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Dirac mass dynamics in a multidimensional nonlocal parabolic

equation

Alexander Lorz∗ Sepideh Mirrahimi † Benôıt Perthame †‡

November 8, 2010

Abstract

Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac
masses in the limit of small diffusion. Is it possible to describe the dynamics of the lim-
iting concentration points and of the weights of the Dirac masses? What is the long time
asymptotics of these Dirac masses? Can several Dirac masses co-exist?

We will explain how these questions relate to the so-called ”constrained Hamilton-Jacobi
equation” and how a form of canonical equation can be established. This equation has been
established assuming smoothness. Here we build a framework where smooth solutions exist
and thus the full theory can be developed rigorously. We also show that our form of canonical
equation comes with a structure of gradient flow.

Numerical simulations show that the trajectories can exhibit unexpected dynamics well
explained by this equation.

Our motivation comes from population adaptive evolution a branch of mathematical
ecology which models darwinian evolution.

1 Motivation

The nonlocal Lotka-Volterra parabolic equations arise in several areas such as ecology, adaptative
dynamics and as limits of stochastic individual based models in the limit of infinite population.
The simplest example assumes global interactions between individuals with a trait x and reads

∂tnǫ − ǫ∆nǫ =
nǫ
ǫ
R
(

x, Iǫ(t)
)

, t > 0, x ∈ R
d, (1.1)

with a nonlinearity driven by the integral term

Iǫ(t) =

∫

Rd

ψ(x)nǫ(t, x)dx. (1.2)

Another and more interesting example is with local interactions

∂tnǫ(t, x) =
1

ǫ
nǫ(t, x)

(

r(x)−
∫

Rd

C(x, y)nǫ(t, y) dy

)

+ ǫ∆nǫ(t, x). (1.3)
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1 MOTIVATION

We denote by n0ǫ ≥ 0 the initial data.
These are called ’mutation-competition’ models because the Laplace term is used for model-

ing mutations in the population. Competition is taken into account in the second model by the
competition kernel C(x, y) ≥ 0 and in the first model by saying that R can be negative for Iǫ
large enough (it a measure of how the total population influences birth and death rates). Such
models can be derived from stochastic individual based models in the limit of large populations,
[9, 6, 7]. There is a large literature on the subject, in terms of modeling and analysis, we just
refer the interested reader to [12, 13, 23, 26].

We have already normalized the model with a small positive parameter ε since it is our goal
to study the behaviour of the solution as ε → 0. The interesting qualitative outcome is that
solutions concentrate as Dirac masses

nǫ(t, x) ≈ ρ̄(t)δ
(

x− x̄(t)
)

.

For equation (1.1), we can give an intuitive explanation; in this limit, we expect that the relation
n(t, x)R

(

x, I(t)
)

= 0 holds. In dimension 1 and for x 7→ R(x, I) monotonic, there is a single
point x = X(I) where R will not vanish and, consequently, where n will not vanish. A priori
control of the total mass on n from below implies the result with x̄(t) = X(I(t)).
In several studies, we have established these singular limits with weak assumptions [3, 24].

A main new concept arises in this limit, the constrained Hamilton-Jacobi equation introduced
in [13] which occurs by some kind of real phase WKB ansatz (as for fronts propagations in
[16, 15, 2])

nǫ(t, x) = euǫ(t,x)/ǫ. (1.4)

Here we have in mind the simple example of Dirac masses approximated by gaussians

δ(x − x̄) ≈ 1√
2πǫ

e−|x−x̄|2/2ǫ = e(−|x−x̄|2−ǫln(2πǫ))/2ǫ

It is much easier to describe the limit of −|x− x̄|2− ǫln(2πǫ)! Dirac concentration points are un-
derstood as maximum points of uǫ(t, x) in (1.4). As it is well understood, these Hamilton-Jacobi
equations develop singularities in finite time [1, 14, 19] which is a major technical difficulty both
for proving the limit and for analyzing properties of the concentration points x̄(t).

This method in [13] of using ǫ ln(nǫ) to prove concentration has been followed in several sub-
sequent studies. For long time asymptotics (and not ǫ → 0 but the two issues are connected as
we explain in section 2) it was introduced in [10] and used in [27, 26]. More recently in [8] the
authors come back on the Hamilton-Jacobi equation and prove that it makes sense still with
weak assumptions for several nonlocal quantities Ik =

∫

ψknǫ(t, x)dx which can be characterized
in the limit.

Here we take the counterpart and develop a framework where we can prove smoothness of the
various quantities arising in the theory. This opens up the possibility to address many questions
that seem impossible to attain directly
• Do the Dirac concentrations points appear spontaneously at their optimal location or do they
move regularly?
• In the later case, is there a differential equation on the concentration point x̄(t)? It follows
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2 A SIMPLE EXAMPLE: NO MUTATIONS

from regularity that we can establish a form of the so-called canonical equation in the language
of adaptive dynamics [12, 11]. This equation has been established assuming smoothness in [13],
in our framework it holds true.
• In higher dimensions, why is a single Dirac mass naturally sustained (and not the hypersurface
R(·, I) = 0 for instance)? The canonical equation enforces constraints on the dynamics which
give the explanation.
• What is the long time behaviour of the concentration points x̄(t)? A simple route is that the
canonical equation comes with the structure of a gradient flow.

We develop the theory separately for the simpler case of global interactions model (1.1) and
or the global interaction model (1.3). For global interactions we rely on assumptions stated in
section 3 and we give all the details of the proofs in the three subsequent sections. We illustrate
the results with numerical simulations that are presented in section 7. We give several extensions
afterwards; in section 8 we treat the case with non-constant diffusion, and finally the case of
local interactions in section 9.

2 A simple example: no mutations

The Laplace term in the asymptotic analysis of (1.1) and (1.3) is at the origin of several as-
sumptions and technicalities. In order to explain our analysis in a simpler framework, we begin
with the case of the two equations without mutations set for t > 0, x ∈ R

d,

∂tn = nR
(

x, I(t)
)

, I(t) =

∫

Rd

ψ(x)n(t, x)dx. (2.1)

∂tn(t, x) = n(t, x)

(

r(x)−
∫

Rd

C(x, y)n(t, y) dy

)

:= n(t, x)R
(

x, I(t, x)
)

. (2.2)

Also, we give a formal analysis, that shows the main ideas and avoids writing a list of assump-
tions; those of the section 3 and 9 are enough for our purpose.
In both cases one can easily see the situation of interest for us. The models admit a continuous

family of singular, Dirac masses, steady states parametrized by y ∈ R
d and the question is to

study their stability and, when unstable, how the dynamics can generate a moving Dirac mass.
The Dirac steady states are given by

n̄(x; y) = ρ(y)δ(x − y).

The total population size ρ(y) is defined in both models by the constraint

R
(

y, I(y)
)

= 0,

with respectively for (2.1) and (2.2)

I(y)) = ψ(y)ρ(y), resp. I(y) = ρ(y)C(y, y).

A monotonicity assumption in I for model (2.1), namely RI(x, I) < 0 shows uniqueness of I(y)
for a given y. In case of (2.2) it is necessary that r(y) > 0 for the positivity of ρ(y).
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2 A SIMPLE EXAMPLE: NO MUTATIONS

In both models a ’strong’ perturbation in measures is stable, i.e. only on the weight; for
n0 = ρ0δ(x− y), the solution is obviously n(t, x) = ρ(t)δ(x − y) with

d

dt
ρ(t) = ρ(t)R

(

y, ψ(y)ρ(t)
)

, resp.
d

dt
ρ(t) = ρ(t)[r(y)− ρ(t)C(y, y)],

and

ρ(t) −→
t→∞

ρ(y).

This simple remark explains why, giving I now, the hypersurface {x, R(x, I) = 0} is a natural
candidate for the location of a possible Dirac curve (see the introduction).

