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Interferometric imaging is a well established method to image phase objects

by mixing the image wavefront with a reference one on a CCD camera. It has

also been applied to fast transient phenomena, mostly through the analysis of

single interferograms. It is shown that for repetitive phenomena multiphase

acquisition brings significant advantages. A 1 MHz focused sound field

emitted by a hemispherical piezotransducer in water is imaged as an example.

Quantitative image analysis provides high resolution sound field profiles.

Pressure at focus determined by this method agrees with measurements from

a fiber-optic probe hydrophone. This confirms that multiphase interferometric

imaging can indeed provide quantitative measurements. c© 2010 Optical

Society of America

OCIS codes: 100.3175 Interferometric imaging, 110.4155 Multiframe image process-

ing, 120.5050 Phase measurement, 110.5086 Phase unwrapping, 100.3190 Inverse problems,

120.5475 Pressure measurement.

1. Introduction

Interferometric imaging is a common method to investigate phase objects (see for instance

[1–3] and ref. therein). Sound waves are examples of such objects. Compared to other imag-

ing methods such as Schlieren imaging (see for instance [4]), or stress induced birefringence

imaging [5], interferometric imaging has the advantage of providing directly quantitative
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measurements. Refractive index maps can be computed from those measurements, and in

the case of a sound wave, acoustic pressure can be determined. There are two methods to

reconstruct phase maps from recorded interferograms. Fringe analysis [2, 6] has the advan-

tage of requiring only one image (or two if fringe shift is used), but implies a reduced spatial

resolution and phase ambiguities. In multiphase (or phase shifting) interferometry, the map

of the optical phase is extracted from several images taken while changing the phase of the

reference beam. Applying this method to time dependent phenomena requires special adap-

tations to circumvent the slow acquisition rate of common cameras. When the phenomenon

is a steady sinusoidal oscillation with sufficient amplitude, information can be extracted from

time averaged images [7]. This is the case for the popular TV holography method [8]. For

fast transient phenomena, a time sampling is to be made by using pulsed light sources to get

images of the object at particular times. These quasi-instantaneous images registered by the

CCD camera are read on much longer times. Recording the complete evolution is possible

for repetitive transient phenomena by varying the delay between the laser pulse and the

triggered phenomenon. Depending on the time scale of the phenomenon under study, pulsed

light sources such as pulsed LED [9, 10], Q-switched lasers [11, 12], or even femtosecond

laser [13–16] have been used.

Regarding multiphase interferometric imaging for fast transient phenomena, the litterature

provides very few examples. Fringe analysis with tilted reference wavefronts seems to be the

widely used method, with the drawbacks mentionned previously. It is thus of interest to

investigate whether pulsed multiphase interferometry can provide phase maps, or phase shift

maps, for fast transient phase objects. In this article, it is shown that this method can indeed

be used in such cases, and provides accurate images with little sensitivity to optical defects.

The price to be paid is a longer acquisition process. As an example, a 1 MHz ultrasound pulse

produced in water by an hemispherical transducer is imaged. In section 2, the experimental

arrangement is described as well as the procedure to record several images with different

reference phases, at various time delays. In section 3, the corresponding data processing is

detailed. The phase maps are extracted, and unwrapped if phase shifts exceed ±π. Then an

inverse Abel transformation is applied to recover the local index of refraction, and hence the

sound pressure. The result is shown in section 5 and discussed in section 6.

