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Departamento de Física Matemática, Universidade de São Paulo��

Abstract

In this article we prove approximation formulae for a class of unitary
evolution operators U(t; s)s;t2[0;T ] associated with linear non-autonomous
evolution equations of Schrödinger type de�ned in a Hilbert space H. An
important feature of the equations we consider is that both the corre-
sponding self-adjoint generators and their domains may depend explicitly
on time, whereas the associated quadratic form domains may not. Fur-
thermore the evolution operators we are interested in satisfy the equations
in a weak sense. Under such conditions the approximation formulae we
prove for U(t; s) involve weak operator limits of products of suitable ap-
proximating functions taking values in L(H), the algebra of all linear
bounded operators on H. Our results may be relevant to the numerical
analysis of U(t; s) and we illustrate them by considering two evolution
problems in quantum mechanics.

1 Introduction and Outline

Let H be an arbitrary complex Hilbert space and let L(H) be the algebra of all
bounded linear operators de�ned on H. Our purpose in this article is to prove
approximation formulae for the solutions to initial-value problems of the form

i
du(t)

dt
= H(t)u(t); 0 � s < t � T;

u(s) = v; (1)

where the H(t)�s are given self-adjoint and positive operators in H, with T 2
(0;+1) arbitrary. More speci�cally, assuming there exists a unitary evolution
system UH(t; s)s;t2[0;T ] on H that solves (1) in a suitably weak sense, we display
a large one-parameter family of functions Ft : R+ 7! L(H) such that formulae
of the form

UH(t; s) = lim
n!+1

0Y

=n�1

Fs+ 

n (t�s)

�
t� s
n

�
(2)
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hold in the weak operator topology of L(H) for all s; t 2 [0; T ] with t � s. We
carry this out under hypotheses that allow the explicit time dependence of the
domains of the H(t)�s, whereas the associated quadratic form domains remain
time-independent. The conditions we impose are more general than those used
previously by various authors in the context of Schrödinger equations, who
typically assume that the domains of the H(t)�s are time-independent (see for
instance [11], [20], and also [26] along with the references therein for the analysis
of more general evolution equations). They are, in fact, related to the classic
results of [15] and [21], which play a signi�cant rôle in the sequel regarding the
existence and various properties of unitary evolution systems U(t; s)s;t2[0;T ].
An important consequence of the theorem we state below is that among all

the admissible functions Ft there are the resolvent operators

Rt(�) := (I+i�H(t))�1 (3)

where I stands for the identity in L(H), and the C0-unitary semigroup

St(�) := exp [�i�H(t)] : (4)

This establishes the validity of the formulae

UH(t; s) = lim
n!+1

0Y

=n�1

�
I+i

t� s
n
H
�
s+




n
(t� s)

���1

= lim
n!+1

0Y

=n�1

exp

�
�i t� s

n
H
�
s+




n
(t� s)

��
(5)

under very general conditions. Furthermore, formulae such as (2) with the
largest possible class of Ft�s are also very useful in view of many applications
since they constitute the theoretical basis of numerical algorithms intended to
compute solutions to various di¤erential problems, a theme thoroughly discussed
in [6]. In particular, the resolvent approximation in (5) is typically related to
the so-called Euler backward di¤erence scheme.
We shall organize the remaining part of this article in the following way: in

Section 2 we state our main result, which holds under three main hypotheses. In
the �rst one we describe the topological and metric properties of the quadratic
form domains we need to carry out our estimates, while in the other two we
specify the class of unitary evolutions and of approximating functions for which
(2) holds. In that section we also state a corollary where we establish the validity
of (2) and (5) when H(t) splits as

H(t) = H0 _+V (t) (6)

in the sense of quadratic forms, withH0 and V (t) self-adjoint operators inH, H0
positive and time-independent and V (t) subordinated to H0 in some sense. This
is of course one of the typical situations encountered in the realm of quantum
mechanics, and the existence of the unitary evolution UH0+V (t; s)s;t2[0;T ] we
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need there is garanteed by some of the results in [15] and [21]. In this last
case we also note that (5) does not take the form of the usual Trotter product
formulae in spite of the decomposition (6), a point we shall brie�y discuss at the
end of Sections 2 and 3. We devote Section 3 to the proofs of our results, which
rest on duality arguments involving the quadratic form domains associated with
the H(t)�s, and on a natural generalization of the methods we developed in [24]
and [25] for the investigation of parabolic evolution equations. In Section 4
we illustrate our results by means of two examples. The �rst one relates to
the evolution of a particle in one space dimension under the in�uence of a �nite
number of time-dependent point interactions, a special case of a model originally
introduced in [8] and recently revisited in [18] and [19], while the second one
describes the motion of a quantum particle in three-dimensional Euclidean space
subjected to a so-called time-dependent Rollnik potential.

2 Statement of the Results

In the sequel we write (:; :) for the inner product in H and k:k for the corre-
sponding induced norm. We also denote by k:k1 the usual supremum-norm in
L(H).
For an arbitrary T 2 (0;+1) and for each t 2 [0; T ] we consider initial-

value problems of the form (1), where the H(t)�s are self-adjoint and positive
operators de�ned on dense domains D(H(t)) which may depend explicitly on t.
Let Q(t)t2[0;T ] be the one-parameter family of closed and Hermitian sesquilinear
forms associated with the H(t)�s through the second representation theorem for

quadratic forms, densely de�ned on the domain DQ := D
�
H(t)

1
2

�
(see, for

instance, [14] for a discussion of this theorem). In what follows we assume that
DQ is independent of t and that Q(t) satis�es the positivity condition

Q(t) [v; v] � c kvk2 (7)

for some constant c 2 (0;+1) uniformly in t for every v 2 DQ. As is well
known, this allows one to endow DQ with the natural unitary structure de�ned
from the inner products

