of shapes. Our goal is to bet-
ter handle anisotropy in natural images using oriented
patches. Indeed, it is well known that edges are not
satisfactorily denoised when using square patches with

the NL-Means. This leads to a noise halo around edges
(see Fig. 1). We propose in the next section an algo-
rithm to compute efficiently the solution of NL-means

for arbitrary shapes. We also consider in details sev-
eral natural collections of shapes. Numerical results are
given in Section 5.

3 From patches to shapes: beyond the rare

patch effect

In practice, we have seen that the original algorithm

suffers from a noise halo around edges, due to an abrupt
lack of redundancy of the image. This phenomenon is

sometimes referred to as the rare patch effect (Fig. 1).

Statistically, it leads to an NL-Means estimator with

large variance around edges. Several solutions have al-

ready been proposed to handle this drawback [43,16,30]
(see Section 3.2 for more details). Here, we generalize
these approaches by considering general shapes rather

than simple square patches (cf. Fig. 2).

In order to deal with patches of arbitrary shapes, we
reformulate the way the distance between two pixels is
measured in terms of patches. The weighted Euclidean

distance ‖·‖2,a used in Eq. (4) can be generalized using
the following expression:

d2
S(x, x′) =

∑

τ∈Ω

S (τ) (Y(x + τ) − Y(x′ + τ))2 , (5)

where S encodes the shape we aim at. With this nota-

tion we can easily rewrite the original NL-Means with

a simple S, cf. Eq. (8) and Eq. (9).
One of our contributions is to provide an efficient al-

gorithm, based on the Fast Fourier Transform (FFT), to

compute the distances in Eq. (5). Our implementation
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is independent of the shape, and can thus be applied
with different shapes (see Section 3.1 for details). As
soon as we consider the use of anisotropic shapes, and
not just squares or disks centered on the pixel of inter-

est, two questions emerge. The first one is how to choose
the collection of shapes to consider. The second issue is
to propose a way to combine the estimators provided

by each shape.

The collection of shapes should be composed of more

than one shape to locally take into account the geomet-

rical properties of natural images. Consider for instance
the use of a single vertically elongated patch. This could

be interesting to handle vertical features, but eventu-
ally we would not optimally deal with horizontal details
with only one oriented shape. So, the collection should
be diversified and numerous enough to identify direc-

tional features (see Fig. 8 for a visual illustration). At

the same time, it should remain small enough so that
the algorithm is not computationally intensive.

3.1 Fast algorithm to handle shapes

In this section, we present a fast way to compute the
NL-Means weights for general shapes, based on the 2D-
FFT. It is inspired from works initiated in [53] and

[11] to speed up the NL-Means algorithm. However,

contrary to these approaches, ours can deal with non-
square and/or non-binary patches, i.e., with general
shapes S. Like them, our method is independent of the

shape size.

In [53] and [11], the authors propose to compute the

Euclidean distances using “Summed Area Tables” [6]
(also called “Integral Images” [52]). This allows them
to reduce the computational cost of the NL-Means from

O(|W | · |Ω| · |P|) to O(|W | · |Ω|), where |W | = ℓ2 is the
number of pixels in the search window, |Ω| is the image

domain size and |P| is the patch size (we refer to [11]

for more details). To compute these integral images, the

authors change the original algorithm by swapping the

two “for” loops: instead of considering all the shifts for

each pixel, they consider all the pixels for each shift.

We use basically the same swapping trick. Notice

that Equation (5) can be reformulated for any transla-

tion parameter δ (i.e., taking x′ = x + δ) as a discrete

convolution:

d2
S(x, x + δ) =

∑

τ∈Ω

S (τ) (Y(x + τ) − Y(x + δ + τ))2

= (Š ⋆ ∆δ)(x) , (6)

where (̌S (τ) = S (−τ), ∆δ(x) = (Y(x) − Y(x + δ))2

and ⋆ is the convolution operator. This term can be in-

terpreted as the correlation between the shape S and

Algorithm 2D-FFT NL-Means for an arbitrary shape

Inputs: noisy image Y, 2D-FFT of the shape F(S)
Parameters: search window W , bandwidth h

Output: estimated image f̂

Initialize accumulator images A and B to zero
for all shift vector δ in the search window W do

Compute the square difference image ∆δ

∆δ(x) := (Y(x)−Y(x + δ))2 for all pixels x

Compute the 2D-FFT F(∆δ)
Perform the convolution of ∆δ by the shape Š

d2
S(·, ·+ δ)←

“

F−1
“

F(S)F(∆δ)
””

(·)

⊲ O(|Ω| · log |Ω|) operations using 2D-FFT

for all pixels x in Ω do

Compute the weights

ω(x, x + δ) = ϕ

„

d2
S

(x, x + δ)

2h2

«

Update the accumulators

A(x)← A(x) + ω(x, x + δ)Y(x + δ)

B(x)← B(x) + ω(x, x + δ)

end for

end for

Final (normalized) estimator f̂(x) = A(x)

B(x)
for all pixel x

Note: the central pixel (δ = 0) is treated as a special case
⊲ see Section 5 for details

Fig. 3 NL-Means pseudo-code for an arbitrary patch shape
S. Pre-computations (based on 2D-FFT) of distances be-
tween shapes from the noisy image and shapes from its shifted
version leads to a smaller complexity of O(|W | · |Ω| · log |Ω|),
independent of the shape S.

the square difference of the observe image and the δ-

shifted version. The convolution Š ⋆ ∆δ can be com-
puted quickly thanks to following relation:

Š ⋆ ∆δ = F−1(F(Š)F(∆δ)) = F−1(F(S)F(∆δ)) , (7)

where F is the 2D discrete Fourier transform (2D-FFT)

and F−1 is its inverse transform. According to Equa-
tion (7), and given a translation δ, we only need to
perform one term by term multiplication in Fourier do-

main and two 2D-FFT (note that F(S) can be com-
puted off-line). The repetition of this procedure for ev-

ery translation δ covering the search window, leads to

an algorithm (whose pseudo-code is detailed in Fig. 3)

with a complexity of O(|W | · |Ω| · log(|Ω|)).
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(a) (b)

Fig. 2 (a) Examples of shapes considered. The “central” pixel is shown in red, dark pixels illustrate high weights. Shapes
are grouped in four categories: F1. the isotropic disk family, F2. the half-pies family, F3. the quarter-pies family and F4. the
bands family. (b) Parametrization of the pie slices and bands.