2. Experimental setup and procedure

The experimental setup is sketched in Figure 1. It is based on a Jamin interferometer [17] with

a frequency doubled pulsed Nd:YAG laser as a light source. The Jamin interferometer was

chosen because of its simplicity and intrinsic stability. When separated, the two interfering

beams are close to each other and undergo similar disturbances from air turbulence and

encountered windows [18]. In the sample region, the two beams are 6 mm apart and are
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6 mm high. The lens L1 images the entrance rectangular diaphragm A on the sample, while

L2 makes an image of the sample onto the CCD camera. The laser (Big Sky Laser CFR200)

delivers 120 mJ, 8 ns long pulses with a repetition rate of 20 Hz, from which only about 1 µJ

pulses are derived by 4 vitrous reflections, and a d = 2 gray filter. The optical wavelength

used is λo = 532 nm. The laser is transversally highly multimode with a flat top profile. Its

effective coherence length, as measured with the interferometer by the fringe contrast versus

the optical path difference, was found to be 4 mm at half contrast. Hence the optical path

difference between the two beams was kept well below this value to get a good contrast. The

imaging camera (Andor LUCA R) is triggered synchronously with the pulsed laser. Used

with a 2×2 binning, it provides 280×502 pixel images of the 6×10.5 mm2 observed region.

Image resolution is discussed at the end of this section and is of about 20 µm.

For scanning the interferometer, two 4 mm thick parallel plates S1 are introduced in the

reference beam, with symmetrical tilts to avoid beam displacement (see Fig. 1). They are

allowed to rotate around an horizontal axis so that their tilt angle can be precisely controlled

around 5◦. This is achieved by moving a separator along the vertical axis. When changing its

heigth h by δh = 1 mm, the tilt angle is changed by 0.05◦, and the optical path by 0.14 µm.

Because of their thickness, the plates S1 also introduce a difference of about 4 mm in the

optical length of the two interferometer paths. In order to keep the optical path difference

smaller than the laser coherence length, a second pair of similar plates S2 is introduced in

the signal beam. Those are kept fixed. The phase shift between the two beams introduced

by these devices is approximated as:

ψ = ψ0 + 2π
h

a

(

1 + s
h

a

)

(1)

where a ≃ 3.7 mm and s ≃ 0.04 as determined by simple geometrical optics. In fact the two

parameters a and s depend somewhat on the incidence angle of the beams on the plates,

which cannot be measured easily. So they are left as fitting parameters as explained later.

The phase object to be imaged is an ultrasound wave pulse (central frequency 1.06 MHz,

duration 5 µs) emitted in water along the vertical axis by a piezoelectric hemisphere (inner

diameter 12 mm, outer diameter 16 mm, provided by Channel Industries Inc.). Water used

was filtered by reverse osmosis (Millipore Direct-Q ultrapure water system). The thickness

vibration mode of the transducer is driven by an RF amplifier (RF in Fig. 1) fed with

a function generator (Tektronix AFG3022) triggered from the laser command electronics

with an adjustable delay. The same generator also triggers image acquisition by the camera.

The sound velocity in water is 1480 m/s [19] at T = 293 K. The sound wavelength is

λs ≃ 1.4 mm and the sound pulse length about Ls = 7 mm. The sound pulse time of flight

from the transducer inner surface to its center is about 4 µs. In the experiment trigger is

given by the laser flash firing. The laser pulse takes place 170 µs later with a negligible
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jitter. The sound pulse is sent at time t varied from 157 to 169 µs by steps of 0.01 µs

(Nt = 1200 time steps). For each time step, images are taken for Np = 25 different values

of h, labeled h(1)...h(p)...h(Np). The corresponding values of ψ, labeled ψ(1)...ψ(p)...ψ(Np),

span an interval set to ψ(Np) − ψ(1) ≃ 3π. Raw data are a set of Np × Nt images labelled

with their time delay and phase step. Their recording takes about 30 minutes. For each

phase step, a reference image is first made by averaging Nav = 20 images without exciting

the transducer. These images of an undisturbed medium are later used as reference images for

subtraction of a background phase field. The order in which h and t are varied is important

to minimize interferometer drift effects. The sound pulse insertion time t is varied first at a

fixed phase step along a complete time series, before changing h to the next phase step.