(v; w)Q;t := Q(t) [v; w] =
�
H(t)

1
2 v;H(t)

1
2w
�

(8)

and we write HQ;t for the corresponding Hilbert spaces equipped with the in-
duced norms

kvkQ;t :=



H(t) 12 v


 : (9)

Let H�
Q;t be the adjoint space of HQ;t endowed with the usual norm

kwkQ;t;� := sup
0 6=v2HQ;t

jhw; vi�j
kvkQ;t

; (10)
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where h:; :i� stands for the duality bracket between HQ;t and H�
Q;t. We infer

from (7), (9) and (10) that the continuous embeddings

HQ;t 7! H 7! H�
Q;t (11)

hold provided we identify H with its adjoint space in the usual manner by
means of Riesz�s lemma. In this setting the vector space DQ is dense in H�

Q;t

with respect to (10) (see, for instance, [15], [16] and [22] for other typical con-
structions of this kind). Moreover, the two embedding constants relative to (11)
are independent of t and furthermore we may write (10) as

kwkQ;t;� =



H(t)� 1

2w



 ; (12)

where H(t)�
1
2 is the extension by continuity to H�

Q;t of the corresponding op-
erator on H. Thus, the H�

Q;t�s inherit a Hilbert space structure as well with
respect to the inner products

(v; w)Q;t;� :=
�
H(t)�

1
2 v;H(t)�

1
2w
�
.

It is worth recalling here that for all s; t 2 [0; T ] the norms k:kQ;s and k:kQ;t
are mutually equivalent since the linear operators H(s)

1
2H(t)�

1
2 are bounded

on H, a simple consequence of (7), the time-independence of DQ and the closed
graph theorem. This implies in particular that the spaces HQ;t are all alge-
braically and topologically identical, as are the spaces H�

Q;t. Therefore, from
now on we write HQ and H�

Q for these spaces, respectively, whenever their
metric properties are not directly involved.
In view of the applications of Section 4 we have now to impose more strin-

gent conditions on the family Q(t)t2[0;T ]. Indeed, we assume that the following
hypothesis is valid:

(Q) There exist an additional, �xed norm k:k+ on HQ and a constant c 2
[1;+1) such that the inequalities

c�1 kvk2+ � Q(t) [v; v] � c kvk
2
+ (13)

hold for each t 2 [0; T ] and every v 2 HQ. Moreover, there exists a constant
c� 2 (0;+1) such that the Lipschitz continuity estimate

jQ(t) [v; v]�Q(s) [v; v]j � c� jt� sj kvk2+ (14)

holds for all s; t 2 [0; T ] and every v 2 HQ.

The existence of k:k+ on HQ implies the existence of an additional �xed
norm k:k� on H�

Q, namely,

kwk� := sup
0 6=v2HQ

jhw; vi�j
kvk+

(15)
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which satis�es
c�1 kwk2� � kwk

2
Q;t;� � c kwk

2
� (16)

for each t 2 [0; T ] and every w 2 H�
Q by virtue of (13).

Next, we consider an evolution system UH(t; s)s;t2[0;T ] on H consisting of
a two-parameter family of linear unitary operators satisfying the usual strong
continuity properties and composition laws, as for instance in [21] or [22], along
with a class of approximating functions Ft : R+ 7! L(H) which satisfy the fol-
lowing hypothesis:

(F) We have Ft(0) = I and there exists a constant c 2 [0;+1) such that the
inequalities

kFt(�)vk � exp [c� ] kvk (17)

and
kFt(�)vkQ;t;� � exp [c� ] kvkQ;t;� (18)

hold for each t 2 [0; T ], each � 2 R+ and every v 2 H.

For instance, it is plain that both (3) and (4) satisfy these conditions with
c = 0. That is, since St(�) commutes with H(t)�

1
2 and is unitary on H we have

kSt(�)vkQ;t;� = kvkQ;t;�

from (12), so that the inequality

kRt(�)vkQ;t;� � kvkQ;t;�

follows immediately by writing Rt(�) as the Laplace transform of St(�). How-
ever, we remark that in general (18) is not a consequence of (17), nor is (17) a
consequence of (18).
Now let L(HQ;H�

Q) be the space of all linear bounded operators from HQ

into H�
Q. In order to formulate our requirements regarding UH(t; s), we intro-

duce the unique operator H(t) 2 L(HQ;H�
Q) characterized by the relation

Q(t) [v; w] = hH(t)v; wi� (19)

for every t 2 [0; T ] and all v; w 2 HQ. It is known that for each such t the
operator H(t) is an extension of the self-adjoint generator H(t), and that

D(H(t)) = fv 2 HQ : H(t)v 2 Hg

(see for instance [16]). Our hypothesis concerning UH(t; s) then consists of the
following three parts:

(U) We have UH(t; s) (HQ) � HQ for all s; t 2 [0; T ] with t � s, that is,
UH(t; s) leaves HQ invariant. Moreover the following conditions are satis�ed:
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(a) For every v 2 HQ the relation

lim
�!0+

sup
t2[s;T ]





Ft(�)� I�
UH(t; s)v + iH(t)UH(t; s)v






�
= 0 (20)

holds.
(b) For all v; w 2 HQ the function t 7! hUH(t; s)v; wi� is di¤erentiable on

[0; T ] and we have

i
d

dt
hUH(t; s)v; wi� = hH(t)UH(t; s)v; wi� (21)

for all s; t 2 [0; T ] with t > s.
(c) For every v 2 HQ the function t 7! H(t)UH(t; s)v is continuous on [0; T ]

in the strong topology of H�
Q.

