Nature and evolution of the lithospheric mantle beneath the passive margin of East Oman: evidence from mantle xenoliths sampled by Cenozoic alkaline lavas

Michel Grégoire, Jessica Langlade, Guillaume Delpech, Céline Dantas, Georges Ceuleneer

To cite this version:

HAL Id: hal-00535783
https://hal.archives-ouvertes.fr/hal-00535783
Submitted on 12 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Nature and evolution of the lithospheric mantle beneath the passive margin of East Oman: evidence from mantle xenoliths sampled by Cenozoic alkaline lavas

Abstract: Cenozoic alkaline lavas from the Al Ashkharah area, facing the Indian ocean along the North-East Oman coastline, contain numerous small (< 2cm) mantle xenoliths. They provide a unique opportunity to investigate the nature and evolution of the upper mantle beneath the Oman passive margin, bordering the Owen Basin. All studied xenoliths are porphyroclastic to equigranular spinel lherzolites and harzburgites. They are all devoid of amphibole and phlogopite. The composition of their clinopyroxenes, orthopyroxenes, olivines and spinels indicate that these samples are witnesses of a typical subcontinental lithospheric upper mantle and are quite distinct from the peridotites cropping out in the nearby Oman ophiolite.

The clinopyroxene major element composition record an evolution from fertile lherzolites (Mg#: 89 and Al2O3: 7.5 wt%) to refractory harzburgites (Mg#: 93.5 and Al2O3: 2.5 wt%). The clinopyroxene of most samples are characterised by REE patterns evolving continuously from spoon-shaped to LREE-enriched with almost flat HREE spectra (LaN/YbN: 2.5-30; LaN/SmN: 3.2-24; SmN/YbN: 0.25-4.6; HoN/LuN : 0.88-1.15) and strong negative Ba, Nb, Zr, Hf and Ti anomalies. We propose that these geochemical fingerprints can be accounted for in the frame of a two stages; (1) a - likely ancient - decompression melting event characterised by a degree ranging from 1 to a maximum of 19 % and unrelated to the recent tectonic evolution of the Oman margin, followed by (2) metasomatic transformation possibly related to the circulation of carbonate-rich silicate melt during the Cenozoic rifting event that led to the opening of the Owen basin.
Nature and evolution of the lithospheric mantle beneath the passive margin of East Oman: evidence from mantle xenoliths sampled by Cenozoic alkaline lavas

Grégoire*, M., Langlade, J.A., Delpech, G.\(^1\), Dantas, C. and Ceuleneer, G.

1. CNRS-UMR 5562 DTP : Dynamique Terrestre et Planétaire. Observatoire Midi Pyrénées, Université Paul Sabatier, 14 Avenue E. Belin, 31400 Toulouse, France.
2. UMR CNRS 8148 IDES : Interactions et Dynamique des Environnements de Surface, Faculté des Sciences, Université Orsay-Paris Sud, Bât.504, 91405 ORSAY Cedex, France

* : Corresponding author : michel.gregoire@dtp.obs-mip.fr
Tel: +33 5 61 33 29 77; Fax: +33 5 61 33 29 00
Abstract

Cenozoic alkaline lavas from the Al Ashkharah area, facing the Indian ocean along the North-East Oman coastline, contain numerous small (≤ 2cm) mantle xenoliths. They provide a unique opportunity to investigate the nature and evolution of the upper mantle beneath the Oman passive margin, bordering the Owen Basin. All studied xenoliths are porphyroclastic to equigranular spinel lherzolites and harzburgites. They are all devoid of amphibole and phlogopite. The composition of their clinopyroxenes, orthopyroxenes, olivines and spinels indicate that these samples are witnesses of a typical subcontinental lithospheric upper mantle and are quite distinct from the peridotites cropping out in the nearby Oman ophiolite.

The clinopyroxene major element composition record an evolution from fertile lherzolites (Mg#: 89 and Al$_2$O$_3$: 7.5 wt%) to refractory harzburgites (Mg#: 93.5 and Al$_2$O$_3$: 2.5 wt%). The clinopyroxene of most samples are characterised by REE patterns evolving continuously from spoon-shaped to LREE-enriched with almost flat HREE spectra (La$_N$/Yb$_N$: 2.5-30; La$_N$/Sm$_N$: 3.2-24; Sm$_N$/Yb$_N$: 0.25-4.6; Ho$_N$/Lu$_N$: 0.88-1.15) and strong negative Ba, Nb, Zr, Hf and Ti anomalies. We propose that these geochemical fingerprints can be accounted for in the frame of a two stages; (1) a likely ancient - decompression melting event characterised by a degree ranging from 1 to a maximum of 19 % and unrelated to the recent tectonic evolution of the Oman margin, followed by (2) metasomatic transformation possibly related to the circulation of carbonate-rich silicate melt during the Cenozoic rifting event that led to the opening of the Owen basin.
Key words
Oman; upper mantle; xenoliths; harzburgites; lherzolites; trace elements; metasomatism; Owen basin.