3. Phase map computation

During data processing, pixels are treated independently. Hence there is no spatial resolution

loss due to image processing. Let I(t, p) be the intensity recorded for a given pixel for the

time index t and interferometer phase index p. It is expected that [1]:

I(t, p) = I0(t) [1 + C(t) cos(φ(t)− ψ(p))] (2)

where I0(t) is the average intensity, C(t) the fringe contrast, φ(t) the optical phase to be

measured for this particular pixel and ψ(p) is the interferometer phase given by equation

(1) for each value of h. To extract φ(t), one needs to fit the Np values I(t, p) with equation

(2) with five unknown parameters I0(t), C(t), φ(t)−ψ0, a, s. Because of the nonlinear term

(h/a)2 in equation (1), this involves a time consuming nonlinear fitting procedure. Actually

the parameters ψ0, a and s do not depend much on time and position. Thus they are only

computed for pixels of the reference images for which φ(t) is zero. Actually the variance of a

is a few percent. Hence, only a mean value over space of those three parameters is computed

and used in the next steps of the process. In the later images only three parameters are to be

determined for each pixel, namely I0(t), C(t) cos(φ(t)) and C(t) sin(φ(t)). This can be done

with a fast linear method [1, 20] and takes about 1 s for the entire image of one time step.

The value φ(t) determined in this way is within the limits −π, π and undergoes possibly

2π phase jumps. The first time step is chosen so that the phase shift amplitude introduced

by the sound field is less than π. The phase unwrapping is realized in time for each pixel by

removing phase jumps |φ(t+1)−φ(t)| larger than π. This is possible only if time steps verify

the sampling condition, i.e. |φ(t + 1) − φ(t)| < π − 2δφ, where δφ is the phase noise. This

condition actually sets the value of the time step and consequently the number of steps in

the experiment. Usually phase unwrapping is made spatially for each time on the 2D-maps,

and then made continuous in time. Although many algorithms have been published on this

topic [21], it is not a trivial problem. Unwrapping the phase in time for each pixel separately
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is much easier and faster. The continuity in space for the phase shift map φ(t, x, z)−φ(0, x, z)
is obtained automatically, because it starts from 0 everywhere and has no later phase jumps.

4. From phase map to radial sound field

The phase φ is assumed to be related to the refractive index by a simple integration along

the y-axis parallel to the beam direction in the sample (see Figure 2). More precisely, for

each pixel (x, z), one takes into account the difference δn(x, z, y) between the perturbed

index n(x, z, y) seen by the signal beam at point (x, y, z) and the refractive index n0 of the

unperturbed fluid seen by the reference beam on its parallel path. In our case the sound

field is rotationnally invariant around the hemisphere axis z so that δn is a function of z

and r =
√
x2 + y2 only. Then the phase map results from an integration of the refractive

index variations over the path of the beam from the entrance window (y = −l/2), to the

exit window (y = l/2):

φ(x, z) =
2π

λ

∫ l/2

−l/2
dy δn(

√

x2 + y2, z). (3)

Note however that δn is identically 0 after some finite distance from the center (dashed circle

on Figure 2) because there is still no sound there. Hence equation (3) can be rewritten as:

φ(x, z) =
2π

λ

∫

∞

−∞

dy δn(
√

x2 + y2, z). (4)

which is the Abel transform of the δn(r, z) map. Conversely radial refractive index profiles

can be retrieved from phase maps via an inverse Abel tranform. To make that part easier, the

camera lines and the signal light beam direction Oy have been carefully aligned parallel to

the hemisphere basis. The abscissa x0 of the hemisphere axis is determined as the symmetry

axis of the projected sound field. Then the Abel inversion of the phase is perfomed for each

line z on φ(z, x− x0) using the algorithm proposed by [22]. The data are fitted with splines

over successive sets of 20 pixels.