What (20) does is to identify the right-derivative of � 7! Ft(�) at the origin
with the operator �iH(t) in the strong topology of H�

Q, while (21) is interpreted
as the weak form of (1) we alluded to earlier, with u(t) = UH(t; s)v.
Under the above conditions our main result is the following.

Theorem. Assume that Hypotheses (Q), (F) and (U) hold. Then for all
s; t 2 [0; T ] with t � s we have

UH(t; s) = lim
n!+1

0Y

=n�1

Fs+ 

n (t�s)

�
t� s
n

�
(22)

in the weak operator topology of L(H). In particular, if the Ft(�)�s are also
unitary, then (22) holds in the strong operator topology of L(H).

Remark. Since the UH(t; s)�s are unitary we have

UH(t; s) = U
�
H(s; t)

for all s; t 2 [0; T ], where U�H(s; t) denotes the adjoint of UH(s; t) in L(H).
Consequently, from (22) we immediately obtain

UH(t; s) = lim
n!+1

n�1Y

=0

F �t+ 

n (s�t)

�
s� t
n

�
for all s; t 2 [0; T ] with t � s in the weak operator topology of L(H). Therefore,
in the sequel we shall formulate our results only for the case t � s.

In view of the applications to quantum mechanics, a particularly interesting
illustration of this theorem obtains when the operators H(t) are of the form

H(t) = H0 _+V (t) (23)
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where H0 is a time-independent, self-adjoint, positive operator and V (t)t2[0;T ] a
one-parameter family of self-adjoint operators on H, the meaning of (23) being
that of a quadratic form sum.
In order to display our result in this case we need to rephrase slightly the

hypotheses of Corollary II.28 in [21]. Let Q0 be the closed, Hermitian and
positive sesquilinear form associated with H0 and let QV (t)t2[0;T ] be the one-
parameter family of closed and Hermitian sesquilinear forms associated with
the V (t)�s. We assume that QV (t) is relatively bounded with respect to Q0
uniformly in t. Writing H0 := D

�
H

1
2
0

�
for the domain of Q0, this means that

the domain of QV (t) contains H0 for every t 2 [0; T ] and that the following
hypothesis is valid (see, for instance, [14] for a discussion of this notion):

(V) There exist constants a 2 [0; 1) and b 2 R such that the inequality

jQV (t) [v; v]j � aQ0 [v; v] + b kvk2 (24)

holds for each t 2 [0; T ] and every v 2 H0.

In order to realize (23) as a form sum we write

Q(t) = Q0 +QV (t) (25)

for every t 2 [0; T ]. Thus we have H0 = HQ and the preceding assumptions
imply the existence of unique operators H(t), H0, V(t) 2 L(HQ;H�

Q) satisfying
(19) and the relations

Q0 [v; w] = hH0v; wi� ; (26)

QV (t) [v; w] = hV(t)v; wi� (27)

for every t 2 [0; T ] and all v; w 2 HQ, respectively. Consequently (24) reads

jhV(t)v; vi�j � a hH0v; vi� + b kvk
2

and the combination of (25), (26) and (27) gives

H(t) = H0 + V(t) (28)

as an equality in L(HQ;H�
Q), which is indeed the meaning of (23).

The second relevant hypothesis is the following:

(V0) The L(HQ;H�
Q)-valued function t 7! V(t) is strongly di¤erentiable on

[0; T ] and its derivative V0(t) 2 L(HQ;H�
Q) satis�es

jhV0(t)v; vi�j � a hH0v; vi� + b kvk
2 (29)

for each t 2 [0; T ] and every v 2 HQ, where a and b are as in (24).
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The implication of Corollary II.28 in [21] is then that there exists a unitary
evolution system UH0+V (t; s)s;t2[0;T ] on H satisfying parts (b) and (c) of Hy-
pothesis (U), where H(t) is given by (28). What we wish to display here are
important ways in which we can approximate UH0+V (t; s).

Corollary. Assume that Hypotheses (V),(V 0) and (F) hold. Assume fur-
thermore that (20) is valid. Then the conclusion of the theorem holds true for
UH0+V (t; s). In particular, for all s; t 2 [0; T ] with t � s we have

UH0+V (t; s) = lim
n!+1

0Y

=n�1

�
I+i

t� s
n
H
�
s+




n
(t� s)

���1
(30)

in the weak operator topology of L(H). Moreover, we also have

UH0+V (t; s) = lim
n!+1

0Y

=n�1

exp

�
�i t� s

n
H
�
s+




n
(t� s)

��
(31)

in the strong operator topology of L(H).

Remarks. (1) The above results can all be modi�ed in a straightforward
manner to cover the case where the H(t)�s are self-adjoint operators uniformly
bounded from below. Thus, everywhere in the sequel we shall only consider
positive generators, a restriction that we will also apply to the two examples of
Section 4.
(2) A relation similar to (31) was derived in Appendix B of [9] in a more

speci�c context and on the basis of a technique di¤erent from the one we develop
in the next section, which provides a simple and natural framework for the proofs
of our general results.
(3) On the right-hand side of (30) and (31) the operator H(t) appears as a

whole, although it splits as in (23). A natural question is thus whether formulae
such as

UH0+V (t; s)

= lim
n!+1

0Y

=n�1

�
I+i

t� s
n
H0

��1�
I+i

t� s
n
V
�
s+




n
(t� s)

���1
(32)

and

UH0+V (t; s)

= lim
n!+1

0Y

=n�1

exp

�
�i t� s

n
H0

�
exp

�
�i t� s

n
V
�
s+




n
(t� s)

��
(33)

are also true under our general conditions. It turns out that this problem re-
mains open, although there have been numerous extensions of Trotter�s original
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work [23] over the years concerning the linear autonomous case, including those
appearing in [3]-[5], [10], [12], [13] and [17] (see, for instance, [7] for a compre-
hensive analysis of some of these works). The linear non-autonomous case is
more di¢ cult, unless the domains of the H(t)�s are independent of time and the
evolution equations satis�ed in a classical sense, as in [11].
We shall dwell a bit more on this at the end of the next section, by pointing

out where the di¢ culties are.