Introduction
Mantle xenoliths brought to the surface by alkaline magmas provide a direct access to the petrological processes conditioning the nature and evolution of the upper mantle (e.g. Coltorti et al., 1999; Grégoire et al., 1997 and 2000; Delpech et al., 2004). Mantle xenoliths from continental rift systems have been largely studied all around the world in the last decades (e.g. Ionov et al., 2002; Witt-Eickschen et al., 2003; Lenoir et al., 2000). Small (< a few cm), mostly lherzolitic, xenoliths have been recently discovered in alkaline dykes and flows emplaced during Cenozoic times along the Oman passive margin facing the Owen basin (see Gnos and Peters, 2003) but they have not been extensively studied yet for their trace element geochemistry. Nasir et al. (2006) report on bulk rock trace element analyses but, given the small size of the xenoliths, contamination with the host lava cannot be excluded. Among other, the marked enrichment in incompatible elements they observed might not be related to mantle processes. The present paper is a complementary study to the one of these authors in terms of analytical procedure: we performed in situ (LA-ICP-MS) determinations of the trace element content of clinopyroxene to avoid at best the risk of contamination with the host alkaline lavas. Moreover, we sampled some localities not studied by Nasir et al. (2006) and the lithological diversity of our collection appears to be more pronounced. The question addressed in the present paper concerns the nature of the upper mantle beneath the
eastern Oman mountains, among other how does it compare to the peridotites cropping out in the Semail ophiolite, relics of the sub-oceanic mantle from a nearby area. Our aim is also to decipher if the upper mantle beneath the Oman margin was affected by the melting and/or melt migration processes related to the Cenozoic rifting of the Owen basin. We compare our results to those from the studies of the mantle peridotite xenoliths from Spitsbergen (Ionov et al., 2002; Gregoire et al., submitted). Indeed the latter come from the same kind of setting (rift-zones) and display close similarities with the xenoliths studied here.

Geological setting and sampling

The building and present structure of the Northern Oman mountains result essentially from the obduction of the Semail ophiolite during Maestrichtian times and from a regional uplift that started during the Miocene (Glennie et al, 1974; Coleman, 1981). Our study area is located at the eastern termination of this domain, along a major structural lineament referred to as the Masirah fault (Moseley, 1969). The Masirah line acted as a major transform plate boundary that accommodated the northward drift of the Indian continental block during Cretaceous and Paleocene times (e.g. Royer et al, 2002; Fournier et al, 2008). As a result of the kinematic reorganization that followed the India-Eurasia collision (about 52 Ma ago, Patriat and Achache, 1984), this transform boundary shifted into its present “off shore” position along the Owen Fracture Zone.

Although this general picture is reasonably well understood, the precise evolution of the Eastern Oman margin during the late Cretaceous and early Cenozoic times was rather complex and is still poorly constrained. Regional geological studies have
shown that long transtensive periods alternated with shorter transpressive ones (e.g. Platel and Roger, 1989). The best documented of these transpressive “events” occurred during upper Maastrichtian lower Paleocene times; it is witnessed by the oblique thrusting of sedimentary nappes and by the obduction of the Masirah ophiolite, a piece of upper Jurassic oceanic lithosphere that likely evolved in a ridge-transform tectonic setting during the accretion of the proto-Indian ocean (Gnos and Perrin, 1995; Gnos et al, 1997; Peters and Mercolli, 1998). Since Eocene times, the coast of East Oman behaved like a passive margin bordering a rift zone that eventually led to the opening of the Gulf of Aden (Platel and Roger, 1989). The opening of the Owen basin is possibly one of the events that complicated the evolution of this margin, although the age of the oceanic crust in the Owen basin is still debated (Fournier et al, 2008). Current structural and kinematic studies, among other around the Aden-Owen-Carlsberg triple junction will result in a better understanding of the evolution of this area (J.-Y. Royer, pers. com.).

Alkaline magmatism that affected the East Oman margin seems to belong to two main eruptive events: a first one contemporaneous with the compressive stage that affected the area at the Cretaceous-Tertiary boundary, and more recent dyke injections during the Eocene extension.

Mantle xenoliths studied in the present study were sampled in five occurrences of these N-S to NNE-SSW trending tertiary dykes in the Al Ashkarah area (Figure 1). Their precise age is poorly constrained: the dykes cross-cut Paleocene sediments but not more recent Eocene ones. Ar/Ar ages ranging from about 36 to 40 Ma have been published by Worthing and Wilde (2002) for the dykes including our samples of mantle xenoliths showing that they belong to the second, Eocene, injection event.
Analytical methods

Major and trace elements of minerals were analysed at the UMR 5563 (LMTG, Observatoire Midi-Pyrénées) of University Paul Sabatier (Toulouse III).

Major-element compositions of minerals were determined with the Cameca SX50 electron microprobe and a standard program: beam current of 20 nA and acceleration voltage of 15 kV, 10 to 30 s/peak, 5-10 s/background counting times, and natural and synthetic minerals as standards. Nominal concentrations were subsequently corrected using the PAP data reduction method (Pouchou and Pichoir, 1984). The theoretical lower detection limits are about 100 ppm (0.01%).

The concentrations of Rare Earth Elements and other trace elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Rb, Ba, Th, Sr, Zr, Ti, Y, Ni, V and Sc) in clinopyroxenes were analysed in situ on >120 mm thick polished sections with a Perkin-Elmer Elan 6000 ICP-MS instrument coupled to a CETAC laser ablation module that uses a 266 nm frequency-quadrupled Nd-YAG laser. The NIST 610 and 612 glass standards were used to calibrate relative element sensitivities for the analyses. The analysis were normalized using CaO values determined by electron microprobe. The analyses were performed on inter-clivage area from the cores of the freshest cpx grains in order to get homogeneous results unaffected by alteration or exsolution processes. A beam diameter of 50-100 µm and a scanning rate of 20 µm/s were used. The typical relative precision and accuracy for a laser analysis range from 1 to 10%. Typical theoretical detection limits range from 10 to 20 ppb for REE, Ba, Rb, Th, Sr, Zr and Y; 100 ppb for Sc and V; and 2 ppm for Ti and Ni (see in Dantas et al., 2007 for more details).
The lavas hosting the ultramafic xenoliths are microlitic basalts. The xenoliths being small, < 2cm in size (Figure 2), it has been difficult to define the rock-types unambiguously. Nevertheless, we distinguished two main rock types: (i) spinel lherzolites (samples 04OM58a2, 04OM58a3, 04OM58c3, 04OM58f3, 04OM59b2, 04OM62b2, 04OM63c2, and 04OM66d2); and (ii) spinel harzburgites (samples 04OM58b1, 04OM62b1, 04OM63a1, 04OM63a2, 04OM63c1 and 04OM63c3). None of the xenoliths display amphibole or phlogopite. All the peridotites correspond to mantle peridotites equilibrated in the spinel stability field. Considering the small size of the xenoliths, the following modal compositions are only indicative.