Apart from this stable one dimensional manifold, the Dirac steady states are usually unstable
by perturbation in the weak topology. A way to quantify this instability is to follow the lines of
[13] and consider at t = 0 an exponentially concentrated initial data

n0(x) = eu
0
ǫ (x)/ǫ −→

ǫ→0
ρ(x̄0)δ(x − x̄0).

It is convenient to restrict our attention to u0ǫ uniformly concave, having in mind the gaussian
case mentioned in the introduction. Then, ǫ measures the deviation from the initial Dirac state
and to see motion it is necessary to consider long times as t/ǫ or, equivalently, rescale the
equation as

ǫ ∂tnǫ = nǫR
(

x, Iǫ(t, x)
)

,

and our goal is to prove that

nǫ(t, x) −→
ǫ→0

n̄(t, x) = ρ̄(t)δ
(

x− x̄(t)
)

.

Also the deviation to a Dirac state turns out to stay at the same size for all times and we can
better analyze this phenomena using the WKB ansatz (1.4). Indeed, uǫ satisfies the equation

∂tuǫ = R
(

x, Iǫ(t, x)
)

.

As used by [10], because u0 is concave, assuming x 7→ R(x, Iǫ(t, x)) is also concave (this only
relies on assumptions on the data), we conclude that uǫ(t, ·) is also concave and thus has a unique
maximum point x̄ǫ(t). The Laplace formula shows that, with x̄(t) the strong limit of x̄ǫ(t),

nǫ(t, x)
∫

Rd nǫ(t, x)dx
−→
ǫ→0

δ
(

x− x̄(t)
)

.

With some functional analysis, we are able to pass to the strong limit in Iε and uǫ. Despite
its nonlinearity, we find the same limiting equation,

∂tu = R
(

x, I(t, x)
)

, u(t = 0) = u0. (2.3)

Still following the idea introduced in [13], we may see I(t, x) or ρ(t) as a Lagrange multiplier for
the constraint

max
Rd

u(t, x) = 0 = u
(

t, x̄(t)
)

, (2.4)
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3 GLOBAL COMPETITION: ASSUMPTIONS AND MAIN RESULTS

which follows from the a priori bound 0 < ρ(t) ≤ ρM < ∞. The mathematical justification of
these developments is rather easy here. For model (2.1) it uses a BV estimate proved in [4].
For model (2.2) one has to justify persistence (that is ρǫ stays uniformly positive) and strong
convergence of ρǫ(t). All this work is detailed below with the additional Laplace terms.
The constraint (2.4) allows us to recover the ’fast’ dynamics of I(t) and ρ(t). Indeed, combined

with (2.3), it yields

R
(

x̄(t), I(t)
)

= 0, resp. R
(

x̄(t), I(t, x̄(t))
)

= 0. (2.5)

Assuming regularity on the data, u(t, x) is three times differentiable and the constraint (2.4)
also gives

∇u
(

t, x̄(t)
)

= 0.

Differentiating in t, we establish the analogue of the canonical equations in [11] (see also [5, 13,
27, 21])

˙̄x(t) =
(

−D2u
(

t, x̄(t)
))−1

.DxR
(

x̄(t), Ī(t, x̄(t))
)

, x̄(0) = x̄0, (2.6)

(in the case of model (2.2), this means the derivative with respect to x in both places). Inverting
I from the identities (2.5) gives an autonomous equation.

This differential equation has the structure of a gradient flow and this makes easy to analyze
its long time behaviour, that is equivalent to know what are the stable Dirac states for the weak
topology; the so-called Evolutionary attractor or Convergence Stable Strategy in the language
of adaptive dynamics [12, 27]. Eventhough this is less visible, it also carries regularity on the
Lagrange multiplier ρ(t) which helps for the functional analytic work in the case with muta-
tions. Another use of (2.6) is to explain why, generically, only one pointwise Dirac mass can be
sustained; as we explained earlier, the equation on ˙̄x(t) also gives the global unknown I(t) by
coupling with (2.5) and this constraint is very strong. See section 7 for an example.

To conclude this quick presentation, we notice that the time scale (in ǫ here) has to be precisely
adapted to the specific initial state under consideration. The initial state itself also has to be
’exponentially’ concentrated along with our construction; this is the only way to observe the
regular motion of the Dirac concentration point. This is certainly implicitly used in several
works where such a behaviour is displayed, at least numerically. Of course, there are many
other ways to concentrate the initial state with a ’tail’ covering the full space so as to allow that
any trait x can emerge; these are not covered by the present analysis.

3 Global competition: assumptions and main results

As used by [10], concavity assumptions on the function uǫ in (1.4) are enough to ensure concen-
tration of nǫ(t, ·) as a single Dirac mass. We follow this line and make the necessary assumptions.
We start with assumptions on ψ:

0 < ψm ≤ ψ ≤ ψM <∞, ψ ∈W 2,∞(Rd). (3.1)

The assumptions on R ∈ C2 are that there is a constant IM > 0 such that (fixing the origin
in x appropriately)

max
x∈Rd

R(x, IM ) = 0 = R(0, IM ), (3.2)
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3 GLOBAL COMPETITION: ASSUMPTIONS AND MAIN RESULTS

−K1|x|2 ≤ R(x, I) ≤ K0 −K1|x|2, for 0 ≤ I ≤ IM , (3.3)

−2K1 ≤ D2R(x, I) ≤ −2K1 < 0 as symmetric matrices for 0 ≤ I ≤ IM , (3.4)

−K2 ≤
∂R

∂I
≤ −K2, ∆(ψR) ≥ −K3. (3.5)

At some point we will also need that (uniformly in 0 ≤ I ≤ IM )

D3R(·, I) ∈ L∞(Rd). (3.6)

Next the initial data n0ǫ has to be chosen compatible with the assumptions on R and ψ. We
require that there is a constant I0 such that

0 < I0 ≤ Iǫ(0) :=

∫

Rd

ψ(x)n0ǫ (x)dx < IM , (3.7)

that we can write

n0ǫ = eu
0
ǫ/ǫ, with u0ǫ ∈ C2(Rd) (uniformly in ǫ),

and we assume uniform concavity on uǫ too. Namely, there are positive constants L0, L0, L1, L1

such that

−L0 − L1|x|2 ≤ u0ǫ (x) ≤ L0 − L1|x|2, (3.8)

−2L1 ≤ D2u0ǫ ≤ −2L1. (3.9)

For Theorems 3.2 and 3.3 we also need that

D3u0ǫ ∈ L∞(Rd) componentwise uniformly in ǫ, (3.10)

n0ǫ(x) −→
ǫ→0

ρ̄0 δ
(

x− x̄0
)

weakly in the sense of measures. (3.11)

Next we need to restrict the class of initial data to fit with R through some compatibility
conditions

4L
2
1 ≤ K1 ≤ K1 ≤ 4L2

1. (3.12)

In the concavity framework of these assumptions, we are going to prove the following

Theorem 3.1 (Convergence) Assume (3.1)-(3.5), (3.7)-(3.9) and (3.12). Then for all T > 0,
there is a ǫ0 > 0 such that for ǫ < ǫ0 and t ∈ [0, T ], the solution nǫ to (1.1) satisfies,

0 < ρm ≤ ρǫ(t) :=

∫

Rd

nǫ dx ≤ ρM + Cǫ2, 0 < Im ≤ Iǫ(t) ≤ IM + Cǫ2 a.e. (3.13)
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4 A-PRIORI BOUNDS ON ρǫ, Iǫ AND THEIR LIMITS

for some constant ρm, Im. Moreover, Iε is uniformly bounded in BV (R+) and after extraction
of a subsequence Iǫ

Iǫ(t) −→
ǫ→0

Ī(t) in L1
loc(R

+), Im ≤ Ī(t) ≤ IM a.e., (3.14)

and Ī(t) is non-decreasing. We also have weakly in the sense of measures for a subsequence nǫ

nǫ(t, x) −→
ǫ→0

ρ̄(t) δ
(

x− x̄(t)
)

. (3.15)

Finally, the pair
(

x̄(t), Ī(t)
)

also satisfies

R
(

x̄(t), Ī(t)
)

= 0 a.e. (3.16)

In particular, there can be an initial layer on Iǫ that makes a possible rapid variation of Iǫ at
t ≈ 0 so that the limit satisfies R(x̄0, I(0+)) = 0, a relation that might not hold true, even with
O(ǫ), at the level of nǫ.

