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Combining SysML and formal models for safety requirements verification 
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Abstract. Industrial safety-related standards strongly recommend the use of formal methods to control the complexity of 
software-intensive automation. This paper deals with the verification of safety requirements for the design of an industrial 
machinery control system embedding safety-critical software applications. It combines SysML semi-formal modelling 
approach to capture and structure safety requirements and model-checking techniques for the formal verification purposes. 
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1 INTRODUCTION 

This paper deals with the verification of safety requirements for the design of complex systems involving software, 
mechanical, electrical, or pneumatic components for industrial safety-critical machinery. The control of such complex 
systems results from an interaction network between all the system components that can introduce undesired behaviour 
with critical impact on safety. Consequently, safety properties of the control system cannot be verified by only proving 
local properties of each component, but need to be studied through the emerging behaviour that issues from the interac-
tion network. The main difficulties of this last verification are caused by the heterogeneity of the control components 
and technology domains that use proper design formalisms and tools.  
In the development of industrial automation, standards, such as the safety-related IEC 615081 or its application in the 
machinery domain (IEC 620612), strongly recommend the use of formal methods to control the complexity of software-
intensive applications. In this way, the role of INRS (Institut National de Recherche et de Sécurité), acting as a French 
independent institute, is to anticipate future risk by acquiring new knowledge and converting current knowledge into 
practical know-how available to professional in charge of prevention.  
This paper presents a combination of SysML semi-formal modelling approach, to identify, specify and refine properties 
and architectures of an INRS case study, with formal models for the design of its control system and for the verification 
of its dynamic properties. Section 2 introduces the problem statement by showing complementarities between system-
oriented approaches and formal models. This section ends by the description of INRS case study which is developed 
using our proposed methodology in section 3. The final section provides some conclusions and open issues. 

2 PROBLEM STATEMENT 

Automation engineering has to ensure that the system under control to be developed, noted S, is compliant with the end-
user requirements, noted R. Taking into account the fact that: 

• requirements R are usually captured in multiple levels of abstraction and broken down into sub-requirements at 
different levels of abstraction, noted R = {R1, R2, … Rn}, 

• the system under control is often composed of heterogeneous components (mechanical, software, electronic sub-
systems) that cooperate to achieve the systems goal, noted S = {S1, S2, …, Sm}, 

the initial problem becomes a non bijective relationship between the set of requirements and the set of system compo-
nents. Fusaoka [1] and Supervisory Control Theory [2] have formalised this problem focusing on Discrete Event Sys-
tem dynamics point of view. This formulation can be extended [3] by taking into account system features (dynamics but 
also functions, structure, information, etc) according to the predicate S୧ ר  S୮ ֜ Goal (where Sc means Control system 
and Sp means physical system) that has to be preserved through the automation engineering processes. More generally 
speaking, it means that: 

• a given system component Si may satisfy a sub-set of requirements such that S୧ ֜ ሼR୩ሽ୩אሾଵ,୬ሿ, 
• a given requirement Rj may be satisfied by a subset of system components such that ሼS୩ሽ୩אሾଵ,୫ሿ ֜ R୧. 

Identifying and proving the preservation of these relationships for the safety requirements, all along the system engi-
neering process, is our main objective. Two ways of thinking can be found in the scientific literature to partially cover 
this issue: formal methods & models and system engineering approaches.   

2.1 Formal models 

Formal modelling process relies on mathematical foundations that may ensure that a given system design and/or im-
plementation fulfils a given model of requirements. Conceptual and practical approaches have been widely explored by 
academic bodies related to computer sciences and automatic control: examples are software verification by theorem 
                                                 
1 IEC 61508, Functional safety of electrical/electronic/ programmable electronic (E/E/PE) safety-related systems  
2 IEC 62061, Safety of machinery- Functional safety of electrical, electronic and programmable electronic control systems 



2/10 
   

proving [4], model checking [5], or automatic synthesis [6]. More precisely in the area of automation, these approaches 
are applied:  

• during the design phase, to prove control model properties, using analysis techniques and model checking based 
on the building of the reachable states space of the control software, 

• during the implementation phase, to prove PLC (Programmable Logic Controller) programs properties by applying 
formal techniques to check the properties satisfied by controllers implemented using IEC 61131-3 programming 
languages [7]. 

 
Due to the combinatory explosion phenomena induced by the exploration of the whole state space, these techniques are 
efficient for small-sized components. For larger scale applications, system global requirements must be transformed 
into multi-component local properties that can be processed by a model-checker. Bridging the gap from global system 
properties to a composition of local properties remains difficult [8]. 
Second difficulty is linked to the underlying mathematical representation which is limited to the modelling of system 
dynamics, and hardly covers the description of other system features. More precisely, the decomposition of a complex 
system in several sub-systems, involving software, hardware and man-machine interface components, does not facilitate 
the traceability and the refinement of global system properties through the sub-system decomposition, design, verifica-
tion and validation. This aspect requires method that enables model refinement to capture very abstract requirements 
including safety properties and to project them into all system components [9]. Following the consensus that early 
phases of a system definition are the most important in ensuring that the target system will satisfy the user’s require-
ments, many systems and automation engineering practitioners [3] [10] [11] consider that time is ripe to formalize the 
earlier phases of system specification. This challenge justifies the use of system-oriented approaches [12] in automation 
engineering.  