Abel inversion procedure is justified provided that light rays do not suffer any significant

deviation during their propagation through the studied sample. More precisely the Raman-

Nath condition should be fulfilled, i.e. deviation of a light beam from a straight line over

the sample diameter D due to the refractive index gradient should be less than the optical

resolution δx. Let λs be the sound wavelength, λo the laser light wavelength, φm the maximum

phase accumulated across the sample. Then the condition amounts to:

φm <
δxλs
Dλo

. (5)

With the values λo = 0.5 µm, λs = 1.4 mm, δx ≃ λs/10, condition (5) puts a rather large

limit on φm, about 50. A second condition is that all rays collected by the imaging optics

5



and originating from a given point of the object undergo the same φ retardation. Maximum

transverse extension of such a ray bundle at the exit of the sample, i.e. at D/2, should be less

than the characteristic length over which φ varies, typically λs. If θ is the aperture angle of the

optics, this is true if θD/2 < λs. In our case, D ≃ 16 mm. This leads to the condition θ < 0.2.

The numerical aperture of the imaging lens is about θ = 0.03 and fulfills the condition. In

other respects, this numerical aperture should be large enough to ensure the desired optical

resolution δx. The current aperture provides a resolution δx = 1.2λo/θ ≃ 20 µm.

The acoustic pressure field is proportional to δn and is computed from the relation:

δP (x, z) = (n(x, z, y)− n0)/(∂n/∂P ) (6)

where the water piezo-optic constant is (∂n/∂P ) ≃ 1.4× 10−4MPa−1 [23, 24].

5. An example of ultrasound pulse image

In Figures 3 and 4, three stages are shown from interference images to pressure map when

the sound pressure is at its maximum at the focus. On image 3.a, severe optical defects are

clearly visible : dust particles, diffraction by the hemisphere rim. These defects are nearly

completely washed out in the phase map 3.b. On the contrary, they could be seen obviously

on the contrast map. This appears to be the main advantage of the multiphase method, the

fitted phase being only weakly sensitive to intensity fluctuations. The signal to noise is good

enough to yield an acceptable inverse Abel transform, from which the pressure is deduced

using equation 6. Its radial profile is shown in Figure 4.a, as well as its time variation at the

focus when the sound pulse is going through (Figure 4.b). While the tranducer is excited at

its resonance frequency by a constant amplitude sinusoidal burst of 5 periods, its response

increases in time as expected from a driven damped harmonic oscillator. The oscillation is

actively damped during the last oscillation. This explains the time profile of the sound pulse

(Figure 4.b).

This imaging method thus provides a way to investigate in detail the focusing properties

of this type of transducer.

6. Discussion

Discussions of errors in multiphase interferometry may be found in [1, 2, 20, 25]. Although

written for static interferometric imaging, they apply equally well to the pulsed case. They

show that the multiphase technique brings two benefits. The first one is to avoid system-

atic errors coming from imperfectly scanned phase ψp when predetermined schemes such

as (−π/2, 0, π/2), (−π/2, 0, π/2, π) or (−π,−π/2, 0, π/2, π) are used [26]. Here the phase is

not scanned with an a priori scheme. Its value is extracted from the series of unperturbed

images at t = 0. In equation (1) the slope 2π/a of the actual phase as a function of the
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scanning parameter h is left free, and a non linearity s is permitted by the fitting process.

Hence the only remaining errors may come from drifts in time of the interferometer. Since

in the experiment, changing the delay is ten time faster than changing the phase, images

are taken for a complete time series at a fixed reference phase. This takes about 60 s. Then

the reference phase is changed to the next value. In this way a possible drift in time of the

interferometer geometry is in some way taken into account by the fitting process of a and s in

formula (1). This scanning procedure, i.e. ‘time first, phase second’, is thus to be preferred.

The second benefit from multiphase technique results simply from the larger number of

data (here 25 images compare to a minimum of 3 to extract the phase, and compared to

1 for fringe analysis). This statistical improvement is thus
√

25/3 and
√
25 respectively.

More quantitatively, let δI be the pixel noise for one image (including laser fluctuations and

detection noise):

δφ =
δI/I0
√

CNp

. (7)

Here δI/I0 ≃ 0.1, C ≃ 1, Np = 25. This gives δφ ≃ 0.02, or λ/300 in a more commonly used

unit.