3.2 Families of shapes

The main purpose of this paper is to show that the use

of different shapes allows to reduce the rare patch effect.
This point of view is a generalization of the NL-Means

based on square patches with the reprojection studied
in [43], since each translated patch can be regarded as
a de-centered shape. Here, h is fixed and the challenge

is to find shapes with enough similar candidates in the
search window to reduce the noise.

We now present several types of families we have

considered. The first collections consist of classical
squares and disks shapes. Then, we propose more di-
rectional shapes such as pie slices and bands displayed

in Fig. 2.

Squares: To begin with, we apply our framework to the
most commonly used shapes, i.e., the square shapes of

odd length (so the squares have centers we can con-

sider). For instance, choosing:

S (τ) =







1, if ‖τ‖∞ ≤ p−1
2 ,

0, otherwise,

(8)

leads to the classical (simplified) NL-Means definition

with square patches of size p × p and distance between

patches measured by the Euclidean norm.

Gaussian: The original, but less common choice, is to

set:

S (τ) =







exp(−(τ2
1 + τ2

2 )/2a2), if ‖τ‖∞ ≤ p−1
2 ,

0, otherwise.

(9)

Equation (9) means that the norm ‖·‖2,a is used to

measure the distance between patches. This limits the

influence of square patches corners and leads to a more

isotropic comparison between patches.

Disks: Disk shapes are defined in the same way, using
the Euclidean norm instead:

S (τ) =







1, if ‖τ‖2 ≤ p−1
2 ,

0, otherwise.

(10)

A non-binary version may also be defined for pixels

crossed by the boundary.

Pie slices: We study a family of shapes, denoted

as “pie”, whose elements are defined with three

parameters: two angles and a radius. These shapes
represent a portion of a disk delimited by two lines
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and surrounding the discrete central pixel.

Bands: This family of shapes is simply composed of

rectangles, potentially rotated and decentered with
respect to the pixel of interest.

3.3 Connection with previous work

One of our main concern is to address the rare patch
effect of the NL-Means algorithm. Different methods

have been designed to limit this drawback or to im-

prove the NL-Means in terms of quality or speed. The

first attempt was proposed to speed-up the algorithm.

The idea is to denoise patch by patch rather than pixel
by pixel. Taking into account patches overlaps, a fast
implementation of the NL-Means is reached by using

a sub-sampled grid of pixels [5,24]. Quality improve-
ment can also be obtained by properly using overlap-
ping patches. Indeed, we get |P| estimates for each
pixel (where |P| is the number of elements in a patch).

Some authors [5,23] simply propose to uniformly aver-
age those |P| estimates while a weighted average is per-

formed in [43] (see Section 4.1 and 4.2). In our frame-

work, these blockwise approaches are equivalent to use

|P|, possibly decentered, square shapes (cf. Fig. 4).

Other methods have been introduced to reduce the

noise halo. In [30], the authors use a total variation-
based pre-filtering of the image and set locally its pa-
rameter so that the NL-Means find enough similar

patches. In [16], the authors aim to select locally the
bandwidth parameter h using SURE (introduced in de-

tails in Section 4.3) to select enough patches according

to a bias-variance trade-off.

4 Aggregation of shape-based estimates

In this section we investigate several ways to aggregate

the NL-Means estimators based on different shapes of
“patches”. We have extended the standard square shape
to other shapes such as disks, pies or bands (see Section

3.2). Thus, the new goal in this context is to determine
how to locally take the most of each proposed denoiser.

Assume that for any pixel x in the image, we have

built a collection of K pixel estimators f̂1(x), · · · , f̂K(x)
based on different shapes, and that estimates of their
corresponding performances are available. With this in-

formation at hand, we can address different aggrega-
tion/optimization problems. Indeed, the ways of com-
bining the estimators at hand may depend on the the-

oretical aggregation problem we aim to solve (as de-

scribed by [34] and [50]):

(a) Centered Patches (b) Centered Weights

(c) Decentered Patches (d) Decentered Weights

Fig. 4 Examples of decentered patches near edges. If the
patch is centered (a) fewer similar patches candidates are
found than if the patch is decentered (c). The pixel of in-
terest is in red, and black pixels are some similar pixels. (b)
and (d) gives an illustration of the weights obtained (in black)
by the two methods to denoise the red pixel.

(S) The selection problem: finding the best estimator
among f̂1(x), · · · , f̂K(x).

(L) The linear problem: finding the best linear combi-
nation of f̂1(x), · · · , f̂K(x).

(C) The convex problem: finding the best convex com-

bination of f̂1(x), · · · , f̂K(x).

