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Abstract During the last years remission rates of more than
72% for arsenic(III)-oxide (As2O3) treatment in relapsed or
refractory acute promyelocytic leukemia have been pub-
lished. As2O3 is under clinical investigation for therapy of
leukemia and solid tumors. Due to the chemical affinity of
arsenic and antimony, we analyzed the potency of antimony
(III)-oxide (Sb2O3) to exert As2O3-like effects. Based on the
same molar concentrations, lower efficacy in apoptosis
induction and caspase-independent decrease of mitochondri-

al membrane potential was observed for Sb2O3. No dif-
ference in sensitivity to As2O3 or Sb2O3 was detected in
CEM cells when compared to their multiple drug resistant
derivatives. Apoptosis was induced by combining sub-
apoptotic concentrations of Sb2O3 or As2O3 with sub-
apoptotic concentrations of DL-buthionine-[S,R]-sulfoximine
(BSO). Other modulators of the cellular redox system
showed this effect to a lower extent and enhancement was
not consistent for the different cell lines tested. Caspase
inhibitors protected cell lines from Sb2O3- and As2O3-
induced apoptosis. When BSO was added, the inhibitors
lost their protective ability. The ability of modulators of the
cellular redox system in clinically applicable concentrations
to enhance the apoptotic effects of the two oxides in a
synergistic way may be helpful to reduce their toxicity by
optimizing their dose.

Keywords Apoptosis . Arsenic . Antimony .

Buthionine sulfoximine . Glutathione . Redox system

Introduction

During the last 10 years, several groups demonstrated
remission of more than 72% for arsenic(III)-oxide (As2O3)
treatment in relapsed or refractory acute promyelocytic
leukemia (APL), as presented in various reviews [1–5].
As2O3 was established as a potent alternative in therapy of
all-trans retinoic acid (ATRA)-resistant APL and shows, like
Sb2O3, similar cellular effects to ATRA in APL: localization
of the t(15;17) specific PML-RARα-fusion protein in
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nuclear bodies and degradation of the fusion protein [6–9]
and induction of differentiation and apoptosis [10–14].
Lately, we showed that induction of apoptosis by As2O3 in
22 myeloid and non-myeloid malignant cell lines of different
sensitivity for cytostatic drugs, is based on breakdown of the
mitochondrial membrane potential (Ψm) and therefore the
redox system of the cell is one of the primary targets of
As2O3. Activation of caspases is a downstream effect
occurring after the breakdown of Ψm [15–17] and release of
radical oxygen species (ROS) [18–21].

Both antimony and arsenic are members of the Vth group
of the table of elements and share common chemical
characteristics. Based on the affinity of As2O3 and Sb2O3

we analyzed whether Sb2O3 shows similar efficacy and
identical mechanisms of action by investigation of the effects
of Sb2O3 on representative myeloid cell lines of different
sensitivity groups for As2O3 as classified in our previous
report [22]. Given the increasing clinical use of As2O3, we
were, in particular, interested in combinations that might be
transferable to clinical application. Inhibitors of the cellular
glutathione system were used to modulate the efficacy of
As2O3 and Sb2O3 to induce apoptosis. The modulators
analyzed in this report include the γ-glutamylcystein
synthetase inhibitor DL-buthionine-[S,R]-sulfoximine (BSO),

the glutathione peroxidase (GPx) inhibitor mercaptosuccinic
acid (MS), as well as sodium ascorbate (NaAsc), sodium
salicylate (NaSal), and 3-amino-1,2,4-azole (AT). Ascorbate
was shown to decrease in glutathione-deficient rats and
ascorbate spares glutathione and protects [23], NaSal
potentates the toxicity of BSO in the E47 cells [24] and AT
inhibits catalase in the presence of H2O2 and inhibits
cyclizations leading to β-carotene and Φ-carotene accumu-
lates. As far as data were achievable and tolerable concen-
trations of the different substances in vivo were available
(BSO, NaAsc, NaSal), we have chosen concentrations within
this range. For As2O3 and Sb2O3 we have chosen incubation
times and concentrations as we previously published for
As2O3 [15, 17, 22]. The As2O3 concentrations are in the
range of peak values of clinically achievable As2O3 plasma
levels as shown by pharmacokinetic analysis [10].