Theorem 3.2 (Form of canonical equation) Assume (3.1)–(3.12). Then, x̄(·) belongs to
W 1,∞(R+;Rd) and satisfies

˙̄x(t) =
(

−D2u
(

t, x̄(t)
))−1

.∇xR
(

x̄(t), Ī(t)
)

, x̄(0) = x̄0, (3.17)

with u(t, x) a C2-function given below in (5.8), D3u ∈ L∞(Rd), and initial data x̄0 given in
(3.11). Furthermore, we have Ī(t) ∈W 1,∞(R+).

We insist that the Lipschitz continuity at t = 0 is with the value I(0) = limt→0+ I(t) 6=
limǫ→0 I

0
ǫ ; the equality might hold if the initial data is well-prepared.

Theorem 3.3 (Long-time behaviour) With the assumptions (3.1)- (3.12), equation (3.17)
has a structure of gradient flow, the limit Ī(t) is increasing and

Ī(t) −→
t→∞

IM , x̄(t) −→
t→∞

x̄∞ = 0. (3.18)

Finally, the limit is identified by ∇R(x̄∞ = 0, IM ) = 0 (according to (3.2)).

It is an open question to know if the full sequence converges. This is to say if the solution
to the Hamilton-Jacobi equation is unique. The only uniqueness case in [4] assumes a very
particular form of R(·, ·).

4 A-priori bounds on ρǫ, Iǫ and their limits

Here, we establish the first statements of Theorem 3.1. As in [3] we can show with (3.2) and
(3.5) that Iǫ ≤ IM + Cǫ2. With (3.1) (the bounds on ψ), we also have that

ρǫ(t) ≤ IM/ψm + Cǫ2. (4.1)

To achieve the lower bound away from 0 is more difficult. We multiply the equation (1.1) by
ψ and integrate over Rd, to arrive at

d

dt
Iǫ(t) =

1

ǫ

∫

ψRnǫ dx+ ǫ

∫

nǫ∆ψ dx. (4.2)
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4 A-PRIORI BOUNDS ON ρǫ, Iǫ AND THEIR LIMITS

We define Jǫ(t) :=
1

ǫ

∫

ψRnǫ dx and calculate its time derivative

d

dt
Jǫ(t) =

1

ǫ

∫

ψR

(

1

ǫ
Rnǫ + ǫ∆nǫ

)

dx+
1

ǫ

∫

ψnǫ
∂R

∂I

(

Jǫ + ǫ

∫

nǫ∆ψ dy

)

dx.

So we estimate it from below using (3.1), (3.5) and (4.1) by

d

dt
Jǫ(t) ≥ −C +

1

ǫ
Jǫ (t)

∫

ψnǫ
∂R

∂I
dx,

and we may bound the negative part of Jǫ by

d

dt
(Jǫ(t))− ≤ C − K2

ǫ
Iǫ(t)(Jǫ(t))−. (4.3)

Now for ǫ small enough, we can estimate Iǫ(t) as

Iǫ(t) = Iǫ(0) +

∫ t

0
İǫ(s) ds = Iǫ(0) +

∫ t

0
Jǫ(s) ds +O(ǫ) ≥ I0/2−

∫ t

0
(Jǫ(s))− ds, (4.4)

and plugging this in the estimate (4.3) leads to

d

dt
(Jǫ(t))− ≤ C − K2

ǫ

(

I0/2−
∫ t

0
(Jǫ(s))− ds

)

(Jǫ(t))−.

Now for T > 0 fixed. If there exists T ′ ≤ T such that
∫ T ′

0 (Jǫ(s))− ds = I0/4, then we have

d

dt
(Jǫ(t))− ≤ C − K2

ǫ

I0

4
(Jǫ(t))−, 0 ≤ t ≤ T ′.

Thus we obtain

(Jǫ(t))− ≤ (Jǫ(t = 0))−e
−K2I0t/(4ǫ) +

4Cǫ

K2I0

(

1− e−K2I0t/(4ǫ)
)

.

Then for ǫ < ǫ0(T ) small enough, we conclude that such a T ′ does not exist i.e.

∫ T

0
(Jǫ(s))− ds ≤ I0/4. (4.5)

So from (4.4), we obtain

Iǫ(t) ≥ I0/4, (Jǫ(t))− −→
ǫ→0

0 a. e. in [0, T ]. (4.6)

This also gives the lower bound ρm ≤ ρǫ(t) with ρm := I0/(4ψM ).

Finally, the estimate (4.5) and the L∞ bounds on Iǫ(t) give us a local BV bound, which will
eventually allow us to extract a convergent subsequence for which (3.14) holds. The obtained
limit function Ī(t) is non-decreasing because in the limit the right-hand side of (4.2) is almost
everywhere non-negative.
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5 ESTIMATES ON Uǫ AND ITS LIMIT U

5 Estimates on uǫ and its limit u

In this section we introduce the major ingredient in our study, the function uǫ := ǫ ln(nǫ). We
calculate

∂tnǫ = nǫ∂tuǫ/ǫ, ∇nǫ = nǫ∇uǫ/ǫ, ∆nǫ = nǫ∆uǫ/ǫ+ nǫ|∇uǫ|2/ǫ2.

Plugging this in (1.1), we obtain that uǫ satisfies the Hamilton-Jacobi equation

{

∂tuǫ = |∇uǫ|2 +R(x, Iǫ(t)) + ǫ∆uǫ, x ∈ R
d, t ≥ 0,

uǫ(t = 0) = ǫ ln(n0ǫ) := u0ǫ .
(5.1)

Our study of the concentration effect relies mainly on the asymptotic analysis of the family
uǫ and in particular on its uniform regularity. We will pass to the (classical) limit in (5.1), and
this relies on the

Lemma 5.1 With the assumptions of Theorem 3.1, we have for t ≥ 0,

−L0 − L1|x|2 − ǫ2dL1t ≤ uǫ(t, x) ≤ L0 − L1|x|2 +
(

K0 + 2dǫL1

)

t, (5.2)

−2L1 ≤ D2uǫ(t, x) ≤ −2L1. (5.3)

This Lemma relies on a welknown (and widely used) fact that the Hamilton-Jacobi equations
have a regime of regular solutions with concavity assumptions, [1, 19].

5.1 Quadratic estimates on uǫ

First we achieve an upper bound, defining uǫ(t, x) := L0 − L1|x|2 + C0(ǫ)t with C0(ǫ) := K0 +
2dǫL1, we obtain thanks to (3.3), (3.8) and (3.12) that uǫ(t = 0) ≥ u0ǫ and

∂tuǫ − |∇uǫ|2 −R(x, Iǫ)− ǫ∆uǫ ≥ C0(ǫ)− 4L
2
1|x|2 −K0 +K1|x|2 − 2dǫL1 ≥ 0.

Next for the lower bound, we define uǫ(t, x) := −L0 − L1|x|2 − ǫC1t with C1 := 2dL1, we have

uǫ(t = 0) ≤ u0ǫ and

∂tuǫ − |∇uǫ|2 −R(x, Iǫ)− ǫ∆uǫ ≤ −ǫC1 − 4L2
1|x|2 +K1|x|2 + ǫ2dL1 ≤ 0.

This concludes the proof of the first part of Lemma 5.1 i.e. inequality 5.2.