4.1 Uniformly weighted aggregation (UWA)

This is the simplest form of aggregation that we con-

sider. The idea is to give the same weight to any shape-
based estimator. With few shapes it is already an im-
provement in practice (both in term of PSNR and
SSIM, see Table 3), but as the number of shapes in-

creases, we can take into account positions that are
completely irrelevant. It is in essence, the one proposed
in [5] and referred as blockwise NL-means in [23], with

shapes being decentered square patches. Such an aggre-
gation procedure still suffers from the rare patch effect

(see Fig. 1, third line, for a visual illustration). We can
express for any pixel x the uniform estimate f̂UWA(x) as

the mean of the shape-based estimates:

f̂UWA(x) :=
1

K

K
∑

k=1

f̂k(x) . (11)
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In our experiments, this method can be considered as
the benchmark to be improved when using more com-
plex aggregating strategies.

4.2 Variance-based decision, Weighted Average (WAV)

A possible way to limit the halo effect is to adapt
WAV-reprojection [43] to general shapes. The idea,
also proposed by Dabov et al. [7] in a different con-

text, is to perform a weighted average of the estimates
f̂1(x), · · · , f̂K(x). To limit the noise halo, each weight

should be chosen inversely proportional to the (approx-

imate) variance of the corresponding estimator. In the

context of NL-means, this approximate variance can be
obtained in closed-form in the same way as in [23], as-
suming that the coefficients ω(x, x′) in Equation (2)

can be treated as deterministic. Measuring the perfor-
mances of the estimators in term of variance is well jus-
tified since the halo effect results to the high variance

of our estimators around the edges (see [43]). However,

it tends to over-smooth the edges and the thin details
since it does not consider the bias of each estimator.

4.3 SURE-based decisions

A way to take the bias into account is to consider

the risk estimate rather than the variance to locally

attribute more weight to the estimators with small

risks. In [51], Van De Ville and Kocher give a closed-

form expression of Stein’s Unbiased Estimator of the

Risk (SURE) for the NL-Means. They aim at selecting

globally the best bandwidth for a given image. Here,
our approach is different, despite the use of the same
tool. Indeed, our choice of shape is done locally (i.e.,

for each pixel), since it is very unlikely that a single

shape should be optimal for a whole natural image.
Our method is closer to the one proposed by Duval et
al. [16]. The authors rely on SURE to locally determine

the parameters: the bandwidth h and the patch size p.
They have shown that a local choice of h reduces the

visual artifacts, especially the rare patch effect. Let us

now rephrase Stein’s Lemma [46,47] in our NLM-SAP
framework.

Proposition 1 (Stein) Let f(x) ∈ R, ε(x) ∼
N (0, σ2), and Y(x) = f(x) + ε(x). Denote by γ(Y(x))

an estimate of f(x) and assume γ : R → R is absolutely
continuous, and

i) lim|z|→∞ γ(f(x) + z)e−
z2

2σ2 = 0,

ii) E(γ(f(x) + ε(x)))2 < +∞, and

iii) E|γ′(f(x) + ε(x))| < +∞.

Then the following relation holds:

E|γ(Y(x)) − f(x)|2 =

E

(

(γ(Y(x)) − Y(x))2 + 2σ2 ∂γ(Y(x))

∂ε(x)

)

− σ2 .

(12)

Proposition 1 provides an unbiased estimate of the risk
for the K shape-based denoised values f̂k(x) at each

pixel x. Indeed, if γ is one of the shape-based estima-
tors and if the kernel ϕ is such that γ is absolutely

continuous, then

rk(x) = (f̂k(x) − Y(x))2 + 2σ
∂ f̂k(x)

∂ε(x)
− σ2 , (13)

is an unbiased estimate of the risk at pixel x for the k-th

shape-based estimate, i.e., E(rk(x)) = E|f̂k(x)− f(x)|2.
The main contribution of [51,16] is that they give a

closed-form expression of ∂ f̂k(x)
∂ε(x) for NL-Means. Indeed,

thanks to Eq. (2) and Eq. (4), its expression can be

recast in the following form:

∂ f̂k(x)

∂ε(x)
=

ϕ(0)

Cx

+
1

Cx

∑

x′

Y(x′)
∂ω(x, x′)

∂ε(x′)

−
(

1

Cx

∑

x′

Y(x′)ω(x, x′)

)(

∑

x′′

∂ω(x, x′′)

∂ε(x)

)

.

(14)

where Cx =
∑

x′ ω(x, x′) is a normalization constant.
In our NLM-SAP framework, our shape-based norm de-

fined in Eq. (5) leads to the following expression of the
derivative of the weights ω(x, x′):

∂ω(x, x′)

∂ε(x′)
=

1

h2

(

S (x)
[

Y(x) − Y(x′)
]

+S (2x − x′)
[

Y(x) − Y(2x − x′)
])

.
(15)

where S encodes the shape of our k-th shape-based esti-
mator. Finally, combining equations (13), (14) and (15)

leads to an unbiased estimate of the risk of our NLM-
SAP denoiser.

Now, since we are using K shapes, we get

r1(x), · · · , rK(x), unbiased risk estimates respectively

for the shape-based estimators f̂1(x), · · · , f̂K(x).

4.3.1 Minimizing the risk of linear combinations

Suppose we want to solve the linear problem of aggre-

gation. A natural way to find a good linear combination



Non-Local Methods with Shape-Adaptive Patches (NLM-SAP) 9

(a) Noise-free image (b) Noisy risk (c) Convoluted risk (d) Anisotropic diff. based risk

Fig. 5 Maps of the estimated risk associated to patches with a small circular shape. From left to right, the underlying noise-free
image, the map of the risk without regularization, with convolution (isotropic regularization) and with regularization based
on anisotropic diffusion. Low risks are black, high ones are white.

is to solve the following problem:

f̂LIN(x) :=
K
∑

k=1

α∗
k f̂k(x) , (16)

where α∗ := arg min
α∈RK

E

(

K
∑

k=1

αk f̂k(x) − f(x)

)2

.