Materials and methods

Cell culture

Cell lines CCRF-CEM, HL-60, K-562, and LOUCY were
purchased from The German Collection of Microorganisms

Fig. 1 Sb2O3- and As2O3-induced apoptosis in myeloid and lym-
phatic cell lines. Cell lines LOUCY, CCRF-CEM, HL-60, and K-562
were treated with PBS (black circle), 1 µM (white square) or 5 µM
(black square) Sb2O2 or 1 µM (white triangle) or 5 µM (black

triangle) As2O3 for 35 days. The percentage of 7-AAD-positive cells
was determined before incubation and after 2, 4, 6, 8, 10, 12, 16, 20,
24, 28, and 35 days by flow cytometry
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and Cell Cultures (DSMZ, Braunschweig, Germany),
CEM/C1, CEM/C2, HL-60/MX1, and HL-60/MX2 from
the American Type Culture Collection (Manassas, USA).
The doxorubicin resistant cell lines K-562(0.02) and K-562
(0.1) were described previously [22].

Induction of apoptosis with antimony(III)-trioxide (Sb2O3),
arsenic(III)-trioxide (As2O3) and cytostatic drugs

Apoptosis was induced with freshly prepared aqueous stock
solutions of 1 mM Sb2O3 (Fluka, Buchs, Switzerland) or
1 mM As2O3 (SIGMA, Deisenhofen, Germany) in PBS
without Ca2+/Mg2+ (Invitrogen/GIBCO Life Technologies,
Karlsruhe, Germany). Due to its low solubility in H2O,
Sb2O3 had to be dissolved in HClconc before dilution in
PBS. The pH of Sb2O3-solutions was determined for each
assay and a separate control with the corresponding amount
of PBS without Ca2+/Mg2+ and the HClconc-adjusted
adequate pH was used for each experimental approach.
Stock solutions of 10 mM of (S)-(+)-camptothecin (SIG-
MA, Deisenhofen, Germany) in dimethyl sulfoxide (Sigma,
Deisenhofen, Germany), 10 mM mitoxantrone hydrochlo-
ride (SIGMA, Deisenhofen, Germany) and 1 mg/mL
doxorubicin hydrochloride (SIGMA, Deisenhofen, Ger-
many) in 70 % ethanol (Carl ROTH GmbH, Karlsruhe,
Germany) were used for further dilutions. Cells were
seeded according to their optimal growth condition indicat-
ed by the provider.

Annexin V-FITC- and 7-AAD-staining

As described previously [22], the percentage of apoptotic
cells was determined by two-color flow cytometry using an
Annexin V-FITC (BD Pharmingen, Heidelberg, Germany)
and 7-amino-actinomycin D (7-AAD) system (Sigma,
Deisenhofen, Germany). Whenever possible, fluorescence
data of 50.000 cells was acquired using fluorescence
channels FL-1 and FL-3 of a FACScan (Becton Dickinson,
Heidelberg, Germany). All experiments presented were
performed three times, with the exception of those
presented in Figs. 1, 5, and 6. In general, flow cytometry
analysis was performed until the percentage of apoptotic
cells was higher than 90% and acquisition of data was
preformed for two further time points.