5.2 Bounds on D2uǫ

We show that the semi-convexity and the concavity of the initial data is preserved by equation
(5.1). For a unit vector ξ, we use the notation uξ := ∇ξuǫ and uξξ := ∇2

ξξuǫ to obtain

uξt = Rξ(x, I) + 2∇u · ∇uξ + ǫ∆uξ,

uξξt = Rξξ(x, I) + 2∇uξ · ∇uξ + 2∇u · ∇uξξ + ǫ∆uξξ.
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5.3 Passing to the limit 5 ESTIMATES ON Uǫ AND ITS LIMIT U

The first step is to obtain a lower bound on the second derivative i.e. semi-convexity. It can
be obtained in the same way as in [24]: Using |∇uξ| ≥ |uξξ| and the definition w(t, x) :=
minξ uξξ(t, x) leads to the inequality

∂tw ≥ −2K1 + 2w2 + 2∇u · ∇w + ǫ∆w.

By a comparison principle and assumptions (3.9), (3.12), we obtain

w ≥ −2L1. (5.4)

At every point (t, x) ∈ R
+ × R

d, we can choose an orthonormal basis such that D2uǫ(t, x) is
diagonal because every symmetric matrix can be diagonalized by an orthogonal matrix. So we
can estimate the mixed second derivatives in terms of uξξ. Especially we have |∇uξ| = |uξξ|.
This enables us to show concavity in the next step. We start from the definition w(t, x) :=

maxξ uξξ(t, x) and the inequality

∂tw ≤ −2K1 + 2w2 + 2∇u · ∇w + ǫ∆w.

By a comparison principle and assumptions (3.9), (3.12), we obtain

w ≤ −2L1. (5.5)

From the space regularity gained and (3.9), we obtain ∇uǫ locally uniformly bounded and
thus from (5.1) for ǫ < ǫ0 that ∂tuǫ is locally uniformly bounded.

5.3 Passing to the limit

From the regularity obtained in section 5.2, it follows that we can extract a subsequence such
that, for all T > 0,

uǫ(t, x) −→
ǫ→0

u(t, x) strongly in L∞
(

0, T ;W 1,∞
loc (Rd)

)

,

uǫ(t, x) −−⇀
ǫ→0

u(t, x) weakly-* in L∞
(

0, T ;W 2,∞
loc (Rd)

)

∩W 1,∞
(

0, T ;L∞
loc(R

d)
)

,

and

−L0 − L1|x|2 ≤ u(t, x) ≤ L0 − L1|x|2 +K0t, −2L1 ≤ D2u(t, x) ≤ −2L1 a.e. (5.6)

u ∈W 1,∞
loc (R+ × R

d). (5.7)

Notice that the uniform W 2,∞
loc (Rd) regularity also allows to differentiate the equation in time,

and find
∂2

∂t2
u =

∂

∂I
R
(

x, I(t)
)dI(t)

dt
+ 2∇u.[∇R(x, I(t)) +D2u.∇u].

This is not enough to have C1 regularity on u.

10



6 CANONICAL EQUATION, TIME ASYMPTOTIC

We also obtain that u satisfies in the viscosity sense (modified as in [4, 24]) the equation







∂
∂tu = R

(

x, I(t)
)

+ |∇u|2,

maxRd u(t, x) = 0.
(5.8)

The constraint that the maximum vanishes is achieved, as in [3], from the a priori bounds on Iǫ
and (5.6).

In particular u is strictly concave, therefore it has exactly one maximum. This proves (3.15)
i.e. n stays monomorphic and characterizes the Dirac location by

max
Rd

u(t, x) = 0 = u
(

t, x̄(t)
)

. (5.9)

Moreover, as in [24] we can achieve (3.16) at each Lebesgue point of I(t).

This completes the proof of Theorem 3.1.

6 Canonical equation, time asymptotic

With the additional assumptions (3.6) and (3.10), we can write our form of the canonical equa-
tion and show long-time behavior. To do so, we first show that the third derivative is bounded.
This allows us to establish rigorously the canonical equation while it was only formally given
in [13, 24]. From this equation, we obtain regularity on x̄ and Ī. For long-time behavior we
show that Ī is strictly increasing as long as ∇R

(

x̄, Ī
)

6= 0 and this is based on the gradient flow
structure of the equation.

6.1 Bounds on third derivatives of uǫ

For the unit vectors ξ and η, we use the notation uξ := ∇ξuǫ, uξη := ∇2
ξηuǫ and uξξη := ∇3

ξξηuǫ
to derive

∂tuξξη = 4∇uξη · ∇uξ + 2∇uη · ∇uξξ + 2∇u · ∇uξξη +Rξξη + ǫ∆uξξη.

Again we can can fix a point (t, x) and choose an orthonormal basis such that D2 (∇ηuǫ(t, x))
is diagonal. Let us define

M1(t) := max
x,ξ,η

uξξη(t, x).

Since −uξξη(t, x) = ∇−ηuξξ(t, x), we have M1(t) = max
x,ξ,η

|uξξη(t, x)|. So with the maximum prin-

ciple we obtain

d

dt
M1 ≤ 4dM1‖D2uǫ‖∞ + 2dM1‖D2uǫ‖∞ +Rξξη.

Assumption (3.10) gives us a bound on M1(t = 0). So we obtain a L∞-bound on the third
derivative uniform in ǫ.

11



6.2 Maximum points of uǫ 6 CANONICAL EQUATION, TIME ASYMPTOTIC

6.2 Maximum points of uǫ

Now we wish to establish the canonical equation. We denote the maximum point of uǫ(t, ·) by
x̄ǫ(t).
Since uǫ ∈ C2, at maximum points we have ∇uǫ(t, x̄ǫ(t)) = 0 and thus

d

dt
∇uǫ

(

t, x̄ǫ(t)
)

= 0.

The chain rule gives

∂

∂t
∇uǫ

(

t, x̄ǫ(t)
)

+D2
xuǫ

(

t, x̄ǫ(t)
)

˙̄xǫ(t) = 0,

and using the equation (5.1), it follows further that, for almost every t,

D2
xuǫ

(

t, x̄ǫ(t)
)

˙̄xǫ(t) = − ∂

∂t
∇uǫ

(

t, x̄ǫ(t)
)

= −∇xR
(

x̄ǫ(t), Iǫ(t)
)

− ǫ∆∇xuǫ.

Due to the uniform in ǫ bound on D3uǫ and R ∈ C2, we can pass to the limit in this equation
and arrive at

˙̄x(t) =
(

−D2u
(

x̄(t), t
))−1

.∇xR
(

x̄(t), Ī(t)
)

a.e.

But we can obtain further regularity in the limit and obtain the equations in the classical
sense. We first notice that, from R

(

x̄(t), Ī(t)
)

= 0 and the assumptions (3.3), x̄(t) is bounded
in L∞(R+). So we obtain that x̄(t) is bounded in W 1,∞(R+). Because I 7→ R(·, I) is invertible,
it follows that Ī(t) is bounded in W 1,∞(R+); more precisely we may differentiate the relation
(3.16) (because R ∈ C2) and find a differential equation on I(t) that will be used later:

˙̄x(t) · ∇xR+ ˙̄I(t)∇IR = 0.

This completes the proof of Theorem 3.2.

6.3 Long-time behaviour

It remains to prove the long time behaviour stated in Theorem 3.3.
We start from the canonical equation

d

dt
x̄(t) = (−D2u)−1∇R

(

x̄(t), Ī(t)
)

,

and use some kind of gradient flow structure. We calculate

d

dt
R
(

x̄(t), Ī(t)
)

= ∇R
(

x̄(t), Ī(t)
) d

dt
x̄(t) +RI

(

x̄(t), Ī(t)
)dĪ

dt

= ∇R
(

x̄(t), Ī(t)
)

(−D2u)−1∇R
(

x̄(t), Ī(t)
)

+RI

(

x̄(t), Ī(t)
)dĪ

dt
.

Now we also know from (3.16) that the left hand side vanishes. Then, we obtain

d

dt
Ī(t) =

−1

RI

(

x̄(t), Ī(t)
)∇R

(

x̄(t), Ī(t)
)

(−D2u)−1∇R
(

x̄(t), Ī(t)
)

≥ 0.