Here, the linearity of the combination allows to use

Stein’s Lemma (Proposition 1). It provides an unbiased
estimate of the risk of the weighted average estimate:

E

(

K
∑

k=1

αk f̂k(x) − f(x)

)2

=

E





(

K
∑

k=1

αk f̂k(x) − Y(x)

)2

+ 2σ2
K
∑

k=1

αk

∂ f̂k(x)

∂ε(x)



− σ2.

Therefore, neglecting the term that does not depend on
α in the last equation, the optimal weights α∗ can be

obtained by solving the following:

α∗(x) = arg min
α∈RK

∑

k,k′

αkαk′E(f̂k(x)f̂k′(x))+

K
∑

k=1

αk

(

2σ2
E

(

∂ f̂k(x)

∂ε(x)

)

− 2E
(

Y(x)f̂k(x)
)

)

.

Using the first order optimality conditions, the last

problem amounts to solving a linear system in α. This

type of estimator is known to perform quite well for

wavelet thresholding estimation where it is referred

to as the SURE-LET (for SURE-Linear Expansion of

Thresholds, see [3]). However, in our framework, this

method is not applicable. Indeed, since we work pix-
elwise, we have only one sample of the SURE for
each pixel. This leads to an ill-conditioned system

to solve, and the calculated α∗ behaves poorly. Al-

gebraically, this is due to the fact that the matrix

[f̂k(x)f̂k′(x)]k,k′=1,...,K is of rank one, and thus the sys-

tem to solve is ill-conditioned. Our attempts to regu-
larize the problem (e.g. with Tikhonov regularization
known as “Ridge Regression” in statistics) or to solve

the problem blockwise instead of pixelwise did not yield

satisfying results. More generally, the problem of using
SURE to take a local decision for each pixel x is difficult

since this estimator has large oscillations (see for in-

stance Fig. 5). In the next paragraph, we present how to

regularize the risk maps, i.e., the “images” r1, · · · , rK .

4.3.2 Regularizing the risk maps

To make the risk estimates more robust, it is necessary
to locally regularize the risk maps, in order to approx-

imate at each pixel the expectations used in Eq. (13).

In [16], the convolution of the risk map is an efficient

way to estimate the local risk in view of setting h since
on both sides of an edge a large value of h should be
used. Here, the anisotropy of the shapes implies that on

one side of an edge the risk may be low whereas it may
be very high on the other side. Since the convolution
diffuses the risks on both sides of the edges, any com-

parison of the risks associated with each shape becomes

unstable.

In order to diffuse the risks on each side of edges, we
have adopted a heat equation with spatially and timely

dependent coefficients (inspired by the Perona-Malik
equation [35]). So, we let the risk maps r1, · · · , rK

evolve according to:







∂rk

∂t
(x, t) = div (g(|∇u(x, t)|)∇rk(x, t)) ,

rk(x, 0) = (f̂k(x) − Y(x))2 + 2σ2 ∂ f̂k(x)
∂ε(x) − σ2 ,

(17)

where g(x) = exp(−x2/κ2), the parameter κ controls

the anisotropy of the diffusion (the larger κ, the more

isotropic the diffusion), and u is the smoothed noisy
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(a) Cameraman (b) City (c) Windmill (d) Lake

Fig. 6 Chosen 256× 256 noise-free images for our experiments, from left to right: cameraman, city, windmill and lake. These
images present high contrasted edges for which the classical NL-Means suffer from the rare patch effect.

image which evolves at the same time using the Perona-

Malik equation:

{

∂u

∂t
(x, t) = div (g(|∇u(x, t)|)∇u(x, t)) ,

u(x, 0) = Y(x) .
(18)

Curiously, we have noticed that we obtain better risk

maps by diffusing
√

rk instead of rk itself. Fig. 5 shows

that this regularization procedure provides smooth risk
maps, following edges of the underlying noise-free im-
age, and finer than without regularization or with con-
volution.

4.3.3 Minimizer of the risk estimates (MRE)

With our measure of performance, the most natural

way to address the selection problem (S) is to select the
shape that minimizes the local risk estimate we have at
hand:

f̂MRE(x) := f̂k∗(x) where k∗ = arg min
k

rk(x) . (19)

Such a selection rule is all the more relevant as the

shapes are really different. In most cases, selecting the
locally optimal shape yields satisfying results, but it is
sometimes more appropriate to combine some of the

best performing estimators as in the next paragraph.

4.3.4 Exponentially weighted aggregation (EWA)

In many cases, it might be better to combine several

estimators rather than just selecting one. Especially, it
happens to be relevant if the best estimators (in term
of evaluated risk) are diversified enough or if the risk

of the MRE was wrongly under-estimated. Thus, we
have also used the statistical method of Exponentially
Weighted Aggregation as introduced by Leung and Bar-

ron [28]. This method has been theoretically studied in

[9,10] and adapted for patch-based denoising in [42]. It

consists in aggregating the estimators by performing a

weighted average with weights based on the confidence
attributed to each estimator, measured in term of the

risk. More precisely:

f̂EWA(x) :=

K
∑

k=1

αk f̂k(x) , (20)

with αk =
exp(−rk(x)/T )

∑K

k′=1 exp(−rk′(x)/T )
.

The temperature parameter T > 0 is a smoothing pa-
rameter, that controls the confidence attributed to the

risk estimates. If T → ∞, then the EWA is simply
the uniform aggregate f̂UWA defined before. Conversely,

when T → 0, then f̂EWA → f̂MRE. Most theoretical works

about EWA (see [28,9,10]) recommend a large tem-

perature parameter T = 4σ2 under few assumptions
(like independence) on the estimators f̂1(x), · · · , f̂K(x).
In practice, since assumptions on the estimators fam-

ily may not be satisfied, we have used a smaller value,
T = 0.02σ2.