MitoTrackerRed CMXRos staining

MitoTrackerRed CMXRos (Molecular Probes, Leiden, The
Netherlands) is a fluorescent dye that is enriched in
mitochondria in a membrane potential dependent manner
and reacts with mitochondrial proteins [25, 26]. Therefore,
MitoTrackerRed CMXRos, can be used to detect cells with
a loss of Ψm [27, 28]. The CMX group binds to SH groups

of mitochondrial proteins and is retained in living cells,
while unbound dye can be washed out of the cells. Staining
was performed as described in a previous report in 1 mL
cell suspension (ca. 5×105 to 1×106 cells) in the presence
of 200 nM MitoTrackerRed CMXRos. After 45 min, cells
were washed twice in PBS without Ca2+/Mg2+ and the
change of fluorescence intensity was measured by flow
cytometry [15]. In order to compare the percentage of

Fig. 2 Sb2O3-induced apoptosis occurs in camptothecin-resistant
CCRF-CEM derivatives CEM/C1 and CEM/C2. Incubation of the
cell lines CCRF-CEM, CEM/C1 and CEM/C2 was performed with
PBS (black circle), 1 µM (white square) and 5 µM (white square)
Sb2O2 as well as with 50 nM (gray rhomb), 150 nM (white rhomb)
and 500 nM (black rhomb) camptothecin for 22 days. The percentage
of 7-AAD-positive cells was determined before incubation and after 2,
4, 7, 10, 14, and 22 days
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apoptotic cells (as measured by 7-AAD and Annexin V
positivity in flow cytometry) and the percentage of cells
with reduced Ψm, the following presentation was chosen for
MitoTrackerRed CMXRos staining: the fluorescence inten-
sity of untreated control cells was set to approximately 102

as described by the manufacturer. The percentage of cells
with reduced staining pattern for MitoTrackerRed CMXRos
(compared to the untreated controls) were referred as
MitoTrackerRed CMXRos-negative. The percentage of the
population with reduced fluorescence intensity (negative
population) is shown in the diagrams, as these cells did not
accumulate the dye in their mitochondria due to their
reduced Ψm.

Incubation with caspase inhibitors

Cells were washed in PBS without Ca2+/Mg2+ and
resuspended at a density of 2–4×105 cells/mL in serum
free QBSF51® medium (Sigma, Deisenhofen, Germany).
Caspase inhibitors Boc-D(OMe)-Fmk, Z-VAD-FMK and

Z-D(OMe)-E(OMe)-VD(OMe)-Fmk (all from ALEXIS
Biochemicals, Grünberg, Germany) were dissolved in
DMSO and used in a final concentration of 50 µM.
CCRF-CEM and HL-60 cells were incubated (37°C, 6%
CO2, 98% humidity) in the presence of the inhibitors for
1 h prior to cultivation with Sb2O3 or As2O3.

Incubation with modulators of the cellular GSH-redox
system

Fresh stock solutions of 100 mM DL-buthionine-[S,R]-
sulfoximine (Sigma, Deisenhofen, Germany), 500 mM
sodium salicylate (Sigma, Deisenhofen, Germany),
500 mM sodium ascorbate (Sigma, Deisenhofen, Ger-
many), 100 mM mercaptosuccinic acid (Sigma, Deisenho-
fen, Germany) and 20 mM 3-amino-1,2,4-azole (Sigma,
Deisenhofen, Germany) were prepared in PBS without
Ca2+/Mg2+ for each assay. All modulators of GSH were
added together with PBS or the inducers of apoptosis
(Sb2O3 and As2O3), when indicated.

Fig. 3 Modulation of Sb2O3-induced apoptosis by NaSal, NaAsc,
BSO, MS and AT in cell line LOUCY. Cell line LOUCY was
incubated either with a PBS, b 1 µM As2O3, c 1 µM Sb2O3, or d
5 µM Sb2O3 alone (black circle) or in combination with 250 µM
NaSal (white square), 250 µM NaAsc (black square), 100 µM BSO
(black rhomb), 100 µM MS (white triangle) or 20 mM AT (black

triangle) for 7 days. The percentage of cells positive for 7-AAD was
determined before incubation and after 1, 2, 4, and 7 days. *The
control shown in a, b, c, and d represents the corresponding assays
with PBS or the inducers of apoptosis alone (Sb2O3 or As2O3) but
without the modulators of Ψm
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Results

