Fires on trees

Abstract : We consider random dynamics on the edges of a uniform Cayley tree with $n$ vertices, in which edges are either inflammable, fireproof, or burt. Every inflammable edge is replaced by a fireproof edge at unit rate, while fires start at smaller rate $n^{-\alpha}$ on each inflammable edge, then propagate through the neighboring inflammable edges and are only stopped at fireproof edges. A vertex is called fireproof when all its adjacent edges are fireproof. We show that as $n\to \infty$, the density of fireproof vertices converges to $1$ when $\alpha>1/2$, to $0$ when $\alpha<1/2$, and to some non-degenerate random variable when $\alpha=1/2$. We further study the connectivity of the fireproof forest, in particular the existence of a giant component.
Type de document :
Pré-publication, Document de travail
2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00534386
Contributeur : Jean Bertoin <>
Soumis le : lundi 29 novembre 2010 - 19:42:11
Dernière modification le : jeudi 27 avril 2017 - 09:46:04
Document(s) archivé(s) le : samedi 3 décembre 2016 - 00:32:01

Fichiers

firesontrees.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00534386, version 2
  • ARXIV : 1011.2308

Collections

UPMC | INSMI | USPC | PMA

Citation

Jean Bertoin. Fires on trees. 2010. <hal-00534386v2>

Partager

Métriques

Consultations de
la notice

154

Téléchargements du document

108