3 Proof of the Results

In what follows we write c for all the irrelevant constants that occur in the
various estimates unless we specify these constants otherwise. We �rst draw an
elementary but important consequence from the Lipschitz continuity estimate
(14).

Lemma 1. Assume that Hypothesis (Q) is valid. Then there exists a con-
stant c 2 (0;+1) such that the inequality

kwkQ;t;� � exp [c jt� sj] kwkQ;s;� (34)

holds for all s; t 2 [0; T ] and every w 2 H�
Q.

Proof. From (13) and (14) we have

kvk2Q;t = Q(t) [v; v] � (1 + c jt� sj)Q(s) [v; v] � exp [c jt� sj] kvk
2
Q;s

for every v 2 HQ, and by symmetry

kvk2Q;s � exp [c jt� sj] kvk
2
Q;t :

Therefore we obtain

sup
0 6=v2HQ

���hw; viQ;����
kvkQ;t

� exp [c jt� sj] sup
0 6=v2HQ

���hw; viQ;����
kvkQ;s

;

which is (34) by changing the value of c if necessary. �

Without restricting the generality we now assume that s < t < T and set
h = t�s

n for n su¢ ciently large. The preceding lemma then allows us to prove
the following result.

Lemma 2. Assume that Hypothesis (Q) and (18) are valid. Then there
exists a constant c 2 (0;+1) such that the estimate







+1Y
�=n

Fs+(��1)h(h)v







�

� c kvk� (35)
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holds for each 
 2 f1; :::; n� 1g and every v 2 H.

Proof. According to (16) this is equivalent to proving that






+1Y
�=n

Fs+(��1)h(h)v







Q;t;�

� c kvk
Q;t;�

:

For this we apply (34) and (18) alternatingly. After 2(n�
)�1 steps we obtain






+1Y
�=n

Fs+(��1)h(h)v







Q;t;�

� exp [c (2(n� 
)� 1)h]


Ft�(n�
)h(h)v

Q;t�(n�
)h;� (36)

since nh = t� s. Furthermore, we can estimate the last factor in (36) as

Ft�(n�
)h(h)v

Q;t�(n�
)h;�
� exp [ch] kvkQ;t�(n�
)h;� � exp [c (n� 
 + 1)h] kvkQ;t;� (37)

by �rst applying (18) and then (34). Consequently, the substitution of (37) into
(36) leads to the inequality







+1Y
�=n

Fs+(��1)h(h)v







Q;t;�

� exp [3c (n� 
)h] kvkQ;t;� � exp [3cnh] kvkQ;t;� ;

which gives the desired result since nh = t� s � T . �

We now de�ne the sequence (Pn(t; s)) � L(H) by

Pn(t; s) := UH(t; s)�
1Y


=n

Fs+(
�1)h (h) (38)

and establish the following useful preliminary estimate for it.

Lemma 3. Assume that Hypothesis (Q) and (18) hold. Then we have the
inequality

kPn(t; s)vk�
� cn sup

r2[s;t]
kUH(r + h; s)v � Fr (h)UH(r; s)vk� (39)

for every v 2 H.
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Proof. From the basic composition laws for the UH(t; s)�s, (38), and re-
membering that t = s+ nh we �rst get

Pn(t; s)

=
1Y


=n

UH(s+ 
h; s+ (
 � 1)h)�
1Y


=n

Fs+(
�1)h (h)

=
2Y

�=n

Fs+(��1)h (h)� (UH(s+ h; s)� Fs (h))

+
n�1X

=2


+1Y
�=n

Fs+(��1)h (h)�
�
UH(s+ 
h; s+ (
 � 1)h)� Fs+(
�1)h (h)

�
�

1Y
�=
�1

UH(s+ �h; s+ (� � 1)h)

+ (UH(t; t� h)� Ft�h (h))�
1Y

�=n�1
UH(s+ �h; s+ (� � 1)h) (40)

where the second equality follows from the cancellation of all but the two rele-
vant terms in the expression on its right-hand side. Furthermore, by repeated
applications of the composition laws we have

1Y
�=
�1

UH(s+ �h; s+ (� � 1)h) = UH(s+ (
 � 1)h; s) (41)

and
1Y

�=n�1
UH(s+ �h; s+ (� � 1)h) = UH(t� h; s) (42)

for the two products that appear on the right-hand side of (40). Substituting
(41) and (42) into (40), multiplying out and regrouping terms we then get

Pn(t; s)v

=
n�1X

=1


+1Y
�=n

Fs+(��1)h (h)�
�
UH(s+ 
h; s)� Fs+(
�1)h (h)UH(s+ (
 � 1)h; s)

�
v

+ (UH(t; s)� Ft�h (h)UH(t� h; s)) v (43)

for every v 2 H since UH(s; s) = I.
We now proceed by estimating the norm of the �rst term on the right-hand
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side of (43) by means of (35); we obtain

n�1X

=1








+1Y
�=n

Fs+(��1)h (h)�
�
UH(s+ 
h; s)� Fs+(
�1)h (h)UH(s+ (
 � 1)h; s)