Sb2O3 and As2O3 induce apoptosis in lymphohematopoietic
cell lines

As we demonstrated in a recent report [22], concentrations
of As2O3 that are achievable in the plasma of As2O3-treated
APL-patients induced apoptosis in a variety of different
lymphohematopoietic cell lines. We introduced a classifi-
cation system according to the sensitivity of cell lines
towards As2O3-induced apoptosis. To investigate the
apoptosis-inducing potential of Sb2O3, we have chosen
representative cell lines from the different sensitivity groups
and incubated the cell lines LOUCY, CCRF-CEM, HL-60
and K-562 with either PBS, 1 µM As2O3, 5 µM As2O3,
1 µM Sb2O3 or 5 µM Sb2O3. Apoptosis was measured by
staining with 7-AAD (Fig. 1) and Annexin V-FITC (data
not shown). Based on experience with As2O3 that induced
apoptosis in vivo and in some cell lines only after
prolonged incubation [10, 22, 29, 30], we determined the

percentage of apoptotic cells before incubation and after 2,
4, 6, 8, 10, 12, 16, 20, 24, 28, and 35 days by flow
cytometry.

Low concentration (1 µM) As2O3 induced apoptosis in
LOUCY and CCRF-CEM-cells, whereas 1 µM Sb2O3 was
not effective in any of the analyzed cell lines. When
incubated with 5 µM As2O3, apoptosis occurred in all four
cell lines. Only the MDR-1 positive cell lines K-562 was
resistant to the high concentration of Sb2O3 (5 µM). We
observed a high correlation between both methods used for
the detection of apoptotic cells, Annexin V-FITC- and 7-
AAD-staining: correlation coefficients were 0.999 for
LOUCY, 0.994 for CCRF-CEM, 0.934 for HL-60, 0.815
for K-562, and 0.940 over all, respectively.

Sb2O3 and As2O3 induce apoptosis in cytostatic-resistant
cell lines of the lymphohematopoietic system

Sensitivity to induction of apoptosis by As2O3 did not differ
between CCRF-CEM and the less cytostatic-sensitive deriv-

Fig. 4 Enhancement of Sb2O3-induced apoptosis by NaSal, NaAsc,
BSO, MS, and AT in cell line CCRF-CEM. Cell line CCRF-CEM was
incubated either with a PBS, b 1 µM As2O3, c 1 µM Sb2O3, or d
5 µM Sb2O3 alone (black circle) or in combination with 500 µM
NaSal (white square), 500 µM NaAsc (black square), 100 µM BSO
(black rhomb), 100 µM MS (white triangle) or 20 mM AT (black

triangle) for 7 days. The percentage of cells positive for 7-AAD was
determined before incubation and after 1, 2, 4, and 7 days. *The
control shown in (a), (b), (c), and (d) represents the corresponding
assays with PBS or the inducers of apoptosis alone (Sb2O3 or As2O3)
but without the modulators of Ψm
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atives CEM/C1 and CEM/C2 [22]. This prompted the
question whether also Sb2O3 can induce apoptosis in these
two cell lines with multiple drug resistance [31, 32]. Figure 2
summarizes data on Sb2O3- and camptothecin-treatment of
CCRF-CEM, CEM/C1, and CEM/C2 cells which were
incubated with Sb2O3 (1 µM or 5 µM) or camptothecin
(50–500 nM; positive control for apoptosis induction) for up
to 22 days. Based on equimolar concentrations, As2O3 was
generally more potent as compared to Sb2O3.

CCRF-CEM cells were insensitive to 1 µM Sb2O3 but
sensitive to 5 µM Sb2O3 and all concentrations of
camptothecin. CEM/C1 cells showed less sensitivity to 50
and 150 nM camptothecin, however, were still sensitive
to 5 µM Sb2O3. Cell line CEM/C2 that was resistant to
camptothecin up to 500 nM still retained sensitivity to 5 µM
Sb2O3. In contrast to As2O3 [22], no prolonged incubation
time was necessary to induce apoptosis with increasing
resistance to camptothecin for Sb2O3. Again, there was a
high correlation between both methods used for the detection
of apoptotic cells, Annexin V-FITC- and 7-AAD-staining:
correlation coefficients were 0.973 for CCRF-CEM, 0.974

for CEM/C1, 0.961 for CEM/C2, and 0.978 over all,
respectively.