The peridotites are relatively fresh, the serpentinisation of the olivine and the orthopyroxene being always limited. Some clinopyroxenes and particularly those from sample 04OM62b2, show spongy textures commonly limited to the rim but sometimes affecting the entire crystal. The formation of this type of texture is probably related to local melting process affecting the clinopyroxenes during the transport of the xenoliths to the surface by the host-lavas (e.g. Grégoire et al., 2000, Carpenter et al., 2002).

Orthopyroxenes commonly contain thin lamellae of exsolved clinopyroxene. The inverse phenomenon occurs but is less common. Orthopyroxene also contains tiny inclusions of spinel. The cleavage in the pyroxenes from the sample 04OM63a1 and 04OM63a2 are clearly bent and sometimes the pyroxenes are fractured while olivines display undulose extinction (Figure 2). Within those fractures some neoblasts of clinopyroxene and orthopyroxene appear. This can be attributed to a deformation
The lherzolites have porphyroclastic or equigranular textures. Their modal compositions roughly range from 10 to 20% of clinopyroxene, 60 to 85% of olivine, 10 to 30% of orthopyroxene, and <10% of spinel. The olivine and pyroxenes porphyroclasts can reach 4 mm in size while the neoblasts are typically less than 0.5 mm in size. Spinel size ranges from a few microns to 1 mm. The spinels are generally interstitial or in inclusion in olivine and clinopyroxene (Figure 2).

The harzburgites commonly display porphyroclastic or equigranular textures and more rarely a protogranular one. Their modal composition ranges from 55 to 70% of olivine, 30 to 40% of orthopyroxene, and close to 5% of clinopyroxene and spinel. The olivine and orthopyroxene porphyroclasts can reach 8 mm in size while the neoblasts are always < 0.5 mm in size. Clinopyroxene is interstitial and commonly less than 1-2 mm in size. Spinels commonly occur as tiny inclusions (<1 mm) in the silicates or as vermicular interstitial slightly bigger crystals (1-2 mm).

Mineral composition:

Olivine, Orthopyroxene and Spinel (Table 1)

Olivine is the dominant mineral phase in all samples. Olivines in harzburgites and lherzolites are very magnesian with their Mg-number (100*\(\text{Mg}/(\text{Mg}+\text{Fe}_{\text{total}})\)) ranging from 89 to 91.2. Olivines of harzburgites are commonly more magnesian than those of lherzolites. Olivine has low CaO (<0.15 wt.%), MnO (< 0.25 wt.%) and Cr\(_2\)O\(_3\) (< 0.07 wt.%) contents and NiO contents ranging from 0.25 to 0.54 wt. %.

Orthopyroxenenes show the same compositional range as olivines with Mg-number (100*\(\text{Mg}/(\text{Mg}+\text{Fe}_{\text{total}})\)) varying from 89.5 to 92. The Al\(_2\)O\(_3\) content of
orthopyroxene ranges from 2 to 5.5 wt. % and TiO\textsubscript{2} content is always very low (<0.15 wt. %). The Cr\textsubscript{2}O\textsubscript{3} and CaO content ranges from 0.3 to 0.75 wt. % and 0.7 to 1.2 wt. %, respectively. It has to be noticed that the lherzolite 04OM62b2 and the harzburgite 04OM64b1 display the more aluminous (5.5 wt %) and titanianferous (0.15 wt%) and the less aluminous (2 wt%), more chromiferous (0.75 wt%) and magnesian (Mg-number: 92) orthopyroxene, respectively.

Most spinels are relatively unzoned magnesian and aluminous chromites with Mg-number and Cr-number (100*Cr/Cr+Al) ranging from 70 to 80 and from 16 to 19.5, respectively. However, spinels of two samples are out of this Cr-number range. The harzburgite 04OM62b1 and the lherzolite 04OM62b2 respectively contain a more and a less chromiferous spinel (Cr# = 60 and 11.2), the former being also a little bit less magnesian (Mg# =64.4). In a Cr-number vs. Mg-number diagram (Figure 3), spinels plot in the field defined by spinels from the mantle peridotitic xenoliths from Spitsbergen, which is also a continental rifting area (Ionov et al., 2002). They are also similar to the spinels of the Oman mantle xenoliths studied by Nasir et al. (2006) but different from those of the mantle section of the Oman ophiolite (Figure 3).