�
v







�

� c
n�1X

=1



UH(s+ 
h; s)v � Fs+(
�1)h (h)UH(s+ (
 � 1)h; s)v

� ; (44)

so that the combination of (43) and (44) gives

kPn(t; s)vk�

� c
nX

=1



UH(s+ 
h; s)v � Fs+(
�1)h (h)UH(s+ (
 � 1)h; s)v

� :
If we now set r
 := s+ (
 � 1)h we get a fortiori

kPn(t; s)vk�
� cn max


2f1;:::;ng



UH(r
 + h; s)v � Fr
 (h)UH(r
 ; s)v

�
� cn sup

r2[s;t�h]
kUH(r + h; s)v � Fr (h)UH(r; s)vk� ;

which indeed leads to (39). �

In order to estimate (39) further we now introduce two linear operators
de�ned on HQ, namely,

L(h; r) := h�1 (I�Fr(h))� iH(r) (45)

and
M(h; r) := h�1 (I�UH(r + h; r))� iH(r) (46)

where H(r) stands for the operator de�ned by (19). We can then express the
right-hand side of (39) somewhat di¤erently as in the following result, albeit
now with the additional but harmless restriction v 2 HQ.

Lemma 4. Assume that Hypothesis (Q) and (18) hold, along with the
invariance part of Hypothesis (U). Then we have the inequality

kPn(t; s)vk�
� c sup

r2[s;t]
kL(h; r)UH(r; s)v �M(h; r)UH(r; s)vk� (47)

for every v 2 HQ.

Proof. From (45) and (46) we obtain

hL(h; r)UH(r; s)v

= UH(r; s)v�Fr(h)UH(r; s)v � ihH(r)UH(r; s)v (48)
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and

hM(h; r)UH(r; s)v

= UH(r; s)v�UH(r + h; s)v � ihH(r)UH(r; s)v; (49)

respectively, where we have used the composition laws to establish (49). By
subtracting (49) from (48) we then get

hL(h; r)UH(r; s)v � hM(h; r)UH(r; s)v
= UH(r + h; s)v � Fr(h)UH(r; s)v;

so that (47) indeed follows from (39) since nh = t� s � T . �

We are now ready for the following.

Proof of the theorem. We �rst show that

lim
n!+1

kPn(t; s)vk� = 0 (50)

for every v 2 HQ. For this it is su¢ cient to have

lim
n!+1

sup
r2[s;t]

kL(h; r)UH(r; s)vk� = 0 (51)

and
lim

n!+1
sup
r2[s;t]

kM(h; r)UH(r; s)vk� = 0 (52)

according to (47). Referring back to (48) we see that (51) is equivalent to having

lim
n!+1

sup
r2[s;t]



h�1 (UH(r; s)v�Fr(h)UH(r; s)v)� iH(r)UH(r; s)v

� = 0

for every v 2 HQ, which is an immediate consequence of (20).
As for the proof of (52) we start from the relation

hM(h; r)UH(r; s)v; wi�

= ih�1
Z r+h

r

dk hH(k)UH(k; s)v � H(r)UH(r; s)v; wi� (53)

valid for every w 2 HQ, which follows from (21) and (49). Relation (53) then
leads to

kM(h; r)UH(r; s)vk�

� h�1
Z r+h

r

dk kH(k)UH(k; s)v � H(r)UH(r; s)vk� ; (54)

and since the function k 7! H(k)UH(k; s)v is uniformly continuous on [r; r + h]
with respect to the strong topology of H�

Q according to (c) of Hypothesis (U),

13



we conclude that for every � 2 (0;+1) there exists h� 2 (0;+1) such that the
inequalities 0 � k � r � h � h� along with (54) imply the estimate

sup
r2[s;t]

kM(h; r)UH(r; s)vk� � �;

which is equivalent to (52). Consequently (50) holds, which implies that

(UH(t; s)v; w) = lim
n!+1

 
0Y


=n�1
Fs+ 


n (t�s)

�
t� s
n

�
v; w

!
(55)

for all v; w 2 HQ according to (15) and (38), since h:; :i� and (:; :) are inter-
changeable on H.
In order to prove (22), it thus remains to extend (55) to all v; w 2 H. On the

one hand, as a vector subspace HQ is dense in H relative to the strong topology
of this latter space. On the other hand, arguing as in the proof of Lemma 2 we
infer from (17) that the estimate






0Y

=n�1

Fs+ 

n (t�s)

�
t� s
n

�
v






 � c kvk
holds for every v 2 H for some c 2 (0;+1) independent of n. Therefore, the
fact that (55) holds for all v; w 2 H follows from a standard density argument.
The very last statement of the theorem is obvious since the weak and strong

topologies of H coincide on the unitary group in L(H). �

We now turn to the proof of the corollary, which �rst requires the veri�cation
of Hypothesis (Q).

Lemma 5. Assume that Hypotheses (V) and (V 0) are valid. Then relations
(13) and (14) hold relative to the �xed norm

kvk+ :=



H 1

2
0 v



 (56)

on HQ.

Proof. From (24), (25) and (56) we get

(1� a) kvk2+ � b kvk
2 � Q (t) [v; v] � (1 + a) kvk2+ + b kvk

2

for each t 2 [0; T ] and every v 2 HQ, which leads to (13) by virtue of (7) and
the �rst embedding in (11).
The starting point for the proof of (14) is the relation

Q (t) [v; v]�Q (s) [v; v] =
Z t

s

d� hV0(�)v; vi� ;

14



which follows from (25), (27) and the di¤erentiability of V. We then obtain the
desired estimate

jQ (t) [v; v]�Q (s) [v; v]j

�
Z t

s

d� jhV0(�)v; vi�j � c
� jt� sj kvk2+

for all s; t 2 [0; T ] and every v 2 HQ, as a consequence of (29), (56) and the
�rst embedding in (11) once again. �

Remark. It is also possible to obtain the �rst inequality in (13) from (24)
and the condition

Q0 [v; v] � � kvk2 (57)

for a su¢ ciently large positive �, instead of invoking (7). This is particularly
useful when (7) cannot easily be proved directly, as will be the case in the second
example of Section 4.