The HL-60 mitoxantrone resistant derivatives HL-60/
MX1 and HL-60/MX2 and the K-562 doxorubicin resistant
derivatives K-562(0.02) and K-562(0.1) were insensitive to
1 µM Sb2O3 and 5 µM Sb2O3 (data not shown). As
previously shown, these derivatives show reduced sensitiv-
ity to 1 µM As2O3 and 5 µM As2O3 as compared to their
corresponding parental cell lines [22].

Increased sensitivity towards Sb2O3- and As2O3- induced
apoptosis by modulators of the cellular GSH-system

We addressed the potential role of the glutathione redox
system for Sb2O3- and As2O3-mediated apoptosis: cell lines
LOUCY (Fig. 3), CCRF-CEM (Fig. 4), HL-60 (Fig. 5) and
K-562 (Fig. 6) were treated with different substances known
to influence Ψm or to modulate or inhibit the synthesis of
glutathione.

Therefore, we incubated the indicated cell lines for 7 days
(LOUCY) or 14 days (CCRF-CEM, HL-60, K-562) with

Fig. 5 Enhancement of Sb2O3-induced apoptosis by NaSal, NaAsc,
BSO, MS, and AT in cell line HL-60. Cell line HL-60 was incubated
either with a PBS, b 1 µM As2O3, c 1 µM Sb2O3 or d 5 µM Sb2O3

alone (black circle) or in combination with 1 mM NaSal (white
square), 1 mM NaAsc (black square), 100 µM BSO (black rhomb),
100 µM MS (white triangle) or 20 mM AT (black triangle) for

14 days. The percentage of cells positive for 7-AAD was determined
before incubation and after 1, 2, 4, 7, 10, and 14 days. *The control
shown in a, b, c, and d represents the corresponding assays with PBS
or the inducers of apoptosis alone (Sb2O3 or As2O3) but without the
modulators of Ψm
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either PBS (Figs. 3a, 4a, 5a, 6a), 1 µM As2O3 (Figs. 3b, 4b,
5b, 6b), 1 µM Sb2O3 (Figs. 3c, 4c, 5c, 6c) or 5 µM Sb2O3

(Figs. 3d, 4d, 5d, 6d) alone or together with sodium salicylate
(NaSal, 500 µM for LOUCY, CCRF-CEM and K-562, 1 mM
for HL-60), sodium ascorbate (NaAsc, 500 µM for LOUCY,
CCRF-CEM and K-562, 1 mM for HL-60), DL-buthionine-[S,
R]-sulfoximine (BSO, 100 µM for all cell lines), mercapto-
succinic acid (MS, 100 µM for all cell lines) or 3-amino-
1,2,4-azole (AT, 20 mM for all cell lines). The percentages of
7-AAD- and Annexin V-FITC (data not shown)-positive
cells were determined before incubation and after 1, 2, 4, 7,
10, and 14 days. None of the modulators or inhibitors alone
triggered apoptosis, with the exception of MS for cell lines
LOUCYand HL-60 and NaAsc for cell line K-562, where an
increase of the apoptotic population could be observed.