5 Numerical and Visual Results

This section presents quantitative and qualitative re-

sults obtained on four images synthetically corrupted

by AWGN. The corrupted images are obtained from

four 256 × 256 noise-free images presented on Fig. 6:
the famous cameraman image and city, windmill and

lake1. These images are particularly interesting in the

study of our proposed Non-Local Means with Adaptive

Patch Shapes (NLM-SAP) since they present high con-

trasted edges for which the classical NL-Means suffer

from the rare patch effect (see Fig. 1).

1 three sub-images extracted from the Laurent Condat’s
database: http://www.greyc.ensicaen.fr/~lcondat/
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Table 1 Gain by using multi-scale isotropic shapes in terms of PSNR and SSIM values (PSNR/SSIM). Circular patch shapes
respectively with area of 12.5, 25 and 50 px2 are used and their results are compared to the one obtained when using a
combination of these three scales of patches.

Cameraman City Windmill Lake

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Patch shape area of 12.5 px2 29.56/0.822 28.11/0.873 30.91/0.880 28.67/0.849
Patch shape area of 25 px2 29.33/0.829 27.93/0.880 30.72/0.896 28.44/0.855
Patch shape area of 50 px2 28.99/0.825 27.56/0.879 30.35/0.900 28.30/0.857
Combination of these three scales 29.45/0.832 28.16/0.885 30.97/0.904 28.68/0.863

In all the experiments, unless otherwise specified,

the NLM-SAP is used with the following default pa-

rameters:

– search window: width ℓ = 11 px,
– shape family: 15 shapes from families F1 and F2 on

Fig. 2.a with shape areas of 12.5, 25 and 50 px2,
– aggregation: EWA with T = 0.02σ2, and
– risk regularization: 50 iterations with timestep dt =

1/8 and κ = 30.

We set the bandwidth parameter to h = 0.7σ for

patches of area 50 px2 as suggested in [5]. However,

as soon as we consider shapes of different areas, the pa-
rameter h has to adapt to the sizes of the shapes. To

adapt the bandwidth to other sizes, we thus have ex-

tended a rule proposed by [23,37], based on quantiles
of a χ2 distribution, to the norm defined in Eq. (5).

The quantile is selected such that h = 0.7σ for patches

of area 50 px2. For the central pixel, we set its central

weight as recommended in [41].

The main limitation in computing time is due to

the number K of shapes required by our NLM-SAP

algorithm. We need to perform K times an NL-Means

like algorithm, i.e., one for each shape. Thanks to our
FFT acceleration, the computing time required for one

shape, whatever the shape, is of about 2s for a 256 ×
256 image with a Matlab implementation on an Intel

Pentium 64-bit, 3.00 GHz. By comparison, the naive

Matlab implementation of NL-Means takes about 100s,

for square patches of area 7 × 7 px2. The computation

of one local SURE map, using Perona-Malik diffusion,

takes about 1s per shape. Finally, NLM-SAP2 using 15

shapes leads to a computing time of about 45s which
is less than the naive Matlab implementation of NL-

Means.

Visual results are given to assess the denoising qual-

ities relative to the different settings of NLM-SAP and

to compare NLM-SAP with other denoising approaches

(see Fig. 12). Numerical criteria support our claims: the

2 our Matlab implementation will be available on-line when
this paper is published

(a) Area 12.5 px2 (b) Area 50 px2 (c) Combination

Fig. 7 Circular patch shapes: visual results obtained with
NLM-SAP when using only circular shapes of different scales
on a noisy realization of the cameraman image. The patch
shape areas are respectively, from left to right, 12.5 px2, 50
px2 and a combination of 12.5, 25 and 50 px2.

Peak Signal to Noise Ratio (PSNR) defined by

PSNR(f̂ , f) = 10 log10

2552

1
|Ω|

∑

x∈Ω

(f(x) − f̂(x))2
, (21)

and the Structural SIMilarity (SSIM) defined in [54].
The SSIM is between 0 and 1 and a value closed to 1

means that the estimated image has a similar structure
to the noise-free image.

5.1 Behavior of NLM-SAP

In this section, we will study the behavior of NLM-

SAP according to some parameters such as the type of
family, the type of aggregation and the type of risk reg-
ularization. Each noisy image is corrupted by AWGN

with standard deviation σ = 20.

Table 1 and Figure 7 illustrate the gain of perfor-
mance to use multi-scale patch shapes instead of using

only one fixed size. In this experiment, we consider three

circular shapes of areas: 12.5, 25 and 50 px2. Compara-

tively, for the original version of NL-means, the authors
suggest to use square patches of fixed size 7 × 7 = 49
px2. Surprisingly, using the smallest shapes provides

always the best PSNR. It means that the bias and the
noise halos introduced by using large patches are ac-

tually more penalizing than the remaining noise left by

the use of small patches. The aggregation of these three

scales of shapes with our NLM-SAP methods improves
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Table 2 Gain by using anisotropic or mixture of isotropic and anisotropic shapes in terms of PSNR and SSIM values
(PSNR/SSIM). The studied patch shapes are the isotropic disks, the half-pies, the quarter-pies, the bands and some com-
bination of them (see Fig. 2.a).