Since we know from Corollary II.28 and its proof in [21] that UH0+V (t; s)
satis�es parts (b) and (c) of Hypothesis (U), the preceding lemma and the
theorem imply the �rst statement of the corollary. Moreover, we have already
noted that the resolvent operators (3) and the unitary semigroup (4) satisfy
Hypothesis (F) in a trivial way. Therefore, in order to prove (30) and (31)
it remains to verify part (a) of Hypothesis (U) for (3) and (4). For this it is
necessary to consider the C0-semigroup on H�

Q given by

St(�) := exp [�i�H(t)] ; (58)

namely, the extension by continuity of (4) to the whole ofH�
Q. It is easily veri�ed

that (58) is unitary with respect to the norm (12), and that its in�nitesimal
generator is indeed �iH(t), considered this time as an unbounded operator in
H�
Q de�ned on the dense subspace HQ where H(t) is self-adjoint.
We begin with the following intermediary result, valid quite generally and

independently of (28).

Lemma 6. Assume that (13) of Hypothesis (Q) holds. Then we have

lim
�!0+

sup
t2[0;T ]

k(exp [�i�H(t)]� I) vk� = 0 (59)

for every v 2 H�
Q. Moreover, for any compact set K � H

�
Q the limit (59) is

uniform in v 2 K.

Proof. Relation (13) implies (16). Consequently, from the properties of
exp [�i�H(t)] and from the fact that HQ is dense in H�

Q as a vector subspace,
it is su¢ cient to prove the relation

lim
�!0+

sup
t2[0;T ]

k(exp [�i�H(t)]� I) vk� = 0 (60)

15



for every v 2 HQ. We �rst show that the identity

hexp [�i�H(t)] v � v; wi�

= �i
Z �

0

d�
�
exp [�i�H(t)]H 1

2 (t)v;H
1
2 (t)w

�
(61)

holds for each � 2 [0;+1), every t 2 [0; T ] and all v; w 2 HQ.
Indeed, from a classic property of C0-semigroups we may write

hexp [�i�H(t)] v � v; wi� = �i
Z �

0

d� (exp [�i�H(t)]H(t)v; w)

for each v 2 D(H(t)) and every w 2 HQ. But v 2 D(H(t)) if, and only if,
H

1
2 (t)v 2 HQ; furthermore H

1
2 (t) commutes with exp [�i�H(t)] on HQ and is

self-adjoint in H, so that (61) holds for each � 2 [0;+1) and all t 2 [0; T ],
v 2 D(H(t)), w 2 HQ.
Therefore, in order to show the validity of (61) for all v 2 HQ it su¢ ces

to prove that D(H(t)) is dense in HQ. On the one hand, the restriction of
exp [�i�H(t)] to HQ de�nes a C0-semigroup there, the generator of which being
consequently densely de�ned in HQ. On the other hand, the domain of that
generator is contained in D(H(t)) by virtue of the �rst embedding in (11). We
can then conclude that D(H(t)) is a fortiori dense in HQ, so that (61) holds for
all v 2 HQ.
It is now easy to derive (60) from (61), since Schwarz inequality and the fact

that exp [�i�H(t)] is unitary in H lead to the estimate

jhexp [�i�H(t)] v � v; wi�j

� �



H 1

2 (t)v






H 1

2 (t)w



 � c� kvk+ kwk+

as a consequence of (9) and (13), where c is independent of t. Thus we get

sup
t2[0;T ]

sup
0 6=w2HQ

jhexp [�i�H(t)] v � v; wi�j
kwk+

� c� kvk+ ! 0

as � ! 0+, which is the desired result.
As for the very last assertion of the lemma, we remark that the operator

norm of exp [�i�H(t)]� I in L(H�
Q) satis�es

sup
�2[0;+1)

sup
t2[0;T ]

kexp [�i�H(t)]� IkL(H�
Q)
< +1; (62)

so that the statement follows for instance from Lemma 3 in [24]. �

The preceding considerations now allow us to prove the desired assertions.

Proof of the Corollary. As already observed it remains to verify part (a)
of Hypothesis (U) for the approximating functions (3) and (4). Since the former
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is the Laplace transform of the latter, we begin with (4). This means that we
must have

lim
�!0+

sup
t2[0;T ]





exp [�i�H(t)]� I�
UH0+V (t; s)v + iH(t)UH0+V (t; s)v






�
= 0 (63)

for each v 2 HQ and every s 2 [0; T ], where H(t) is given by (28).
Remembering that exp [�i�H(t)] and exp [�i�H(t)] coincide on HQ we may

write

exp [�i�H(t)]� I
�

UH0+V (t; s)v + iH(t)UH0+V (t; s)v

= � i
�

Z �

0

d� (exp [�i�H(t)]� I)H(t)UH0+V (t; s)v (64)

for each � 2 (0;+1) and every v 2 HQ, since �iH(t) is the in�nitesimal gen-
erator of exp [�i�H(t)] in H�

Q, and since the invariance property of Hypothesis
(U) holds in this case. Therefore we obtain



exp [�i�H(t)]� I�

UH0+V (t; s)v + iH(t)UH0+V (t; s)v






�

� sup
�2[0;� ]

k(exp [�i�H(t)]� I)H(t)UH0+V (t; s)vk� : (65)

Furthermore, from the proof of Corollary II.28 of [21] we already know that the
function t 7! H(t)UH0+V (t; s)v is continuous on [0; T ] in the strong topology of
H�
Q for each v 2 HQ, so that the set