In general, strong enhancement of the two oxides Sb203
(1 µM and 5 µM) and As2O3 (1 µM) by the inhibitor of the
g-glutamylcystein synthetase BSO could be seen. Even when
Sb2O3 or As2O3 were used in concentrations that were not or
only weak effective by themselves (1 µM Sb2O3 for
LOUCY, CCRF-CEM and HL-60; 5 µM Sb2O3 for K-562;

1 µM As2O3 for CCRF-CEM and HL-60, 5 µM As2O3 for
K-562), an increase up to 100% of apoptotic cells was
observed when 100 µM BSO were added to the assay. This
phenomenon was consistently seen with all analyzed cell
lines and was in particular remarkable with the cell line
K-562 that was insensitive for Sb2O3-concentrations even
higher than 5 µM (up to 10 µM, data not shown). Other
modulators were less effective and did not demonstrate
consistent synergistic results in all cell lines: NaAsc (250 or
500 µM) also induced slight increase in CCRF-CEM and
K-562. In CCRF-CEM a synergistic effect was seen with
500 µM NaAsc and 1 µM Sb2O3 which both were
insensitive as single agents. Prolonged incubation with MS
(100 µM) did enhance As2O3- and Sb2O3-induced apoptosis
in HL-60 and K-562, but not in CCRF-CEM. Both AT and
NaSal did not show consistent effects with the inductors of
apoptosis in the different cell lines.

A high correlation of Annexin V-FITC and 7-AAD-
staining could be demonstrated for all assays: correlation
coefficients were 0.993 for LOUCY, 0.956 for CCRF-
CEM, 0.913 for HL-60, 0.885 for K-562, respectively.

Fig. 6 Enhancement of Sb2O3-induced apoptosis by NaSal, NaAsc,
BSO, MS and AT in cell line K-562. Cell line K-562 was incubated
either with a PBS, b 1 µM As2O3, c 1 µM Sb2O3 or d 5 µM Sb2O3

alone (black circle) or in combination with 500 µM NaSal (white
square), 500 µM NaAsc (black square), 100 µM BSO (black rhomb),
100 µM MS (white triangle) or 20 mM AT (black triangle) for

14 days. The percentage of cells positive for 7-AAD was determined
before incubation and after 1, 2, 4, 7, 10, and 14 days. *The control
shown in a, b, c, and d represents the corresponding assays with PBS
or the inducers of apoptosis alone (Sb2O3 or As2O3) but without the
modulators of Ψm
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Effects of caspase inhibitors on Sb2O3- and As2O3-induced
apoptosis and breakdown of Ψm in the T-cell leukemia cell
line CCRF-CEM

In order to study the role of caspases and Ψm on Sb2O3- and
As2O3-induced effects, we pre-treated the T-cell line
CCRF-CEM with various caspase inhibitors (Fig. 7).

Pre-incubation was performed with three different caspase
inhibitors for 1 h prior to (apoptosis) induction with Sb2O3

(5 and 10 µM) or As2O3 (5 µM): Boc-D(OMe)-Fmk and
Z-VAD-Fmk are potent pan-caspase inhibitors, whereas Z-D
(OMe)-E(OMe)-VD(OMe)-Fmk preferentially inhibits
Caspase-3 but also to lower extend Caspase-6, Caspase-7,
Caspase-8, and Caspase-10. The percentage of Annexin
V-positive and MitoTrackerRed CMXRos-negative cells was
determined after 24 h of apoptosis induction. The inhibitors
alone showed no increase in the percentage of apoptotic cells
(as measured by Annexin V-FITC-staining; Fig. 7) or any
change in Ψm (as measured by MitoTrackerRed CMXRos
staining; Fig. 7). We did not observe effects of caspase
inhibitors on the percentage of MitoTrackerRed CMXRos-
negative cells, whereas the percentage of cells stained
positive for Annexin V-FITC declined. The inhibitory effect
of the caspase inhibitors on Annexin V-FITC-binding was
most prominent after pre-incubation for 1 h but not detectible
with concomitant addition together with Sb2O3 or As2O3

(data not shown).