Clinopyroxene:

Major elements (Table 1)

Clinopyroxenes are commonly diopsides but in samples 04OM62b1 and 04OM62b2 where they are Mg-augites. The clinopyroxene major element compositions highlight an evolution from fertile lherzolites (sample 04OM62b2: Mg#: 88.8 and Al\textsubscript{2}O\textsubscript{3}: 7.5 wt% to refractory harzburgites Mg#: 93.8 and Al\textsubscript{2}O\textsubscript{3}: 2.5 wt%). Cr\textsubscript{2}O\textsubscript{3} and TiO\textsubscript{2} contents of most samples are relatively homogeneous, varying respectively from 0.3 to 1 wt% and from 0 to 0.2 wt%. However, the Cr\textsubscript{2}O\textsubscript{3} content (up to 1.6 wt%) of the
clinopyroxenes from the harzburgite 04OM62b2 and the Ti$_2$O content of clinopyroxenes of the lherzolite 04OM62b2 (0.5 wt. %) are higher. Finally Na$_2$O content of clinopyroxenes of both types of peridotite ranges from 0.4 to 1.4 wt%. In Figure 4 the clinopyroxenes display a range of composition similar to that defined by the clinopyroxenes from mantle peridotitic xenoliths from Spitsbergen. The clinopyroxenes of harzburgites have the same Al$_2$O$_3$ contents than that of the clinopyroxenes from the mantle peridotites of the Oman ophiolite (Monnier et al., 2006) but have higher Na$_2$O contents and commonly lower Cr$_2$O$_3$ contents (Figure 4). Finally, the clinopyroxenes of the mantle xenoliths from Oman studied by Nasir et al. (2006) display intermediate compositions between those of the studied lherzolites and those of the studied harzburgites.

Trace elements

Trace element abundances of clinopyroxenes are given in Table 2. The REE contents of clinopyroxenes of most of the studied harzburgites and lherzolites are characterised by similar patterns evolving almost regularly from spoon-shaped patterns to LREE-enriched patterns characterised by an almost HREE-flat shape (La$_N$/Yb$_N$: 2.5-30; La$_N$/Sm$_N$: 3.2-24; Sm$_N$/Yb$_N$: 0.25-4.6; Ho$_N$/Lu$_N$: 0.88-1.15; Figure 5). These clinopyroxenes also display similar trace element patterns characterised by strong negative Ba, Nb, Zr, Hf and Ti anomalies. They appear to be similar to those of mantle peridotite xenoliths in alkaline lavas from Spitsbergen which have been subdivided into two types: the type-1 is characterized by spoon-shaped REE patterns and the type-2 displays LREE-enriched patterns (Ionov and al., 2002, Figure 5).

Only the lherzolite 04OM62b2 and the harzburgite 04OM62b1 display different REE patterns, being LREE-depleted (La$_N$/Yb$_N$: 0.29; La$_N$/Sm$_N$: 0.35; Sm$_N$/Yb$_N$: 0.82;
Ho\textsubscript{N}/Lu\textsubscript{N}: 1.16) and LREE-enriched with HREE fractionation (La\textsubscript{N}/Yb\textsubscript{N}: 9.32; La\textsubscript{N}/Sm\textsubscript{N}: 1.52; Sm\textsubscript{N}/Yb\textsubscript{N}: 6.14; Ho\textsubscript{N}/Lu\textsubscript{N}: 2.99), respectively (Figure 6). The clinopyroxene trace element pattern of the lherzolite 04OM62b2 displays negative Nb and Ti anomalies and a slight positive Sr anomaly while that of the harzburgite 04OM62b1 shows negative Ba, Nb, Zr, Hf and Ti anomalies and a similar slight positive Sr anomaly (Figure 6).

Discussion

The studied suite of mantle xenoliths included in the alkaline lavas from the Al Ashkharah region in Oman is composed lherzolites and harzburgites last equilibrated within the mantle spinel peridotite stability field. We estimate their temperatures of equilibration within the spinel stability field by using the geothermometers of Wells (1977) and Brey and Kohler (1990), both based on the orthopyroxene/clinopyroxene pair. Irrespective of the lithology (lherzolite and harzburgite), the temperature estimates all range between 900 and 1150 °C using the calibration by Wells and between 850 °C and 1160 °C (at P: 1.5 GPa) with that of Brey and Kohler.

The fact that we found only spinel harzburgites and lherzolites in the present study appears to be a main difference with the study of Nasir et al. (2006), who describe spinel wehrlites and dunites in their suite of mantle xenoliths from the Al Ashkharah area and spinel wehrlites, lherzolites and dunites in their mantle xenolith suite from Muscat area (Figure 1). In both cases the sample sizes are very small (≤ 2cm in size) and therefore the modal estimates need to be taken with caution. Our suite of samples is very close in terms of petrographic diversity to the mantle xenoliths (harzburgites and lherzolites) from Spitsbergen (Ionov et al., 2002) as far as
peridotites are concerned. In the other hand they appear very different in term of petrographic diversity and mineral compositions from the mantle peridotites from the Oman ophiolite (mostly harzburgites and dunites in the ophiolite) (Figures 3, 4 and 8).

