Non-Local Methods with Shape-Adaptive Patches (NLM-SAP)

Abstract : We propose in this paper an extension of the Non-Local Means (NL-Means) denoising algorithm. The idea is to replace the usual square patches used to compare pixel neighborhoods with various shapes that can take advantage of the local geometry of the image. We provide a fast algorithm to compute the NL-Means with arbitrary shapes thanks to the fast Fourier transform. We then consider local combinations of the estimators associated with various shapes by using Stein's Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improve the standard NL-Means performance and is close to state-of-the-art methods, both in terms of visual quality and numerical results. Moreover, common visual artifacts usually observed by denoising with NL-Means are reduced or suppressed thanks to our approach.
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 2012, 43 (2), pp.103-120. <10.1007/s10851-011-0294-y>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00536723
Contributeur : Charles-Alban Deledalle <>
Soumis le : mardi 16 novembre 2010 - 18:12:31
Dernière modification le : jeudi 9 février 2017 - 15:19:51
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 15:46:00

Fichier

draft.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Charles-Alban Deledalle, Vincent Duval, Joseph Salmon. Non-Local Methods with Shape-Adaptive Patches (NLM-SAP). Journal of Mathematical Imaging and Vision, Springer Verlag, 2012, 43 (2), pp.103-120. <10.1007/s10851-011-0294-y>. <hal-00536723>

Partager

Métriques

Consultations de
la notice

304

Téléchargements du document

5787