Cameraman City Windmill Lake

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Patches with disk shapes (family F1) 29.45/0.832 28.16/0.885 30.97/0.904 28.68/0.863
Patches with half-pie shapes (family F2) 29.43/0.832 28.08/0.886 30.97/0.906 28.60/0.863
Patches with quarter-pie shapes (family F3) 29.31/0.831 27.87/0.883 30.95/0.909 28.49/0.862
Patches with band shapes (family F4) 29.46/0.832 28.05/0.885 31.05/0.906 28.61/0.862
Combination of shape families F1 and F2 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

Combination of shape families F1, F2, F3 and F4 29.50/0.833 28.20/0.887 31.19/0.909 28.72/0.865

Fig. 8 Eight denoised images obtained for different oriented
patch shapes. The proposed final aggregate is in the center.
Each denoiser provides good performances in a specific tar-
get direction but suffers from noise halos in the other direc-
tions. The final (central) aggregate takes advantage of every
oriented-denoiser to provide high quality restored edges. The
patch shape used is indicated in white.

slightly the PSNR. Visually speaking, using only small
isotropic patches already decreases the rare patch ef-

fect while using too large isotropic shapes produces a

strong noise halo effect. However, the level of noise is

much more decreased by using large shapes than small
ones in homogeneous areas. Finally, combining different

scales of isotropic patch shapes leads to a diminution
of both the level of noise and the halo effect. This is
well reflected in Tab. 1 by the gain in term of the SSIM
criterion which provides quality measurements closer

to our perception system. We will see in the following

that the results can still be improved by considering
both multi-scale and anisotropic patch shapes.

Table 2 gives numerical results obtained by us-

ing different families. The compared families are the

(a) Target pixel (b) NL-Means (c) NLM-SAP

Fig. 9 Illustration of the diminution of the rare patch effect.
(a) The noisy image with an highlighted target pixel and its
neighborhood. (b) The associated maps of weights obtained
by using only square patches of fixed size (i.e., NL-Means).
(c) The associated maps of weights aggregating multi-scale
and anisotropic patch shapes (i.e., NLM-SAP). Low weights
are black, high ones are white.

ones presented on Fig. 2.a, i.e., the disks, the half-pies,

the quarter-pies and the bands. Combination of these

families are also studied. Our experiments show that
most suitable shape families, both in terms of PSNR

and SSIM, have to contain isotropic shapes, directional
shapes and various scales of shapes. Increasing the num-
ber of shapes does not necessarily improve the denoising

quality. Using 15 shapes from families F1 and F2 with
the three different scales, seems to be a good trade-off
between computing time and denoising quality. Figure
8 illustrates why using directional shapes is important

to reduce the rare patch effect. Indeed, each oriented
patch shape enables the restoration of edges in the tar-

get direction but is inappropriate in the other direc-

tions. Then a fine aggregation of them leads to high

quality restoration of edges in all directions. Figure 9

displays weight maps induced by using patches with

only one fixed square shape (i.e., NL-Means) compared

to patches with adaptive scales and orientations (i.e.,

NLM-SAP). For NL-Means, all the weights are concen-

trated around the target pixel: this is the rare patch

effect. For NLM-SAP, the weights are more spread, and

other similar pixels are detected thanks to multi-scale

and anisotropic patch shapes. It is clear that the lim-

itation of the rare patch effect around high contrasted

edges leads to a good reduction of the noise halo.
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Table 3 Comparisons of different aggregation procedures in terms of PSNR and SSIM values (PSNR/SSIM). The compared
aggregation types are UWA, WAV, MRE and EWA.

Cameraman City Windmill Lake

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Uniform Weighted Average (UWA) 29.40/0.830 27.99/0.880 30.76/0.897 28.53/0.858
Weighted Average based on Variance (WAV) 29.46/0.830 27.98/0.879 30.82/0.898 28.48/0.856
Minimizer of the Risk Estimates (MRE) 29.33/0.829 28.02/0.885 30.88/0.905 28.58/0.862
Exponentially Weighted Average (EWA) 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

Table 4 Comparisons of regularization procedures of the risk maps in terms of PSNR and SSIM values (PSNR/SSIM). The
compared regularization procedures are the ones using the noisy risk maps directly (i.e., SURE maps), the convoluted risk
maps and the risk maps obtained by anisotropic diffusions.

Cameraman City Windmill Lake

Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
Noisy risk maps (SURE maps) 29.04/0.816 27.37/0.865 30.13/0.873 28.33/0.846
Convoluted risk maps 29.59/0.836 28.36/0.891 31.23/0.909 28.85/0.869

Anisotropic diffusions based risk maps 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865
True risk maps (MSE maps provided by an oracle) 32.09/0.881 32.32/0.938 34.44/0.936 32.28/0.923

(d) WAV (e) MRE (f) EWA

Fig. 10 (top) Average areas and (bottom) average orienta-
tions of selected shapes for different aggregation procedures
on a noisy realization of the cameraman image. From left to
right: WAV, MRE and EWA aggregations. The average areas
and the average orientations are represented using gray level
colors whose legends are given on the top right corners.

Table 3 presents the numerical performances asso-
ciated with four aggregation procedures: UWA, WAV,

MRE and EWA. As expected, EWA provides best re-
sults, in terms of PSNR and SSIM, since compared to
the other three it combines estimates with the best bias-

variance trade-off. The local behaviors of NLM-SAP for

WAV, MRE and EWA are presented on Fig. 10. The
average areas and the average orientations of the se-
lected shapes are given for the cameraman image. The

selected patch shapes clearly adapt to the local scale
and orientation of the image geometry. The chosen sizes
of the shapes are smaller around edges and textured ar-

eas than in homogeneous areas. The chosen orientation

follows the orthogonal orientation of the shapes which

(g) Noisy risk (h) Convoluted risk (i) Anisotropic diff.