Most samples studied in the present study present several characteristics of solid residues resulting from partial melting, including high Mg number of olivine and pyroxenes, high Cr$_2$O$_3$ content of spinel. The HREE patterns of the clinopyroxenes are also in agreement with such a process (Figure 5). In order to estimate the degree of partial melting experienced by the Oman upper mantle we used two methods: (i) Firstly, we estimated the degree of partial melting by using the Cr# of spinel following the method of Hellebrand et al. (2001) calibrated for Cr# values in spinel ranging between 0.10 and 0.60, a range similar to that of our samples. The results mostly range from 2 to 8 % except for the harzburgites 04OM58b1 and 04OM62b1 that give estimates of 13 and 19 %, respectively. (ii) Secondly, we compared the REE contents of the clinopyroxenes with those computed using a model of fractional melting for a primitive spinel-peridotite mantle source, based on the method described by Johnson et al. (1990) (Figure 7). The starting composition and melting modes are those given by Hellebrand et al., (2002). In Figure 7 the REE from Dy to Yb are in good agreement with the partial melting model. The estimated degrees of melting using the HREE (Dy-Yb), which are the least subjected to metasomatism, range from 1 to about 6 % (Figure 7). This is with the exception of the harzburgite 04OM62b1, for which the partial melting modelling indicates inconsistent partial melting degrees between 10% (for Er) and 15% (for Yb). This is not plausible if we consider melting in the stability field of spinel because Er and Yb have very similar partition coefficients, such as in the present model. The MREE and HREE contents
of the clinopyroxene in harzburgite 04OM62b1 could also indicate that the
clinopyroxenes in this xenolith were in equilibrium with garnet because of the higher
partition coefficients for HREE in garnet. Moreover, the LREE and MREE from La to
Gd do not match the partial melting modelling. The clinopyroxenes have LREE and
MREE that are more enriched than predicted from the partial melting modelling.
These enrichments in LREE and MREE most probably reflect processes that
occurred after the partial melting event (see below). Finally in the harzburgite
04M62b1 the best estimate of the partial melting degree is given by the Cr# of spinel
using the method of Hellebrand et al. (2002), i.e. a degree close to 19%.

In the other hand, beside the evidence for partial melting processes (see
above) the majority of the studied Oman spinel peridotite xenoliths display evidence
for mantle metasomatism. This is supported by the concomitant increase of the Na
and Cr contents of clinopyroxenes (Figure 8), the REE patterns of most of the
clinopyroxenes (spoon-shaped and LREE-enriched) and the enrichment in the most
incompatible elements (Th, U, Sr), that point out to mantle metasomatism. The
selective enrichments in the most incompatible elements, LREE and MREE in mantle
clinopyroxenes are widely accepted to be the result of the infiltration of a fluid or of a
melt into the mantle rocks (e.g. O’Reilly and Griffin, 1988; Coltorti et al., 1999; Van
Achterberg et al., 2001; Grégoire et al., 2003 and 2005). The fact that only the most
incompatible trace elements (Th, U, Sr, LREE) are enriched in numerous samples is
in agreement with the percolation of a metasomatic agent at low melt/rock ratio. Thus
it appears that the studied mantle xenoliths from Oman record two types of
processes: partial melting and metasomatism.

Most of the clinopyroxenes from the mantle peridotites from the Al Ashkharah
area display REE patterns similar to those of the mantle spinel peridotite xenoliths
entrained by the alkaline lavas from Spitsbergen (Ionov et al., 2002 a and b; Figure 6). Ionov et al. (2002) proposed a two-stage evolution model to explain the history of xenoliths from Spitsbergen. First partial melting of a more or less fertile peridotitic mantle (degree of partial melting up to 22% for the most refractory samples), which formed residues characterized by LREE-depleted patterns. These melting residues were subsequently metasomatised by OIB-like carbonate-rich mafic silicate melts (Ionov et al., 2002 a and b). This metasomatic event led to the re-enrichment in the most incompatible elements and LREE (±MREE) in the clinopyroxenes such as in Figure 6. If we compare the Spitsbergen mantle clinopyroxenes with the studied Oman mantle clinopyroxenes, the later display very similar REE and incompatible trace element patterns (Figure 5) and therefore it is plausible that the metasomatic agents are similar in composition in the two cases. Finally the same two-stage evolution model can be invoked to explain the trace element compositions of most samples from this study. The studied mantle xenoliths from Al Ashkarah have been affected in a first stage by partial melting degrees between 1 to a maximum of 19 %. Later, in a second stage, the melting residues have suffered a metasomatic event leading to the re-enrichment in the most incompatible elements and LREE (±MREE) of the clinopyroxenes in the lherzolites, but also of the MREE ± HREE in the harzburgites, which are more sensitive to metasomatism. The metasomatic agent is probably a carbonate-rich mafic silicate melt enriched in highly incompatible trace elements and characterised by low abundances of Nb, Zr, Hf and Ti. Such characteristics allow to propose the hypothesis of a link between this metasomatic melt and the OIB-like tertiary alkaline melts of the same aera including the host lavas of mantle xenoliths studied by Worthing and Wilde (2002) and Nasir et al. (2006). This link is strengthened by the similarity of trace element patterns of the calculated
liquids in equilibrium with the clinopyroxenes of samples 04OM62b1 and OM63c1 with that of the host lava (Figure 9). For that calculation we used the clinopyroxene/basanite partition coefficients at 0.5 GPa from Adam and Green (2003). In such a model, the clinopyroxenes of samples 04OM62b2 (Lherzolite) and 04OM62b1 (Harzburgite) characterized by respectively a LREE-depleted REE pattern and a LREE-enriched one characterised by HREE fractionation may represent: (i) a witness of the first stage of the model (sample 04OM62b2), i.e. the process of partial melting or even the upper mantle before the partial melting as the clinopyroxene of this sample displays a REE pattern similar to that of the estimated primitive upper mantle (Figure 7) and (ii) a crystallization product of the metasomatic carbonate-rich silicate melt. Indeed the latter displays some similarities with the sample 4-90-1 from Ionov et al. (2002) which is a composite xenolith consisting of an amphibole-bearing wehrlite grading to an olivine-dominated zone with clusters of amphiboles. That sample is a fragment of a magmatic vein within the peridotitic mantle, a vein formed by a melt displaying similar REE content than that of the metasomatic agent responsible of the incompatible trace element enrichment of the Spitsbergen mantle xenoliths (Ionov et al., 2002).