The inequality is strict as long as Ī(t) < IM . Consequently, we recover that Ī(t) is non-
decreasing, as t→ ∞, Ī(t) converges, and subsequences of x̄(t) converge also (recall that x̄(t) is
bounded). But we discover that the only possible limits are such that ∇R(x̄∞, I∞) = 0. With
relation (3.16), assumptions (3.2) and (3.5) this identifies the limit as announced in Theorem
3.3.
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7 NUMERICS

7 Numerics

(a) asymmetric I.D. (b) symmetric I.D.

Figure 1: Dynamics of the density n with asymmetric initial data (7.1) (left) and symmetric
initial data (7.2) (right). These computations illustrate the effect of the matrix (−D2u)−1 in
the dynamics of the concentration point according to the form of canonical equation (3.17).

The canonical equation is not self-contained because the effect of mutations appears through
the matrix (−D2u)−1. Nevertheless it can be used to explain several effects. The purpose of
this section is firstly to illustrate how it acts on the dynamics, secondly to see the effect of ǫ
being not exactly zero, and thirdly to explain why it is generic, in high dimensions as well as in
one dimension [24] that pointwise Dirac masses (and not on curves) can exist.

We first illustrate the fact that a isotropic approximation of a Dirac mass will give rise to
different dynamics than an anisotropic. This anisotropy is measured with u and we choose two
initial data. In the first case −D2u0 is ”far” from the identity matrix and in the second case it
is isotropic:

n0(x, y) = Cmass exp(−(x− .7)2/ǫ− 5(y − .7)2/ǫ), (7.1)

n0(x, y) = Cmass exp(−2.4(x − .7)2/ǫ− 2.4(y − .7)2/ǫ). (7.2)

We also choose a growth rate R with gradient along the diagonal:

R(x, y, I) = 2− I − (x+ y). (7.3)

Here although, we start with initial data centered on the diagonal and ∇R pointing along the
diagonal to the origin, the concentration point leaves the diagonal with the anisotropic initial
data (7.1) (cf. Figure 1 (a)). The isotropic initial data moves along the diagonal as expected by
symmetry reasons (cf. Figure 1 (b)).
The numerics has been performed in Matlab with parameters as follows. The three plots cor-

respond to t = 0, 40 and 80 in units of dt: ǫ is chosen to be 0.005 and Cmass such that the initial
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7 NUMERICS

mass in the computational domain is equal to 0.3. The equation is solved by an implicit-explicit
finite-difference method on square grid consisting of 100 × 100 points (time step dt = 0.01).

The second example is to illustrate the role of the parameter ǫ for symmetric initial data:

n0(x, y) = Cmass exp(−(x− .3)2/ǫ− (y − .3)2/ǫ), (7.4)

R(x, y, I(t)) = 0.9− I + 5(y − .3)2+ + 2.3(x − .3) with I(t) :=

∫

n(t, x) dx. (7.5)

In this example, we start with symmetric initial data centered on the line y = 0.3 and the
gradient of R along this line (y = 0.3) is (1, 0). Hence, the canonical equation in the limit ǫ = 0
predicts a motion in the x direction on this line. One however observes in Figure 2 that the
maximum point leaves this line because ǫ does not vanish. Notice that R ≡ 0 below the line
y = 0.3.
In this computation, performed with Matlab, ǫ is chosen to be 0.004, Cmass such that the

initial mass in the computational domain is equal to 0.3 and square grid consisting of 150× 150
points (time step dt = 8.8889 · 10−4).

Figure 2: This figure illustrates the effect of ǫ being not exactly zero. The dynamics of the
density n with symmetric initial data is plotted for t = 0, 160 and 220 in units of dt and the
limiting behavior is a motion along the axis y = 0.3 .

With our third example we wish to illustrate that, except in particular symmetric geometries,
only a single Dirac mass can be sustained by our Lotka-Volterra equations. We place initially
two symmetric deltas on the x and the y-axis:

n0(x, y) = Cmass

[

exp

(

−2.4

ǫ

(

(x− .25
√
2)2 + y2

)

)

+ exp

(

−2.4

ǫ

(

(y − .25
√
2)2 + x2

)

)]

,

(7.6)

We seek for asymmetry in the growth rate R under the form

R(x, y, I) = 3− 1.5I + 5.6(y2 +Rex
2). (7.7)
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8 EXTENSION: NON-CONSTANT DIFFUSION

(a) asymmetric R (b) symmetric R

Figure 3: This figure illustrates that, except particular symmetry conditions, a single Dirac mass
is exhibited by Lotka-Volterra equations. We depict the density n with asymmetric (left) and
symmetric (right) growth rate R plotted for t = 5, 90 and 180 in units of dt.

In the special case Re = 1, all isolines of R are circles then the two concentration points just
move symmetrically to the origin cf. 3 (b). However, if we choose Re = 1.1 i.e. all isolines
of R are ellipses then one of the two concentration points disappears cf. Figure 3 (a). The
intuition behind is that the canonical equation (3.17) should hold for the two points. However
the constraint (3.16) given by ρ(t) is the same for the two points and this is a contradiction.
One of the two points has to disappear right away.
The numerics is performed with ǫ = 0.003 and Cmass such that the initial mass in the compu-

tational domain is equal to 0.3. The equation is solved by an implicit-explicit finite-difference
method on square grid consisting of 100 × 100 points (time step dt = 0.001).

8 Extension: non-constant diffusion

Our results can be extended to include a diffusion coefficient depending on x. This leads to the
equation

∂tnǫ − ǫ∇ · (b(x)∇nǫ) =
nǫ
ǫ
R
(

x, Iǫ(t)
)

, t > 0, x ∈ R
d. (8.1)

Our assumptions on b are that there are positive constants bm, bM , B1, B2 and B3 such that

bm ≤ b ≤ bM , |∇b(x)| ≤ B1
1

1 + |x| ,
∣

∣Tr(D2b(x))
∣

∣ ≤ B2
1

(1 + |x|)2 ,
∣

∣D3b
∣

∣ ≤ B3.

(8.2)

Our assumptions on the initial data and on R are the same, as before (3.1)–(3.11). However,
we have to supplement the assumption (3.5) to take b into account:

∇b · ∇(ψR) ≥ −K3. (8.3)

These assumptions will in the following allow us to obtain a gradient bound

|∇uǫ(t, x)| ≤ C∇u(1 + |x|). (8.4)
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8 EXTENSION: NON-CONSTANT DIFFUSION

This bound enables us to formulate the compatibility conditions which replace (3.8): we need

B2C
2
∇u − 2K1 < 0 (8.5)

and define

Kb :=
2B1 −

√

4B2
1 − 2bM

(

B2C
2
∇u − 2K1

)

bM
,

Kb :=
−2B1 −

√

4B2
1 + 2bm

(

B2C
2
∇u + 2K1

)

bm
,

to require
−Kb ≤ D2u0ǫ ≤ −Kb, (8.6)

4bML
2
1 ≤ K1 ≤ K1 ≤ 4bmL

2
1. (8.7)

Our goal is to prove the following

Theorem 8.1 (Convergence) Assume (3.1)-(3.5), (3.8), (8.2), (8.3), (8.5), (8.6) and (8.7).
Then the solution nǫ to (8.1) satisfies for all T > 0, for ǫ small enough and t ∈ [0, T ]

0 < ρm ≤ ρǫ(t) ≤ ρM + Cǫ2, Im ≤ Iǫ(t) ≤ IM + Cǫ2 a.e. (8.8)

Moreover, there is a subsequence Iǫ such that

Iǫ(t) −→
ǫ→0

Ī(t) in L1
loc(R

+), Im ≤ Ī(t) ≤ IM a.e., (8.9)

and Ī(t) is non-decreasing. Furthermore, we have weakly in the sense of measures for a subse-
quence nǫ

nǫ(t, x) −→
ǫ→0

ρ̄(t) δ
(

x− x̄(t)
)

, (8.10)

and the pair
(

x̄(t), Ī(t)
)

also satisfies

R
(

x̄(t), Ī(t)
)

= 0 a.e. (8.11)

Theorem 8.2 (Form of canonical equation) With the assumptions (3.1)-(3.8), (3.10), (3.11),
(8.2), (8.3), (8.5), (8.6) and (8.7), x̄ is a W 1,∞(R+)-function satisfying

˙̄x(t) =
(

−D2u
(

t, x̄(t)
))−1

.∇xR
(

x̄(t), Ī(t)
)

, x̄(0) = x̄0, (8.12)

with u(t, x) a C2-function given below in (8.21), D3u ∈ L∞(Rd), and initial data x̄0 given in
(3.11). Furthermore, we have Ī(t) ∈W 1,∞(R+).