Modulation of the intracellular GSH-level by BSO affects
the anti-apoptotic potential of caspase inhibitor Z-VAD-
Fmk in cell line HL-60

Pre-incubation of HL-60 cells was performed with the pan-
caspase inhibitor Z-VAD-Fmk for 1 h prior to treatment with
Sb2O3 (10 and 20 µM) or As2O3 (5 and 10 µM) alone or in
combination with 30 µM or 100 µM BSO. In order to induce
apoptosis within 48 h in HL-60 cells, higher concentrations
of As2O3 and Sb2O3 were chosen. The percentage of
Annexin V-positive and MitoTrackerRed CMXRos-negative
cells was determined after 48 h of apoptosis induction
(Fig. 8). The inhibitor Z-VAD-Fmk alone showed no
increase in the percentage of apoptotic cells or in Ψm,
whereas reduction of the decrease in Ψm of BSO-treated non-
apoptotic HL-60 could be detected. When Z-VAD-Fmk-pre-
incubated cells were treated with 10 µM As2O3, a reduction
of the percentage of MitoTrackerRed CMXRos-negative
cells could be observed, compared to cells treated with
As2O3 alone. This effect was not detectable for Sb2O3, as
Sb2O3-induced apoptosis occurred in a low percentage
(<20%) of cells under these conditions. When HL-60 cells
were pre-treated with the caspase inhibitor, the percentage of
apoptotic cells declined for 10 µM As2O3 or 20 µM Sb2O3.
However, when either 30 µM or 100 µM BSO was added, Z-
VAD-Fmk lost is potency to reduce both apoptosis and
decrease of Ψm. Moreover, even in cells pre-incubated with

Fig. 7 Sb2O3- and As2O3-induced effects on Ψm cannot be blocked by
caspase inhibitors in CCRF-CEM cells despite the percentage of
apoptotic cells measured by Annexin V-FITC binding is reduced.
After 1 h pre-incubation with the pan-caspase inhibitor Boc-D(OMe)-
FMK or the multiple-caspase inhibitors Z-VAD-Fmk or Z-D(OMe)-E

(OMe)-VD(OMe)-FMK, CCRF-CEM cells were co-incubated with
5 µM or 10 µM Sb2O3 or 5 µM As2O3 for 24 h. The percentage of
cells positive for Annexin V-FITC (white bars) and negative for
MitoTrackerRed CMXRos (gray bars) was measured by flow
cytometry
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the pan-caspase inhibitor Z-VAD-Fmk, both 30 µM and
100 µM BSO exerted the synergistic effect already described
in Fig. 5 for lower As2O3 and Sb2O3 concentrations but
longer incubation times.

Discussion

We were interested in magnifying the efficacy of As2O3

using substances that might be transferable to clinical
application because the clinical applications of As2O3 gain
in importance not only for therapy of relapsed and
refractory APL [29, 30, 33–47], but also for treatment of
multiple myeloma [48–50], myelodysplastic syndromes
[51–53], and renal cancer [54]. Recently, two reports
described apoptosis induction, caspase activation and ROS
production by very high concentrations (up to 40 µM) of
potassium antimonyl tartrate in lymphoid tumor cell lines
[55] and growth inhibition and induction of apoptosis and
reactive oxygen species [56]. Due to the chemical affinity
of Sb2O3 and As2O3, we expected the same mechanism of
apoptosis induction for the two substances. We observed
Sb2O3-induced apoptosis in different myeloid and lymphat-
ic cell lines (CCRF-CEM, HL-60, K-562), among them cell
lines with reduced sensitivity to cytostatic agents (LOUCY,
CEM/C1, CEM/C2). We were able to block Sb2O3-induced

apoptosis by caspase inhibitors and, as presented previously
for As2O3 [15], caspase-independent decrease of Ψm. We
therefore postulate a common mechanism for Sb2O3 and
As2O3 mediated apoptosis. However, based on the same
molar concentrations, lower efficacy in apoptosis induction
was observed for Sb2O3 than for As2O3.