Summary
The upper mantle equilibrated in the spinel stability field beneath the North West Al Ashkharah (East Oman) area mostly consists of lherzolites and harzburgites. This region of the upper mantle has been affected by two main petrogenetic processes: (i) an early partial melting event mostly of low degree leading to the formation of a LREE-depleted clinopyroxene in the peridotitic mantle residue and (ii) a metasomatic event linked to the circulation within this previously slightly depleted upper mantle of
a OIB-like carbonate-rich mafic silicate melt. The upper mantle beneath the North West Al Ashkharah therefore has a similar history than that of the upper mantle beneath Spitsbergen, an other continental rifting area. We tentatively suggest that the partial melting event is an old event while the metasomatic melt is related to the tertiary alkaline magmatic activity of the studied area related to the rifting of the Oman passive margin that lid to the opening of the Owen basin

ACKNOWLEDGMENTS

We warmly thank M. Monnereau for his help on the field and H. Al Azri from the Ministry of Commerce and Industry of Oman for constant support. Thin sections, electron microprobe analyses and ICP-MS analyses were performed using the facilities of the Observatoire Midi-Pyrénées, Paul Sabatier University, Toulouse. We are particularly indebted to F. de Parseval and J.-F. Mena for thin and thick section preparation, P. de Parseval for his help during microprobe data acquisition and F. Candaudap and R. Freydier for their help during LA-ICPMS data acquisition. This work was financially supported by the French Centre National de la Recherche Scientifique.

REFERENCES

Delpech, G., Grégoire, M., O'Reilly, S.Y., Cottin, J.Y., Moine, B.N., Michon, G. 2004. Feldspar from carbonate-rich metasomatism in the oceanic mantle under Kerguelen Islands (South Indian Ocean), Lithos 75, 209-237.

Grégoire, M., Chevet, J., Maaloe, S. Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Submitted to Geological Society of London special publication.

TABLE CAPTIONS

Table 1. Major (EMPA; wt %) element concentrations for Oman lherzolites and harzburgites olivines, orthopyroxenes, spinels and clinopyroxenes. Mg#= Mg/(Mg +FeTotal) x100.

Table 2. Average REE and trace (LA-ICP-MS; ppm) element concentrations for clinopyroxenes of Oman mantle xenoliths. (n= number of analysis).

FIGURE CAPTIONS

Figure 1: Location map of the studied area (after Gnos and Peters, 2003)
Figure 2: Microphotographs. A: An angular-shaped protogranular harzburgite xenolith (size of the xenolith: 13 mm x 6 mm); B: porphyroclastic lherzolite, field of view: ~ 6 mm.

Figure 3: Diagram Cr# (100xCr/Cr+Al) versus Mg# (100xMg/Mg+Fe_total) of spinels of mantle xenoliths from the North West Al Ashkharah (East Oman) area. Double crosses: Harzburgites; Crosses: Lherzolites; Filled diamonds: Spitsbergen mantle lherzolite and harzburgite xenoliths from Ionov et al. (2002); Filled squares in a dark grey field: mantle peridotite xenoliths from Oman (Nasir et al., 2006); Empty squares in a light grey field: mantle peridotites from Oman ophiolite from Monnier et al. (2006).

Figure 4: Diagrams Al$_2$O$_3$, Cr$_2$O$_3$ and Na$_2$O versus Mg# (100xMg/Mg+Fe_total) of clinopyroxenes of mantle xenoliths from the North West Al Ashkharah (East Oman) area. Same legend as Figure 3.

Figure 5: Primitive mantle-normalized REE and incompatible trace element patterns of the clinopyroxenes characterised by spoon-shaped REE or LREE-enriched patterns (this study) and from Ionov et al. (2002). See text for explanation. Normalization values are from McDonough and Sun (1995).

Figure 6: Primitive mantle-normalized trace element patterns of the clinopyroxenes from the harzburgite 04OM62B1 and the lherzolite 04OM62B2 (this study) and of the sample 4-90-1 from Spitsbergen (Ionov et al., 2002). See text for explanation. Normalization values are from McDonough and Sun (1995).
Figure 7: Non-modal partial melting modelling for the REE in clinopyroxenes from the North West Al Ashkharah. The data are normalised to the CI-Chondrite of McDonough and Sun (1995). Most clinopyroxenes display HREE contents that are in agreement with a partial melting degree of ~1 to 5%, except for the harzburgite 04OM62b1, for which the HREE cannot be accounted for by a single stage history.

Figure 8: Diagram Cr$_2$O$_3$ versus Na$_2$O of clinopyroxenes of mantle xenoliths from the North West Al Ashkharah (East Oman) area. Same legend as Figure 3.