The end of this section is devoted to the proof of these Theorems. The a priori bounds (8.8),
(8.9) on ρǫ and Iǫ can be established as before.
As before we study the function uǫ := ǫ ln(nǫ). We obtain that uǫ satisfies the Hamilton-Jacobi

equation
{

∂tuǫ = R
(

x, Iǫ(t)
)

+ b|∇uǫ|2 + ǫ∇b · ∇uǫ + ǫb∆uǫ, t > 0, x ∈ R
d,

uǫ(t = 0) = ǫ ln(n0ǫ).
(8.13)

In order to adapt our method to this equation we need a bound on the gradient of uǫ. We
achieve this following arguments in [20, 3]:
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8 EXTENSION: NON-CONSTANT DIFFUSION

gradient bound Let us define v(t, x) by uǫ = Kv − v2 where we choose Kv large enough to
have v > δ > 0 on [0, T ] uniform in ǫ. We calculate

∇uǫ = −2v∇v and ∆uǫ = −2v∆v − 2|∇v|2

and obtain from (8.13)

−2v∂tv = R+ 4bv2|∇v|2 − 2ǫ∇b · v∇v − 2ǫvb∆v − 2ǫb|∇v|2. (8.14)

Dividing by −2v, taking the derivative with respect to xi and defining p := ∇v, we have

∂tpi = −
(

R

2v

)

xi

− 2pib|p|2 − 2vbxi
|p|2 − 4vbp · ∇pi + ǫ∇bxi

· p+ ǫ∇b · ∇pi

+ ǫbxi
∆v + ǫb∆pi + ǫ

bxi

v
|p|2 − ǫ

b

v2
|p|2pi + 2ǫ

b

v
p · ∇pi.

Multiplying (8.14) by
bxi

2bv
and adding to the equation above, we obtain

∂t

(

pi −
bxi
v

b

)

= −
(

R

2v

)

xi

− 2pib|p|2 − 2vbxi
|p|2 − 4vbp · ∇pi + ǫ∇bxi

· p+ ǫ∇b · ∇pi

+ ǫb∆pi + ǫ
bxi

v
|p|2 − ǫ

b

v2
|p|2pi + 2ǫ

b

v
p · ∇pi +

bxi
R

2bv
+ 2bxi

v|p|2 − ǫ
bxi

b
∇b · p− ǫ

bxi

v
|p|2.

Now we define

Mb(t) := max
i,x

[(pi)−, (pi)+] ≥ 0. (8.15)

For maxi,x(pi)− ≤ maxi,x(pi)+, we have

∂t

(

Mb −
bxi
v

b

)

≤ C − 2bmM
3
b + 2|v||bxi

|d2M2
b + ǫd |∇bxi

|Mb

+ ǫ
|bxi

|
δ
d2M2

b + C + 2|bxi
||v|d2M2

b + ǫ
|bxi

|
bm

d|∇b|Mb + ǫ
|bxi

|
δ
d2M2

b .

Since
bxi
v

b
is bounded, we have Mb bounded from above.

For maxi,x(pi)− > maxi,x(pi)+, we show similarly a bound on Mb and therefore achieve (8.4).
To prove the concavity and semi-convexity results, we only give formal arguments for the limit

case. To adapt the argument for the ǫ-case is purely technical:
For a unit vector ξ, we define uξ := ∇ξuǫ and uξξ := ∇ξξuǫ to obtain

∂tuξ = Rξ + bξ|∇u|2 + 2b∇u · ∇uξ, (8.16)

and

∂tuξξ = Rξξ + bξξ|∇u|2 + 4bξ∇u · ∇uξ + 2b∇u · ∇uξξ + 2b|∇uξ|2. (8.17)

With the definition w(t, x) := maxξ uξξ(t, x) and assumptions (8.2) we have

∂tw ≤ −2K1 +B2C
2
∇u + 4B1|w|+ 2b∇u · ∇w + 2bMw

2.
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9 LOCAL COMPETITION

With assumption (8.5), 0 is a supersolution to

∂tw
∗ = −2K1 +B2C

2
∇u − 4B1w

∗ + 2b∇u · ∇w∗ + 2bM (w∗)2,

so we know from assumption (8.6) that w ≤ 0. Therefore it follows further that

w ≤ Kb.

For the lower bound, we use the definition w(t, x) := minξ uξξ(t, x) and the inequality

∂tw ≥ −2K1 −B2C
2
∇u − 4B1|w|+ 2b∇u · ∇w + 2bmw

2.

Since we already know that w ≤ 0, we obtain

w ≥ Kb.

We can achieve this at the ǫ-level using the equation

∂tuξ = Rξ + bξ|∇u|2 + 2b∇u · ∇uξ + ǫ∇bξ · ∇u+ ǫ∇b · ∇uξ + ǫbξ∆u+ ǫb∆uξ, (8.18)

and

∂tuξξ = Rξξ + bξξ|∇u|2 + 4bξ∇u · ∇uξ + 2b∇u · ∇uξξ + 2b|∇uξ|2

+ ǫ∇bξξ · ∇u+ 2ǫ∇bξ · ∇uξ + ǫ∇b · ∇uξξ + ǫbξξ∆u+ 2ǫbξ∆uξ + ǫb∆uξξ. (8.19)

Now we define

f :=
2bξ
b

and g :=
bbξξ − 2b2ξ

b2
,

multiply (8.18) by f , substract it from (8.19), multiply (8.13) by g, substract it to obtain

∂t(uξξ − fuξ − gu) = Rξξ + 2b∇u · ∇uξξ + 2b|∇uξ|2 + ǫ∇bξξ · ∇u
+ 2ǫ∇bξ∇uξ + ǫ∇b · ∇uξξ + ǫb∆uξξ − fRξ − ǫf∇bξ · ∇u− ǫf∇b · ∇uξ − gR − ǫg∇b · ∇u.

(8.20)

The remaining steps can be done similar as before. For the Hamilton-Jacobi-equation on u, we
obtain the variant







∂tu = R
(

x, Ī(t)
)

+ b(x) |∇u|2,
max
x∈Rd

u(t, x) = 0, ∀t ≥ 0.
(8.21)

9 Local competition

The other class of models we handle are populations with localized competition kernel C(x, y) ≥
0, that is

∂tnǫ(t, x) =
1

ǫ
nǫ(t, x)

(

r(x)−
∫

Rd

C(x, y)nǫ(t, y) dy

)

+ ǫ∆nǫ(t, x). (9.1)
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9 LOCAL COMPETITION

The term r(x) is the intra-specific growth rate (and has a priori no sign) and the integral term
models an additional contribution to the death rate due to competition between different traits.
Notice that the choice C(x, y) = ψ(y)Φ(x) will reduce this model to a particular case of those in
(1.1). This class of model is also very standard, see [9, 22, 6, 7, 26] and the references therein.

For the initial data, we assume as before (3.8)–(3.11). Concerning r(x) and C(x, y) we assume
C1 regularity and that there are constants ρM > 0, K ′

1 > 0... such that

C(x, x) > 0 ∀x ∈ R
d, (9.2)

∫

Rd

∫

Rd

n(x)C(x, y)n(y) dydx ≥ 1

ρM

∫

Rd

n(x) dx

∫

Rd

r(x)n(x) dx ∀n ∈ L1
+(R

d). (9.3)

This assumption is weaker than easier conditions of the type

C(x, y) ≥ 1

ρM
r(x) or C(x, y) ≥ 1

2ρM
[r(x) + r(y)].