K :=
�
w 2 H�

Q : w = H(t)UH0+V (t; s)v; t 2 [0; T ]
	

is compact in H�
Q. Relation (63) then follows from (65) and the very last

statement of Lemma 6.
The proof of the analogous property for (3) follows from (63) through a

Laplace transform argument and dominated convergence. Indeed we have

(I+i�H(t))�1 v =
Z +1

0

d� exp [��] exp [�i��H(t)] v

for each � 2 (0;+1) and every v 2 H as an improper H-valued Riemann
integral, so that

(I+i�H(t))�1 � I
�

UH0+V (t; s)v + iH(t)UH0+V (t; s)v

=

Z +1

0

d� exp [��]�
�
exp [�i��H(t)]� I

��
UH0+V (t; s)v + iH(t)UH0+V (t; s)v

�
since Z +1

0

d� exp [��] =
Z +1

0

d� exp [��]� = 1:
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Consequently we get

sup
t2[0;T ]






 (I+i�H(t))�1 � I�
UH0+V (t; s)v + iH(t)UH0+V (t; s)v







�

�
Z +1

0

d� exp [��]�A(�; �) (66)

where we have introduced the auxiliary function

� 7! A(�; �) := sup
t2[0;T ]





exp [�i��H(t)]� I��
UH0+V (t; s)v + iH(t)UH0+V (t; s)v






�
;

(67)
and for any �xed � 2 (0;+1) we have

lim
�!0+

A(�; �) = 0 (68)

by virtue of (63). Now, by using once again (62) and (64) we obtain from (67)
the estimate

A(�; �)

� 1

��
sup
t2[0;T ]

Z ��

0

d� k(exp [�i�H(t)]� I)H(t)UH0+V (t; s)vk�

� c sup
t2[0;T ]

kH(t)UH0+V (t; s)vk� < +1

uniformly in � and � . But any �nite constant is integrable on (0;+1) with
respect to the measure d� exp [��]�, so that by dominated convergence relative
to this measure along with (66) and (68) we have

lim
�!0+

sup
t2[0;T ]






 (I+i�H(t))�1 � I�
UH0+V (t; s)v + iH(t)UH0+V (t; s)v







�

= 0

for each v 2 HQ and every s 2 [0; T ], as desired. �

Remark. Whereas the methods of this article are relevant to prove (30)
and (31) where the operator H(t) appears as a whole, they are not quite appro-
priate to derive formulae such as (32) and (33). Indeed, the natural choice of
approximating functions in this case is

Ft(�) = (I+i�H0)�1 (I+i�V (t))�1 (69)

and
Ft(�) = exp [�i�H0] exp [�i�V (t)] ; (70)

respectively. In either case the problem then lies in the veri�cation of Hypothesis
(F): whereas (17) trivially holds for both (69) and (70) with c = 0, (18) can
seldom be valid. For instance, in the case of (70) and by virtue of (16) with

kwk� :=



H� 1

2
0 w
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we have successively

kFt(�)vk2Q;t;� � c



H� 1

2
0 exp [�i�V (t)] v




2 � c2 kexp [�i�V (t)] vk2Q;t;�
since H

� 1
2

0 commutes with the unitary semigroup exp [�i�H0] on H. Conse-
quently, even under the most favorable hypotheses regarding V (t) we end up
getting an estimate of the form

kFt(�)vkQ;t;� � c exp [c� ] kvkQ;t;�

with c 2 [1;+1), instead of (18). But then, it is impossible to derive the crucial
uniform estimate (35) since the number of factors in that product depends
explicitly on n.
We devote the last section to the illustration of our results.

4 Two Examples

In what follows we use the standard notations for the usual spaces of Lebesgue
integrable functions and for the corresponding Sobolev spaces of functions de-
�ned on Euclidean space (see, for instance, [1]). All the functions are complex-
valued unless stated otherwise.

Example 1. We consider the initial-value problem in one space dimension

i
@u(x; t)

@t
=

 
�1
2

@

@x

1

m(x)

@

@x
+ V (x) +

NX
k=1

sk(t)�xk

!
u(x; t); (x; t) 2 R� (s; T ] ;

u(x; s) = v(x); x 2 R; (71)

corresponding to a particle with variable mass m moving in a potential V
perturbed by time-dependent point interactions supported by a discrete set
fx1; :::; xNg, where N 2 N+ is �xed and arbitrary (see, for instance, [8] and its
references for a physical interpretation of related models).
In this case we view (71) as an evolution problem of the form (1) in H =

L2(R), with the operator H(t) formally given by

H(t) := �1
2

@

@x

1

m(x)

@

@x
+ V (x) +

NX
k=1

sk(t)�xk : (72)

Furthermore we impose the following hypotheses:

(MV) We have 0 < 1
m +m 2 L1(R) and 0 � V 2 L1(R).

(S) The strengths of the point interactions sk : [0; T ] 7! [0;+1) are positive
and Lipschitz continuous for every k 2 f1; :::; Ng.
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Under these conditions there exists a self-adjoint realization of (72) in L2(R)
as a positive operator on some time-dependent domain D(H(t)), corresponding
to the closed and Hermitian sesquilinear form

Q(t) [v; w]

=

Z
R
dx

�
1

2m(x)
v0(x)w0(x) + V (x)v(x)w(x)

�
+

NX
k=1

sk(t)v(xk)w(xk) (73)

de�ned for all v; w 2 D
�
H(t)

1
2

�
= W 1;2(R) (see [2] for a variety of construc-

tions of this kind, based on von Neumann�s theory of self-adjoint extensions
for symmetric operators); furthermore inequality (7) holds. We then have the
following result.