Figure 9: Hypothetical melts in equilibrium with clinopyroxene from metasomatised harzburgites 04OM62b1 and 04OM63c1 compared to the host basanite (Nasir et al., 2006). Normalising values from McDonough and Sun (1995) and Cpx/basanite partition coefficients at 0.5 GPa from Adam and Green (2003).
Figure 5

Spitzberg (Ionov et al., 2002)

This study

Sample/Primitive Mantle

La Ce Nd Sm Eu Gd Dy Ho Er Yb Lu

Sample/Primitive Mantle

Th U Nb La Ce Sr Nd Zr Hf Sm Eu Ti Gd Dy Ho Er Yb Lu

0.1

0.1
Figure 7
<table>
<thead>
<tr>
<th></th>
<th>04OM58a2</th>
<th>04OM58a2</th>
<th>04OM58a2</th>
<th>04OM58a2</th>
<th>04OM58a3</th>
<th>04OM58c3</th>
<th>04OM58c3</th>
<th>04OM58f3</th>
<th>04OM58f3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg#</td>
<td>89.23</td>
<td>89.26</td>
<td>89.42</td>
<td>91.18</td>
<td>91.09</td>
<td>91.42</td>
<td>90.89</td>
<td>90.94</td>
<td>90.48</td>
</tr>
<tr>
<td>Total</td>
<td>100.18</td>
<td>99.90</td>
<td>100.49</td>
<td>100.31</td>
<td>99.78</td>
<td>99.52</td>
<td>98.97</td>
<td>99.70</td>
<td>100.23</td>
</tr>
<tr>
<td>Cr#</td>
<td>18.60</td>
<td>18.35</td>
<td>18.18</td>
<td>18.53</td>
<td>15.14</td>
<td>33.18</td>
<td>33.61</td>
<td>33.07</td>
<td>15.34</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.38</td>
<td>1.38</td>
<td>1.51</td>
<td>1.05</td>
<td>1.01</td>
<td>1.04</td>
<td>1.05</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>MgO</td>
<td>15.79</td>
<td>15.84</td>
<td>15.69</td>
<td>16.36</td>
<td>16.24</td>
<td>16.09</td>
<td>15.85</td>
<td>16.08</td>
<td>15.88</td>
</tr>
<tr>
<td>NiO</td>
<td>0.36</td>
<td>0.20</td>
<td>0.37</td>
<td>0.50</td>
<td>0.32</td>
<td>0.27</td>
<td>0.21</td>
<td>0.26</td>
<td>0.44</td>
</tr>
<tr>
<td>MgO</td>
<td>19.00</td>
<td>18.44</td>
<td>18.70</td>
<td>18.82</td>
<td>21.61</td>
<td>17.07</td>
<td>17.23</td>
<td>17.16</td>
<td>19.49</td>
</tr>
<tr>
<td>NiO</td>
<td>0.37</td>
<td>0.36</td>
<td>0.42</td>
<td>0.34</td>
<td>0.47</td>
<td>0.40</td>
<td>0.33</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>FeOt</td>
<td>5.54</td>
<td>5.71</td>
<td>5.85</td>
<td>5.85</td>
<td>5.87</td>
<td>6.00</td>
<td>6.04</td>
<td>5.60</td>
<td>5.70</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>1.04</td>
<td>1.05</td>
<td>1.02</td>
<td>0.86</td>
<td>0.84</td>
<td>0.81</td>
<td>0.90</td>
<td>0.82</td>
<td>0.85</td>
</tr>
<tr>
<td>FeOt</td>
<td>2.80</td>
<td>2.72</td>
<td>2.93</td>
<td>2.82</td>
<td>3.06</td>
<td>3.07</td>
<td>3.03</td>
<td>3.07</td>
<td>2.91</td>
</tr>
<tr>
<td>Al2O3</td>
<td>5.69</td>
<td>5.66</td>
<td>5.67</td>
<td>5.27</td>
<td>4.97</td>
<td>5.04</td>
<td>5.13</td>
<td>5.17</td>
<td>5.15</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>17.22</td>
<td>16.15</td>
<td>16.01</td>
<td>16.46</td>
<td>14.11</td>
<td>28.95</td>
<td>29.16</td>
<td>28.83</td>
<td>14.01</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.17</td>
<td>0.04</td>
<td>0.09</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.12</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>SiO2</td>
<td>56.75</td>
<td>56.13</td>
<td>56.29</td>
<td>56.15</td>
<td>56.77</td>
<td>56.10</td>
<td>56.73</td>
<td>56.46</td>
<td>56.99</td>
</tr>
</tbody>
</table>