Because it is restricted to positive functions, it is a pointwise positivity condition on C(x, y) in
opposition to the positivity as operator that occurs for the entropy method in [18].
Then, we make again concavity assumptions. Namely that concavity on r is strong enough to

compensate for concavity in C

−K ′
1|x|2 ≤ r(x)− sup

y
C(x, y)ρM ≤ r(x) ≤ K

′
0 −K

′
1|x|2, (9.4)

−2K ′
1 ≤ D2r(x)− sup

y

(

D2C(x, y)
)

+
ρM ≤ D2r(x) + sup

y

(

D2C(x, y)
)

−
ρM ≤ −2K

′
1, (9.5)

as symmetric matrices, where the positive and negative parts are taken componentwise. As for
regularity, we will use

D3r − sup
y

(

D3C(·, y)
)

+
ρM , D3r + sup

y

(

D3C(·, y)
)

−
ρM ∈ L∞(Rd). (9.6)

The initial data is still supposed to concentrate at a point x̄0 following (3.8)–(3.11). But
because persistence, i.e. that nε does not vanish, is more complicated to control, we need two
new conditions

r(x̄0) > 0, (9.7)

∫

Rd

nǫ(t, x)dx ≤ ρ0M . (9.8)

We also need a compatibility condition with R

4L
2
1 ≤ K

′
1 ≤ K ′

1 ≤ 4L2
1. (9.9)

The interpretation of our assumptions is that the intra-specific growth rate r dominates
strongly the competition kernel. This avoids the branching patterns that are usual in this kind
of models [22, 17, 25, 26]. Our concavity assumptions also implies that there is no continuous so-
lution N to the steady state equation without mutations N(x)

(

r(x)−
∫

Rd C(x, y)N(y) dy
)

= 0.
This makes a difference with the entropy method used in [18] as well as the positivity condition
on the kernel that, compared to (9.3), also involves r(x).
Our goal is to prove the following results
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Theorem 9.1 (Convergence) With the assumptions (9.2)–(9.5) and (3.8), (9.8)–(9.9), the
solution nǫ to (9.1) satisfies,

0 ≤ ρǫ(t) :=

∫

Rd

nǫ(t, x)dx ≤ ρM a.e. (9.10)

and there is a subsequence such that

ρǫ(t) −−⇀
ǫ→0

ρ̄(t) in weak- ⋆ L∞(R+), 0 ≤ ρ̄(t) ≤ ρM a.e. (9.11)

Furthermore, we have weakly in the sense of measures for a subsequence nǫ

nǫ(t, x) −−⇀
ǫ→0

ρ̄(t) δ
(

x− x̄(t)
)

,
nǫ(t, x)

∫

Rd nǫ(t, x)dx
−−⇀
ǫ→0

δ
(

x− x̄(t)
)

, (9.12)

and the pair
(

x̄(t), ρ̄(t)
)

also satisfies

ρ̄(t)
[

r
(

x̄(t)
)

− ρ̄(t)C
(

x̄(t), x̄(t)
)]

≥ 0. (9.13)

With the assumptions of Theorem 9.1, we do not know if ρǫ converges strongly because we do
not have the equivalent of the BV quantity in Theorem 3.1. We can only prove it with stronger
assumptions. This is stated in the

Theorem 9.2 (Form of canonical equation) We assume (3.8)–(3.11) and (9.3)–(9.9). Then,
for the function C2-function u(t, x) given below in (9.24) with D3

xu ∈ L∞
loc

(

R
+;L∞(Rd)

)

, x̄ ∈
W 1,∞(R+) satisfies

˙̄x(t) =
(

−D2u
(

t, x̄(t)
))−1 ·

[

∇xr
(

x̄(t)
)

− ρ̄(t)∇xC
(

x̄(t), x̄(t)
)]

, (9.14)

with initial data x̄0 given in (3.11). Furthermore, ρǫ converges strongly and we have ρ̄(t) ∈
W 1,∞(R+),

r
(

x̄(t)
)

− ρ̄(t)C
(

x̄(t), x̄(t)
)

= 0, (9.15)

r
(

x̄(t)
)

≥ r(x̄0)e−Kt, ρ̄(t) ≥ ρ0e−Kt. (9.16)

We may find some kind of gradient flow structure for the canonical equation when C(x, y) is
symmetric and obtain

Theorem 9.3 (Long time behavior) We make the assumptions of Theorem 9.2, C(x, y) =
C(y, x) and

x 7→ Φ(x) := ln r(x)− lnC(x, x) is strictly concave in the set {r > 0}. (9.17)

Then, as t→ ∞, ρ̄(t) → ρ̄∞ > 0, x̄(t) → x̄∞ and x̄∞ is the maximum point of Φ.
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9 LOCAL COMPETITION 9.1 A-priori bounds on ρǫ

9.1 A-priori bounds on ρǫ

The main new difficulty with the competition model comes from a priori bounds on the total
population. In particular it is not known if there are BV quantities proving that ρǫ(t) converges
strongly. Even non extinction is not longer automatic.
One side of the inequality (9.10) is given by nǫ ≥ 0, for the other side we integrate (9.1) over

R
d and use (9.3) to write

d

dt

∫

Rd

nǫ(t, x) dx =
1

ǫ

∫

Rd

nǫ(t, x)r(x) dx− 1

ǫ

∫

Rd

∫

Rd

nǫ(t, x)C(x, y)nǫ(t, y) dydx

≥ 1

ǫ

∫

Rd

nǫ(t, x)r(x) dx

[

1−
∫

Rd nǫ(t, x) dx

ρM

]

,

therefore (and even though r can change sign) we conclude thanks to (9.8)
∫

Rd

nǫ(t, x) dx ≤ ρM .

9.2 Passing to the limit

The proofs of the remaining parts of Theorems are close to those already written before. We
only give the main differences here. They rely again on the WKB ansatz uǫ := ǫ ln(nǫ). We
obtain as before that uǫ satisfies the Hamilton-Jacobi equation







∂
∂tuǫ(t, x) = r(x)−

∫

Rd

C(x, y)nǫ(t, y) dy + |∇uǫ|2 + ǫ∆uǫ, t > 0, x ∈ R
d,

uǫ(t = 0) = u0ǫ .
(9.18)

Similarly to Lemma 5.1 we can prove the

Lemma 9.4 With the assumptions of Theorem 9.1, we have for all t ≥ 0

−L0 − L1|x|2 − ǫ2dL1t ≤ uǫ(t, x) ≤ L0 − L1|x|2 +
(

K
′
0 + 2dǫL1

)

t,

−2L1 ≤ D2uǫ(t, x) ≤ −2L1.

Proof. The first line holds because the right (resp. left) hand side of the inequality is a super
(resp. sub) solution thanks to assumption (9.4) and using the control of nε by ρM . For the
second line, the upper and lower bound use the maximum principle on the equation for D2uε
and the compatibility conditions (9.9) as in section 5.2.

From the regularity obtained, it follows that we can extract a subsequence such that uǫ(t, x) −→
ǫ→0

u(t, x), locally uniformly as in section 5.3. We also obtain from Lemma 9.4

−L0 − L1|x|2 ≤ u(t, x) ≤ L0 − L1|x|2 +K
′
0t, −2L1 ≤ D2u(t, x) ≤ −2L1 a.e. (9.19)

and that u satisfies, in the viscosity sense (modified as in [4, 24, 3]), the equation
{

∂
∂tu = r(x)− ρ̄(t)C

(

x, x̄(t)
)

+ |∇u|2,
maxRd u(t, x) ≤ 0.

(9.20)
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9.3 Form of the canonical equation 9 LOCAL COMPETITION

The constraint is now relaxed to an inequality because we know that the total mass is bounded
but we do not control the mass from below at this stage. In the framework of Theorem 9.2, we
prove later on that the constraint is always an equality (see (9.24)).