Fig. 11 (top) Average areas and (middle line) average ori-
entations of selected shapes for different risk maps on a noisy
realization of the cameraman image. (bottom) Corresponding
results focused on the cameraman’s neck. From left to right,
results using the noisy risk maps (i.e., SURE maps), the con-
voluted risk maps and the risk maps obtained by anisotropic
diffusions. The average areas and the average orientations are
represented using gray level colors whose legends are given on
the top right corners.

is consistent with the remarks given in Section 3. Com-
pared to EWA, MRE suffers from brutal transitions,
since it selects only one shape per pixel, while EWA

evolves in a smoother way due to the weighted combi-

nation of shapes for each pixel.
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Finally, we have studied the influence of the regu-
larization of the risk maps on the aggregation results.

Three methodologies are compared: aggregation using

the noisy risk maps (i.e., SURE maps), the convoluted

risk maps (using a disk kernel of radius 4) and the risk
maps obtained by anisotropic diffusions. Table 4 gives
the corresponding numerical performances and Fig. 11

illustrates the behavior of each type of risk map regular-
ization. Surprisingly, the risk maps based on isotropic
diffusions of SURE maps provide the best results in

terms of PSNR and SSIM. However, the choice of the

local sizes and orientations of the patch shapes is more
relevant in the maps obtained by anisotropic diffusions,
in terms of scale adaptivity, feature directions and spa-

tial coherency. Using anisotropic diffusion, the NLM-
SAP acts as expected by selecting big sizes of shapes,
even around edges, since the shape orientations have

been chosen properly to reduce the rare patch effect.

By comparison, isotropic diffusion forces the size of
shapes to be small around edges since it cannot select
properly the suitable orientations. This difference of be-

haviors can be noticed around the cameraman’s neck.

In the case of the convolution, a small halo is present
due to wrong decisions while for anisotropic diffusion

this halo is strongly reduced. Then, even if isotropic
diffusion provides the best numerical results in prac-
tice, anisotropic regularizations seems better theoreti-

cally founded to resolve this issue (see also Section 4.3).
Other regularization strategies could then be investi-
gated. To support this idea, Tab. 4 shows that there is
still a gap of numerical performances between regular-

izations of the risk maps and the true risk maps (i.e.,
the local mean square errors provided by an oracle).

5.2 Comparisons with state-of-the-art methods

In this section, the proposed NLM-SAP approach is

compared to state-of-the-art denoising methods. Com-
parisons have been performed with the classical (pix-

elwise) NL-Means [5], the blockwise NL-Means using
UWA reprojection [5], the blockwise NL-Means using
WAV reprojection [43], the pixelwise NL-means us-

ing SURE-based adaptive bandwidth selection [16], the
Block-Matching and 3D filtering (BM3D) denoiser [7],
and our proposed NLM-SAP approach.

Table 5 shows that NLM-SAP out-performs all
other NL-Means improvements. NLM-SAP brings a

gain of PSNR of about 1 dB compared to the clas-
sical NL-Means. The SSIM is also usually increased.
The BM3D approach leads to better numerical results
than all Non Local based approaches. Figure 12 gives

the visual results. While the presence of the rare patch

effect is very well illustrated by the noise halos for NL-

means and blockwise NL-Means using UWA aggrega-
tion, BM3D and NLM-SAP have reduced a lot this
phenomenon. Our NLM-SAP provides smooth results

with accurate details, such as the cameraman’s head,
the house windows, the windmill blades, the tree-trunk
and the car. Visually, the quality of images obtained
with NLM-SAP challenges those obtained with BM3D.

6 Conclusion

In this paper, we have addressed the problem of the rare
patch effect arising in the NL-Means procedure and re-

sponsible of the noisy halos created around high con-
trasted edges. The proposed solution consists in substi-
tuting the square patches of fixed size by spatially adap-
tive patch shapes. A fast implementation of NL-Means,

based on FFT calculations, has been proposed in this

context to handle any kind of patch shape with arbi-
traty scale. Thanks to this acceleration, different esti-

mates are obtained by using different patch shapes, typ-
ically one isotropic patch shape and four edge oriented
patch shapes, all of them with three different scales. We

have extended SURE-based approaches to aggregate

properly these different shape-based estimates in a spa-
tially adaptive way. To get an efficient locally adaptive
filter, we have shown that the SURE-based risk maps

require to be regularized and that anisotropic diffusion
can be used to this purpose. Simulations have shown
that exponentially weighted aggregation based on the

regularized risk maps of the different shape-based esti-

mates could lead to both numerical and visual improve-
ments (the noise halo is suppressed around edges). Our

method out-performs all the NL-Means improvements

we have considered in our comparisons but is still out-

performed by BM3D in terms of PSNR and SSIM.

Future work could be to reduce computation time

of the algorithm by choosing more convenient shapes or
parallel implementations. Other method to regularize
the risk maps could also be considered. Another exten-

sion might be to apply our framework to more general
kinds of noise, by adapting results given by Hudson [21]
on unbiased risk estimates for general exponential fam-
ilies.
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Table 5 Comparisons of denoising approaches for different degradation levels in terms of PSNR and SSIM values
(PSNR/SSIM). The compared methods are the classical (pixelwise) NL-Means [5], the blockwise NL-Means using UWA
reprojection [5], the blockwise NL-Means using WAV reprojection [43], the pixelwise NL-means using SURE-based adaptive
bandwidth selection [16], the BM3D denoiser [7], and our proposed NLM-SAP approach.