Our special focus was set on substances that influence
the glutathione redox state of the cell. Decrease of Ψm was
shown to play a crucial role in As2O3 therapy-relevant
effects [15, 17]. These effects are most probably based on
inhibition of enzymes of the intracellular glutathione re-
dox system, such as glutathione peroxidase GPx [57, 58],
glutathione reductase GR and glutathione-S-transferase
[58], resulting in an increase of ROS. In addition, a direct
targeting of the mitochondrial permeability transition pore
[59] was discussed as a possible mechanism. In this work,
we were able to show enhancement of As2O3 and Sb2O3

effects by BSO, NaSal, NaAsc, MS and AT to different
extents. As far as data on achievable and tolerable
concentrations in vivo were available (BSO, NaSal,
NaAsc), we have chosen concentrations within this range.
Mainly BSO, an inhibitor of the rate limiting enzyme in
glutathione (GSH)-synthesis γ-glutamylcystein synthetase
[57, 60] proved to be a potent enhancer of As2O3 and
Sb2O3. Our results obtained with As2O3 are in accordance
with those from Dai et al. [61] and Zhu et al. [14], who

Fig. 8 Inhibition of Sb2O3- and
As2O3-induced loss of Ψm and
reduction of the percentage of
apoptotic cells (measured by
Annexin V-FITC binding) by
caspase inhibitors is dependent
from GSH-modulation in HL-60
cells. After 1 h pre-incubation
with the pan-caspase inhibitor
Z-VAD-Fmk, HL-60 cells were
co-incubated with 30 µM or
100 µM BSO and PBS, 10 µM
Sb2O3, 20 µM Sb2O3, 5 µM
As2O3 or 10 µM As2O3 for
48 h. The percentage of cells
positive for Annexin V-FITC
(white bars) and negative for
MitoTrackerRed CMXRos (gray
bars) was determined by flow
cytometry
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proved that BSO enhances apoptosis induction and
decrease of Ψm in NB-4 and malignant lymphocytic cell
lines and primary cultures of lymphocytic leukemia and
lymphoma cells. Sub-apoptotic concentrations of As2O3

and Sb2O3 can be intensified by sub-apoptotic concen-
trations of BSO even in cell lines with reduced sensitivity
for conventional cytostatic drugs. Repression of As2O3-
and Sb2O3-induced apoptosis by the caspase inhibitor Z-
VAD-Fmk can be overcome by co-treatment of BSO.
Therefore, this substance may be useful in treatment of
malignancies in case of reduced sensitivity for apoptosis
induction by agents affecting Ψm or caspase activation.

Other known modulators of the glutathione redox
system showed these effects to a lower extent and
enhancement was not as consistent as with BSO, regard-
ing the different cell lines treated. Nevertheless, the effi-
cacy of enhancing As2O3- and Sb2O3-induced decrease of
Ψm not only by BSO but also to lower extend by MS and
ascorbic acid could be shown in this report. Ascorbic acid
[61] and MS [62] also were shown to enhance the effects
of As2O3 on mitochondria. In contradiction to our results,
ascorbic acid was shown to protect from As2O3-induced
toxicity [63]. However, evidence exists that ascorbic acid,
widely praised as an antioxidant [64], can act as an
oxidizing agent in the presence of ROS-inducing sub-
stances [65, 66]. Recently, promising results of a phase I/II
combined trial of As2O3 and ascorbic acid were presented
[47, 67–69].

Overall, we were able to decipher the mechanism of
Sb2O3-induced apoptosis and show that the basic mecha-
nisms involved are the same as described for As2O3. We
also have blocked three different enzymes involved in
oxidative stress detoxification (catalase, γ-glutamylcystein
synthetase, glutathione peroxidase) and shown that only
BSO, the inhibitor of the γ-glutamylcystein synthetase, was
highly synergistic with sub-apoptotic concentrations of
As2O3 or Sb2O3. The ability of specific drugs in clinically
applicable concentrations to enhance the apoptotic effects
of the two oxides in a synergistic way by may be helpful in
reduction of their toxicity by the optimization of their
doses. Moreover, further experiments may show how far
our results on synergistic actions may be transferable for
other combinations of drugs affecting the glutathione redox
system and conventional cytostatic agents.
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