It might be that ρ̄(t) vanishes and then x̄(t) does not matter here, nevertheless we still have

max
Rd

u(t, x) = u
(

t, x̄(t)
)

. (9.21)

Using the control (9.19) and this Hamilton-Jacobi equation we obtain (9.12) with the same
arguments as in Section 5.3. The new difficulty is that ρ(t) might vanish in particular when the
constraint is strict maxRd u(t, x) < 0, an option that we will discard later. Because of that, we
also obtain the restriction on times in (9.13) which can be completed as (in the viscosity sense)

d

dt
u
(

t, x̄(t)
)

= r
(

x̄(t)
)

− ρ̄(t)C
(

x̄(t), x̄(t)
)

. (9.22)

We also have, as in section 9.1,

ǫ
d

dt
ρǫ(t) =

∫

Rd

nǫ(t, x)r(x) dx −
∫

Rd

∫

Rd

nǫ(t, x)C(x, y)nǫ(t, y) dydx.

Passing to the weak limit (integration by parts and using boundedness of ρǫ), we find that

ρ̄(t)r
(

x̄(t)
)

= w-lim

∫

Rd

∫

Rd

nǫ(t, x)C(x, y)nǫ(t, y) dydx ≥ ρ̄(t)2C
(

x̄(t), x̄(t)
)

. (9.23)

This proves (9.13) and concludes the proof of Theorem 9.1.

9.3 Form of the canonical equation

We continue with the proof of Theorem 9.2 and we begin with the derivation of (9.14).

The third derivative of uε is bounded using assumption (9.6) and following the same arguments
in Section 6.1. Then similarly to Section 6.2, we have the regularity D3

xu ∈ L∞
(

(0, T )×R
d
)

for

all T > 0, ∂
∂tu and D3

txxu ∈ L∞
loc

(

R
+ × R

d
)

.

The canonical equation (9.14) is established a.e. as in section 6.2 using the maximum points
of uǫ and passing to the limit. From (9.10), (9.14) and (9.19), we next obtain that | ddt x̄(t)| is
uniformly bounded.

9.4 Persistence

Now we prove that u
(

t, x̄(t)
)

= 0 for all t ≥ 0 and that ρ̄(t) > 0 a.e. t. We cannot obtain
this directly and thus we begin with proving r(x̄(t)) > 0. We prove indeed the first part of the
inequality (9.16).

We prove this by contradiction. We suppose that t0 is the first point such that r(x̄(t0)) = 0. We
notice that x̄(t) being lipschitzian and using assumption (9.7), for all t < t0, we have r(x̄(t)) > 0.
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9 LOCAL COMPETITION 9.4 Persistence

Therefore with assumption (9.4) we deduce that x̄(t) remains bounded for t ∈ [0, t0]. Using (9.14)
and (9.19) we have

d

dt
r(x̄(t)) = ∇xr(x̄(t)) · ˙̄x(t)

= ∇xr(x̄(t)) ·
(

−D2u
(

t, x̄(t)
))−1 ·

[

∇xr
(

x̄(t)
)

− ρ̄(t)∇xC
(

x̄(t), x̄(t)
)]

≥ −ρ̄(t)|∇xr(x̄(t))||∇xC
(

x̄(t), x̄(t)
)

|.
Consequently, using (9.13), we obtain

d

dt
r(x̄(t)) ≥ −r(x̄(t))|∇xr(x̄(t))|

|∇xC
(

x̄(t), x̄(t)
)

|
C
(

x̄(t), x̄(t)
) .

Moreover we know that x̄(t) remains bounded for t ∈ [0, t0] and thus we have inf
t∈[0,t0]

C(x̄(t), x̄(t)) ≥ η2 > 0.

We conclude that, for K a positive constant,

d

dt
r(x̄(t)) ≥ −Kr(x̄(t)), for 0 ≤ t ≤ t0.

Starting with r(x̄0) > 0 according to (9.7), this inequality is in contradiction with r(x̄(t0)) = 0.
Therefore for all t > 0 we have r(x̄(t)) > 0 and thus this inequality is true for all t > 0. Thereby
we obtain the first part of (9.16). From the latter and using again (9.4), we also deduce that
x̄(t) remains bounded for all t > 0.

Next we use (9.13), (9.22) and the positivity of r(x̄(t)) to obtain

u(t, x̄(t))− u0(x̄0) =

∫

r(x̄(t))− ρ̄(t)C(x̄(t), x̄(t))dt ≥ 1ρ̄(t)=0r(x̄(t)) ≥ 0.

We deduce, using (3.11), that u(t, x̄(t)) = 0 for all t ≥ 0. Thus the equation on u is in fact
{

∂
∂tu = r(x)− ρ̄(t)C

(

x, x̄(t)
)

+ |∇u|2,
maxRd u(t, x) = 0.

(9.24)

This identity also proves the identity (9.15) and thus that (9.23) holds as an equality, which
is equivalent to say that the weak limit of ρǫ(t) is in fact a strong limit.

We may now use (9.15) to conclude that ρ̄(t) is also bounded in W 1,∞(R+). To do so, we first
differentiate (9.15) and find again some kind of gradient flow structure

∇r
(

x̄(t)
)

· ˙̄x(t)− ˙̄ρ(t)C
(

x̄(t), x̄(t)
)

− ρ̄(t)
[

∇xC
(

x̄(t), x̄(t)
)

+∇yC
(

x̄(t), x̄(t)
)]

˙̄x(t) = 0.

With (9.14), it follows that

˙̄x(t) ·
(

−D2u
)

· ˙̄x(t) = ˙̄ρ(t)C
(

x̄(t), x̄(t)
)

+ ρ̄(t)∇yC
(

x̄(t), x̄(t)
)

˙̄x(t). (9.25)

From the uniform bounds proved before, there is a constant η3 such that

∇yC
(

x̄(t), x̄(t)
)

· ˙̄x(t)
C
(

x̄(t), x̄(t)
) ≤ η3. (9.26)

Using the latter and (9.19) we conclude that, for K a positive constant,

˙̄ρ(t) ≥ −Kρ̄(t).
Thus we obtain (9.16). This completes the proof of Theorem 9.2.
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9.5 Long time behavior

It remains to prove Theorem 9.3. Assuming that C(x, y) is symmetric, we can find a quantity
which is non-decreasing in time, which replaces the quantity Ī in section 6.3. We compute, from
the relation (9.25),

d

dt

[

ρ̄2(t)C
(

x̄(t), x̄(t)
)]

(2ρ̄(t))−1 = ˙̄ρ(t)C
(

x̄(t), x̄(t)
)

+ ρ̄(t)(∇yC) ˙̄x(t)

= ˙̄x(t) ·
(

−D2u
)

· ˙̄x(t) ≥ 0. (9.27)

As t tends to infinity, we may consider a subsequence tn such that ρ̄(tn) → ρ̄∞, x̄(tn) → x̄∞.
From (9.27), we may also assume ˙̄x(tn) → 0. Therefore

∇r(x̄∞) = ρ̄∞∇xC(x̄∞, x̄∞), r(x̄∞) = ρ̄∞C(x̄∞, x̄∞).

From these relations, we first conclude that ρ̄∞ is positive because r is concave and its gradient
only vanishes at a point where r is positive.
Then we combine the relations and conclude that

∇r(x̄∞)

r(x̄∞)
=

∇xC(x̄∞, x̄∞)

C(x̄∞, x̄∞)
.

The assumption (9.17) then concludes on the uniqueness of such a point x̄∞ and thus on the
convergence of x̄(t).

References
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[21] S. Méléard. Random modeling of adaptive dynamics and evolutionary branching. In J. F.
Rodrigues and F. Chalub, editors, The Mathematics of Darwin’s Legacy, Mathematics and
Biosciences in Interaction. Birkhäuser Basel, 2010.
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sciences de la nature. PhD thesis, ENS Cachan, 2009.

[27] G. Raoul. Local stability of evolutionary attractors for continuous structured populations.
accepted in Monatsh. Math., 2010.

26