Of course, the imaging technique has two well-known advantages compared to in situ point

by point pressure measurement with a pressure probe. It provides parallel measurements at

a large number of locations and times. This quality is reflected obviously by the large size

of the generated data (GBytes). It also provides this information in a non invasive and non

perturbative way.

Nevertheless one may question the accuracy of the pressure field determined in this way.

A quantitative analysis of the errors is not easy, in particular due to the lateral averaging

brought by the diffraction on formula (3). Also the phase field is not always determined up to

a region where φ = 0, inducing some error in the inverse Abel transform. Thus, to check the

accuracy, a direct comparison was made with a fiber-optic probe hydrophone for the pressure

at the focus. A fiber-optic probe hydrophone [23, 27] determines the liquid refractive index

modulation, by measuring the reflection coefficient R at the tip of an optical fiber. Reflection

coefficient R is given by the Fresnel formula:

R =

[

nf − (nw + δnw)

nf + (nw + δnw)

]2

(8)

where nf , nw are the optical fiber and water refractive indices. Water refractive index modu-

lations δnw due to sound waves are retrieved from those of R, after averaging over typically

100 bursts. Corrections due to the non zero compressibility of the fiber core are taken into

account by:

δnf = δnw
∂nf/∂P

∂nw/∂P
. (9)
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The derivatives of refractive indices with respect to pressure are ∂nw/∂P ≃ 1.4×10−4 MPa−1

[28] and ∂nf/∂P ≃ 1.5× 10−5 MPa−1 [29]. The correction amounts to about 7 %.

The physical quantity probed by the fiber-optic probe hydrophone and the interferometer

being the same, a direct comparison can be made [30]. The fiber tip was set 0.12 mm

above the piezo hemisphere center. This position was determined accurately by the images

acquired during the measurement. Refractive index variations at the same point were also

computed from interferometric measurements, taken with the hydrophone removed. Results

are presented in figure 5. Both measurements are compatible within 5 %. This is to be

compared to the reproductibility of the hydrophone measurements (typically 10 %), and the

uncertainties in the inverse Abel transform due to the incomplete phase maps (which can

amount to 5 %). Hence the agreement is satisfactory.

7. Conclusion

It appears that multiphase interferometric imaging can be easily applied to repetitive fast

transient phenomena for which optical phase is a good observable. It provides quickly ex-

tensive data compared to point by point measurements. We have shown in the case of a

sound wave that these data are quantitatively reliable. The multiphase feature brings a bet-

ter immunity to optical defects in the images and an improved signal to noise ratio. Phase

unwrapping in time appears as a very simple and robust algorithm. The longer acquisition

time was found acceptable. Hence this method could be more widely used than it has been

up to now to study fast transient phenomena.
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Captions

Figure 1: Experimental setup. b: attenuated laser beam, tr1: trigger pulse sent by the laser

170 µs before the laser pulse, AFG: function generator, tr2: trigger pulse for the CCD camera,

PT: piezo transducer driven by the amplifier RF, S1: scanning plates for the interferometer,

S2: compensating plates. The inset shows how the optical path for the beam b1 is changed

by moving the separator of S1 plates by h.

Figure 2: Measured phase φ(x, z) results from the integration of the optical phase shift

over the beam path in the cell. Dashed circle with diameter D: limit of the sound field.

Figure 3 : a) Image of the interference field above the piezo hemisphere. Dash-dotted white

line shows its axis and the dashed line outlines the profile of its meridian section. b) Phase

field determined from 25 similar images with stepped optical phase. Non transparent regions

of the field of view appear as random numbers.

Figure 4 : a) Pressure map computed from the phase map Fig. 3.b by Abel inversion from

pixel 1 to 414. Area from x = 414 to x = 500 are filled by symmetry. b) Time variations

of the computed pressure at the focus while the sound pulse goes through (solid line). The

transducer excitation voltage is also plotted (dashed line), starting at t = 0.

Figure 5 : Comparison of refractive index modulations obtained from the fiber-optic probe

hydrophone (gray continuous line) and from inverse Abel transform of the phase map (dark

dashed line).
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