Cameraman City Windmill Lake

σ = 5
Noisy input image 34.17/0.845 34.17/0.901 34.17/0.827 34.17/0.866
NL-Means [5] 36.92/0.951 35.87/0.965 38.10/0.972 36.76/0.964
UWA Blockwise NL-Means [5] 37.19/0.953 36.19/0.967 38.50/0.974 37.14/0.967
WAV Blockwise NL-Means [43] 37.27/0.954 36.37/0.970 38.75/0.977 37.03/0.969
SURE-based adaptive NL-Means [16] 37.46/0.956 36.76/0.975 39.14/0.978 37.28/0.970
BM3D [7] 38.17/0.962 37.48/0.978 39.91/0.983 38.15/0.977

NLM-SAP 37.80/0.957 37.26/0.975 39.60/0.979 37.92/0.974

σ = 10
Noisy input image 28.15/0.633 28.15/0.757 28.15/0.607 28.15/0.678
NL-Means [5] 32.46/0.905 31.11/0.932 33.62/0.945 32.07/0.926
UWA Blockwise NL-Means [5] 32.80/0.908 31.50/0.934 34.06/0.946 32.47/0.930
WAV Blockwise NL-Means [43] 32.70/0.908 31.37/0.936 33.91/0.950 31.90/0.926
SURE-based adaptive NL-Means [16] 33.11/0.918 32.11/0.948 34.78/0.954 32.61/0.935
BM3D [7] 34.06/0.931 33.15/0.956 35.84/0.966 33.63/0.950

NLM-SAP 33.44/0.914 32.84/0.950 35.28/0.955 33.27/0.940

σ = 20
Noisy input image 22.13/0.400 22.13/0.567 22.13/0.385 22.13/0.456
NL-Means [5] 28.72/0.820 27.11/0.870 30.04/0.897 28.12/0.855
UWA Blockwise NL-Means [5] 28.89/0.822 27.34/0.872 30.17/0.899 28.21/0.858
WAV Blockwise NL-Means [43] 28.49/0.820 26.58/0.855 29.48/0.898 27.31/0.842
SURE-based adaptive NL-Means [16] 29.49/0.845 27.85/0.889 30.96/0.906 28.46/0.867
BM3D [7] 30.35/0.871 29.07/0.912 32.07/0.936 29.38/0.895

NLM-SAP 29.50/0.833 28.21/0.887 31.11/0.907 28.73/0.865

σ = 40
Noisy input image 16.11/0.222 16.11/0.364 16.11/0.222 16.11/0.259
NL-Means [5] 25.26/0.724 22.37/0.692 25.52/0.793 23.81/0.706
UWA Blockwise NL-Means [5] 25.05/0.726 22.29/0.693 25.29/0.795 23.70/0.708
WAV Blockwise NL-Means [43] 24.66/0.720 21.95/0.680 25.05/0.792 23.51/0.703
SURE-based adaptive NL-Means [16] 26.20/0.741 23.77/0.759 26.95/0.808 24.94/0.741
BM3D [7] 27.26/0.802 25.25/0.830 28.05/0.879 25.86/0.805

NLM-SAP 25.92/0.718 23.30/0.720 26.26/0.776 24.58/0.714

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. IEEE Trans. Signal Process. 54(11),
4311–4322 (2006)

2. Awate, S.P., Whitaker, R.T.: Unsupervised, information-
theoretic, adaptive image filtering for image restoration.
IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376
(2006)

3. Blu, T., Luisier, F.: The SURE-LET approach to image
denoising. IEEE Trans. Image Process. 16(11), 2778–
2786 (2007)

4. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlo-
cal means for denoising of textural patterns. IEEE Trans.
Image Process. 17(7), 1083–1092 (2008)

5. Buades, A., Coll, B., Morel, J.M.: A review of image de-
noising algorithms, with a new one. Multiscale Model.
Simul. 4(2), 490–530 (2005)

6. Crow, F.C.: Summed-area tables for texture mapping. In:
SIGGRAPH Comput. Graph., pp. 207–212 (1984)

7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Im-
age denoising by sparse 3-D transform-domain collabora-
tive filtering. IEEE Trans. Image Process. 16(8), 2080–
2095 (2007)

8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.:
BM3D image denoising with shape-adaptive principal
component analysis. In: Proc. Workshop on Signal Pro-
cessing with Adaptive Sparse Structured Representations
(SPARS’09) (2009)

9. Dalalyan, A.S., Tsybakov, A.B.: Aggregation by expo-
nential weighting, sharp oracle inequalities and sparsity.
In: COLT, pp. 97–111 (2007)

10. Dalalyan, A.S., Tsybakov, A.B.: Aggregation by expo-
nential weighting, sharp pac-bayesian bounds and spar-
sity. Mach. Learn. 72(1-2), 39–61 (2008)

11. Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen,
G.J.: Fast nonlocal filtering applied to electron cryomi-
croscopy. In: ISBI, pp. 1331–1334 (2008)

12. Deledalle, C.A., Denis, L., Tupin, F.: Iterative weighted
maximum likelihood denoising with probabilistic patch-
based weights. IEEE Trans. Image Process. 18(12), 2661–
2672 (2009)

13. Deledalle, C.A., Denis, L., Tupin, F.: NL-InSAR: Nonlo-
cal interferogram estimation. IEEE Trans. Geosci. Re-
mote Sens. 49(4) (2011)

14. Donoho, D.L., Johnstone, I.M.: Adapting to unknown
smoothness via wavelet shrinkage. J. Amer. Statist. As-
soc. 90(432), 1200–1224 (1995)
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Fig. 12 Comparisons of the visual denoising performances of the proposed NLM-SAP approach and other state-of-the-art

methodologies. From top to bottom, the input noisy images, the results obtained by the classical (pixelwise) NL-Means [5],
the blockwise NL-Means using UWA reprojection [5], the BM3D denoiser [7], and our proposed NLM-SAP approach.
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