Table 1

Click here to download Table: Table 1.xls
<table>
<thead>
<tr>
<th></th>
<th>Harzburgites</th>
<th></th>
<th></th>
<th>Lherzolites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>04OM63c3</td>
<td>04OM63c1</td>
<td>04OM65b1</td>
<td>04OM58c3</td>
<td>04OM59b2</td>
<td>04OM58f3</td>
<td>04OM62b2</td>
<td>04OM58a2</td>
<td>04OM58a3</td>
<td>04OM58c1</td>
<td>04OM58c2</td>
<td>04OM63c2</td>
<td>04OM66d2</td>
<td></td>
</tr>
<tr>
<td>element</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=4</td>
<td>n=3</td>
<td>n=5</td>
<td>n=3</td>
<td>n=3</td>
<td>n=4</td>
<td>n=5</td>
<td>n=4</td>
<td>n=3</td>
<td>n=3</td>
<td>n=3</td>
<td>n=3</td>
<td>n=3</td>
<td>n=3</td>
</tr>
<tr>
<td>Sc</td>
<td></td>
<td>97</td>
<td>91</td>
<td>63</td>
<td>76</td>
<td>69</td>
<td>70</td>
<td>68</td>
<td>71</td>
<td>62</td>
<td>97</td>
<td>55</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td>945</td>
<td>569</td>
<td>722</td>
<td>1008</td>
<td>851</td>
<td>1154</td>
<td>3482</td>
<td>950</td>
<td>755</td>
<td>701</td>
<td>718</td>
<td>846</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>244</td>
<td>243</td>
<td>181</td>
<td>232</td>
<td>246</td>
<td>222</td>
<td>258</td>
<td>241</td>
<td>244</td>
<td>287</td>
<td>186</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>403</td>
<td>310</td>
<td>381</td>
<td>270</td>
<td>291</td>
<td>300</td>
<td>324</td>
<td>364</td>
<td>317</td>
<td>318</td>
<td>262</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td>0.80</td>
<td>0.80</td>
<td>bdl</td>
<td>bdl</td>
<td>1.55</td>
<td>1.00</td>
<td>0.62</td>
<td>0.26</td>
<td>0.66</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td>61</td>
<td>273</td>
<td>254</td>
<td>76</td>
<td>75</td>
<td>65</td>
<td>79</td>
<td>456</td>
<td>183</td>
<td>83</td>
<td>296</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>14</td>
<td>14</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>24</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td></td>
<td>1.23</td>
<td>3.69</td>
<td>2.8</td>
<td>1.63</td>
<td>0.52</td>
<td>1.58</td>
<td>40</td>
<td>0.68</td>
<td>4.58</td>
<td>0.76</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td></td>
<td>0.38</td>
<td>1.34</td>
<td>1.36</td>
<td>0.59</td>
<td>2.23</td>
<td>1.44</td>
<td>0.21</td>
<td>0.88</td>
<td>3.61</td>
<td>bdl</td>
<td>0.30</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td>1.34</td>
<td>1.66</td>
<td>0.43</td>
<td>0.34</td>
<td>0.61</td>
<td>0.44</td>
<td>0.96</td>
<td>1.55</td>
<td>0.52</td>
<td>0.40</td>
<td>0.74</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td></td>
<td>6.0</td>
<td>25</td>
<td>6.5</td>
<td>8.9</td>
<td>9.7</td>
<td>7.3</td>
<td>1.00</td>
<td>37</td>
<td>32</td>
<td>47</td>
<td>50</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td></td>
<td>4.41</td>
<td>46</td>
<td>15</td>
<td>11</td>
<td>14</td>
<td>9.5</td>
<td>3.49</td>
<td>53</td>
<td>42</td>
<td>75</td>
<td>46</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td></td>
<td>0.18</td>
<td>4.92</td>
<td>2.03</td>
<td>0.95</td>
<td>1.20</td>
<td>0.87</td>
<td>0.73</td>
<td>3.61</td>
<td>3.33</td>
<td>5.9</td>
<td>3.26</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td></td>
<td>0.69</td>
<td>16</td>
<td>9.4</td>
<td>3.08</td>
<td>3.63</td>
<td>3.16</td>
<td>4.43</td>
<td>8.0</td>
<td>9.63</td>
<td>14</td>
<td>8.4</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td></td>
<td>0.32</td>
<td>3.40</td>
<td>2.69</td>
<td>0.69</td>
<td>0.75</td>
<td>0.72</td>
<td>1.80</td>
<td>1.29</td>
<td>1.50</td>
<td>1.89</td>
<td>1.31</td>
<td>5.38</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td>0.94</td>
<td>0.91</td>
<td>0.29</td>
<td>0.22</td>
<td>0.28</td>
<td>0.79</td>
<td>0.38</td>
<td>0.41</td>
<td>0.53</td>
<td>0.37</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td>0.99</td>
<td>2.78</td>
<td>2.56</td>
<td>1.26</td>
<td>1.00</td>
<td>1.36</td>
<td>3.13</td>
<td>1.17</td>
<td>1.22</td>
<td>1.47</td>
<td>1.24</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td></td>
<td>1.98</td>
<td>2.53</td>
<td>2.32</td>
<td>1.96</td>
<td>1.58</td>
<td>2.13</td>
<td>3.94</td>
<td>1.69</td>
<td>1.59</td>
<td>1.69</td>
<td>1.69</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td></td>
<td>0.52</td>
<td>0.50</td>
<td>0.34</td>
<td>0.49</td>
<td>0.39</td>
<td>0.50</td>
<td>0.88</td>
<td>0.41</td>
<td>0.40</td>
<td>0.46</td>
<td>0.38</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td></td>
<td>1.58</td>
<td>1.45</td>
<td>0.70</td>
<td>1.48</td>
<td>1.16</td>
<td>1.49</td>
<td>2.48</td>
<td>1.30</td>
<td>1.29</td>
<td>1.44</td>
<td>1.15</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td></td>
<td>1.59</td>
<td>1.30</td>
<td>0.48</td>
<td>1.51</td>
<td>1.17</td>
<td>1.48</td>
<td>2.38</td>
<td>1.40</td>
<td>1.35</td>
<td>1.48</td>
<td>1.13</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td></td>
<td>0.23</td>
<td>0.20</td>
<td>0.05</td>
<td>0.23</td>
<td>0.17</td>
<td>0.22</td>
<td>0.34</td>
<td>0.21</td>
<td>0.20</td>
<td>0.17</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td></td>
<td>0.17</td>
<td>0.25</td>
<td>0.77</td>
<td>0.18</td>
<td>0.14</td>
<td>0.20</td>
<td>1.34</td>
<td>0.27</td>
<td>bdl</td>
<td>0.16</td>
<td>0.53</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td>1.62</td>
<td>3.45</td>
<td>0.36</td>
<td>3.12</td>
<td>1.44</td>
<td>1.29</td>
<td>0.02</td>
<td>4.28</td>
<td>6.31</td>
<td>5.32</td>
<td>13</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>0.44</td>
<td>0.57</td>
<td>0.07</td>
<td>0.77</td>
<td>0.24</td>
<td>0.25</td>
<td>0.01</td>
<td>0.72</td>
<td>0.64</td>
<td>0.81</td>
<td>3.12</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>

bdl: below detection limit