Proposition 1. Assume that Hypotheses (MV), (S), (F) and (20) are valid.
Then there exists a unique unitary evolution system UH(t; s)s;t2[0;T ] on L2(R)
associated with the above realization of (72), for which the conclusion of the
theorem holds true. In particular, UH(t; s) can be approximated as in (30) and
(31) of the corollary.

Proof. For the �xed norm on HQ =W
1;2(R) we choose

kvk+ =
�Z

R
dx jv0(x)j2

� 1
2

:

Conditions (MV) and (S) together with standard one-dimensional Sobolev the-
ory then imply that Hypothesis (Q) holds. Moreover, (MV) and (S) also guaran-
tee the existence of a unique unitary evolution system UH(t; s)s;t2[0;T ] on L2(R),
which leaves W 1;2(R) invariant and satis�es parts (b) and (c) of Hypothesis (U)
according to Theorem 6.1 in [18] and its proof. Since (F) and (20) are assumed
to hold, the conclusion of the theorem follows in this case. The proofs of (30)
and (31) are identical to those given at the very end of Section 3. �

Example 2. We now consider the initial-value problem

i
@u(x; t)

@t
= (�4x + �+ V (x; t))u(x; t); (x; t) 2 R3� (s; T ] ;

u(x; s) = v(x); x 2 R3; (74)

describing the motion of a quantum particle with constant mass in R3, subjected
to a time-dependent potential V , measurable in (x; t) and satisfying Rollnik�s
condition Z

R3�R3
dxdy

jV (x; t)j jV (y; t)j
jx� yj2

< +1 (75)

for every t 2 [0; T ] (see [21] for a systematic analysis of Rollnik potentials and
the rôle of these in quantum mechanics). Here we consider (74) as an evolution
problem of the form (1) in H = L2(R3), with

H(t) := �4x + �+ V (x; t) (76)
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realized as a self-adjoint operator on some time-dependent domain D(H(t)).
As is well-known, this is made possible by an application of the Kato-Rellich
theorem for forms, provided we de�neH0 := �4x+� as the self-adjoint, positive
operator on the domain

D (H0) =W 2;2(R3);

in which case we have HQ =W
1;2(R3) (see, for instance, [14] or [21]). Here we

choose � positive and su¢ ciently large, in relation to our remark immediately
following the proof of Lemma 5 in Section 3.
In order to illustrate our theory with this example we need additional re-

quirements on V that ensure some kind of uniformity in t. For instance, we can
impose the following two hypotheses:

(R) We have Z
R3�R3

dxdy
M(x)M(y)

jx� yj2
< +1

where M(x) := supt2[0;T ] jV (x; t)j.

(R0) The function t 7! V (x; t) is di¤erentiable on [0; T ] for almost every x
and we have Z

R3�R3
dxdy

N(x)N(y)

jx� yj2
< +1

where N(x) := supt2[0;T ]
���@V (x;t)@t

���.
Under these conditions we have indeed the following result.

Proposition 2. Assume that Hypotheses (R), (R0), (F) and (20) are
valid. Then there exists a unique unitary evolution system UH0+V (t; s)s;t2[0;T ]
on L2(R3) associated with the above realization of (76), for which all the con-
clusions of the corollary hold true.

Proof. Here we choose the Sobolev norm

kvk+ =
�Z

R3
dx jrv(x)j2

� 1
2

for the �xed norm on HQ = W 1;2(R3), while we have H�
Q = W�1;2(R3) for

the corresponding adjoint space. Relation (57) is then valid for the Hermitian
sesquilinear form Q0 associated with H0 = �4x + �, so that it is su¢ cient to
prove that (V) and (V0) hold. From a simple adaptation of the proof of Theorem
I.21 in [21] to the time-dependent case we can �rst infer that Hypothesis (R)
implies (V), where QV (t) is the Hermitian sesquilinear form associated with the
self-adjoint operator in L2(R3) corresponding to the multiplication by V (x; t).
The crucial point of this part of the argument is that the assumed uniformity
in t implies the time independence of the constants in (V).
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In a similar way we claim that Hypothesis (R0) implies (V0). Indeed, since

QV (t) [v; w]

= hV(t)v; wi� =
Z
R3
dxV (x; t)v(x)w(x)

for all v; w 2W 1;2(R3) where h:; :i� denotes the duality bracket betweenW 1;2(R3)
and W�1;2(R3), we conclude from (R0) and dominated convergence that the
function t 7! hV(t)v; wi� is di¤erentiable on [0; T ] with

d

dt
hV(t)v; wi�

= hV0(t)v; wi� =
Z
R3
dx
@V (x; t)

@t
v(x)w(x)

since x! N(x)v(x)w(x) 2 L1(R3). Moreover, as is the case for V(t) the opera-
tor V0(t) is linear and bounded fromW 1;2(R3) intoW�1;2(R3) and satis�es (29).
Therefore, there does exist a unique unitary evolution system UH0+V (t; s)s;t2[0;T ]
on L2(R3) such that all the stated conclusions hold true. �

Remarks. (1) It is plain that any kind of conditions other than (R) and
(R0) which imply the validity of (V) and (V0) will lead to the same statement
as that of the proposition.
(2) Since the operators UH0+V (t; s) are related to the operators U�4+V (t; s)

associated with the solution to the initial-value problem

i
@u(x; t)

@t
= (�4x + V (x; t))u(x; t); (x; t) 2 R3� (s; T ] ;

u(x; s) = v(x); x 2 R3;

by
UH0+V (t; s) = e

�i�(t�s)U�4+V (t; s);

it is immediate that a result similar to that of Proposition 2 holds for U�4+V (t; s).
The corresponding approximating functions simply di¤er by at most a trivial
factor of modulus one.
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