2.2 System-oriented models 

Standards define system engineering as an “interdisciplinary collaborative approach to derive, evolve and verify a life 
cycle balanced system solution which satisfies customer expectations and meets public acceptability” (IEEE 12203, ISO 
152884). System engineering is usually involving two complementary and inter-correlated processes related to system 
definition that aims to identify and analyse the system needs and requirements and to system development that focus on 
the system design in accordance with identified requirements.  
This definition meets our goal that is to identify safety system requirements issued from an interdisciplinary approach 
and to design and verify a system control that contributes to satisfy the identified requirements. 
Models and tools promoted by system engineering are most of the time based on a wide set of graphical formalism that 
help to capture the various system features as well for its definition as for its development (requirements engineering, 
functional, structural and behavioural modelling, etc). Some of them, based on the Unified Modelling Language 
(UML5) and its extensions, cover the various aspect of system modelling, while other ones focus on a specific part such 
as requirements expression (DOORS6) or documentation traceability (Reqtify7). UML and its extension UML2.0, is a 
system modelling toolbox that should address use cases identification and architectural, behavioural design of the sys-
tem. These tools allow a multi-trades approach due to their high level of abstraction and its graphic notation. However, 
it seems that its origin and primary application being software-oriented, this language cannot be adequate for all aspects 
of systems engineering (hardware, software, man-machine interface…). The new profile SysML has been developed to 
meet system engineering community expectations. SysML toolbox contains new diagrams, like the requirement dia-
gram, that allows a most efficient system analysis and design. 
Using UML/SysML based models for automation engineering has been identified as an efficient way to handle the 
complexity of current control applications [13]. OOONEIDA [14], TORERO [15] and CORFU projects [16] as well as 
the definition of UML profile for process automation [17] can be mentioned in this way. However, the wide notation 
toolbox provided by UML/SysML suffers from a lack of formal semantics for validation and verification issues. Efforts 
have been made towards UML formalization but they are often focused on static equivalence between diagrams in a 
Model Driven Engineering perspective: executive semantics of the dynamics diagrams are formalized by providing 
equivalence to DES models such as Petri Nets.  

 
Our objective is to bridge the gap between a necessary semi-formal approach, such as SysML and formals model that 
are efficient for validation and verification of safety properties. In this way, an integrated method has been proposed to 
identify the safety requirements of a complex control system using the SysML requirements diagram, to allocate them 
on a given set of system components, to define the impact of this allocation in terms of safety properties to be satisfied 
by each system component, and then to provide the model-checkers with this correct model of component properties.  

                                                 
3  Standard for application and management of systems engineering 
4  Systems and software engineering, System life cycle processes 
5 OMG, Object Management Group, www.omg.org 
6 Telelogic, www.telelogic.com 
7 Geensys, www.geensys.com 
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2.3 Case study 

We consider a mechanical press that aims at stamping metal products with a tool in vertical movement. A crankshaft 
equipped with two sensors for top and bottom dead centres gives this vertical movement. A clutch, which is actuated by 
a pneumatic valve, ensures the transmission between motor and crankshaft. Operator protection is supplied thanks to a 
two hands command. An emergency stop enable or not the stamping action. We focus on the press function that is in 
charge of clutching and braking the press motor in the normal operating mode (motor is considered as always working). 
In this mode, the press is initially stopped in up position and waits for a two hands command. Then, the tool is falling 
until the bottom dead centre is reached, then is rising back, and finally stopped when in up position. Moreover, if the 
operator releases the hand command during the falling phase, or if emergency stop occurs, the press is stopped. 

  

 
Fig. 1. Mechanical press case study 

 
Usually, control of such safety control system is performed by wired technology. Due to economic constraints (control 
application reusability, functions complexity), control of industrial machinery ensures more and more safety functions 
using Safe Programmable Logic Controller (Safe-PLC). Integration of safety functions into the software parts of pro-
grammable systems can be envisaged only if the safety level of programmable technology set is at least equal to the 
wired technology. One role of INRS is to study methods for the development of safety machines according to recom-
mendations listed in the annex IV of the machinery directive [18] and IEC 61508. In particular, the higher level SIL 4 
recommends the use of formal methods to control the quality of software intensive applications. 
In this way, INRS has studied the B method [4] and ordered a case study development using this method [19]. This 
study has clearly shown the benefit of using B for proved code generation. Nevertheless, modelling methodology is not 
explicit and relies on the expert practice. In the context of formal system engineering and taking into account the need 
for traceability of safety properties, this approach must be enrich by modelling guidelines: 

• to better detail how the safety requirements are taken into account when modelling,  
• to enlarge software engineering to automation and system engineering including software, hardware, man-machine 

interface and physical systems. 
In other words, starting the study of a complex system using formal models appears to be hardly achievable in practice. 
It justifies the use of less formal model such as SysML [20] to cover the first phases of specification using a graphical 
language that promotes the knowledge sharing between the involved engineers. 

3 SYSML-BASED METHODOLOGY TOWARDS REQUIREMENT VERIFICATION  

Requirements are the formalization of the user needs for one part and the formalization of provider limits or standards 
prescriptions for other ones. Requirements can be expressed at a high level of abstraction when dealing with system 
global features but can also be expressed at a very low level of abstraction when depending on technical local choices 
for system component (for example material and immaterial barriers to be used). Structuring this set of requirements is 
based on an incremental modelling, in the same idea than the B formal refinement, which consists in substituting an 
abstract requirement by a set of more concrete ones. Using SysML Requirements diagram, requirements are modelled 
with a class stereotype including an open list of attributes such as text definition, source, id, and so on. Structuring the 
requirements is done using the composition link provided by SysML, which means that the composed requirement is 
realized if and only if all the components requirements are realized. Figure 2 illustrates the decomposition of one ab-
stract requirement into several more concrete ones. Benefit of such a diagram is to facilitate the elicitation and structur-
ing of requirements that are usually expressed by the end-users and/or the standards in natural language [21]. 
This set of requirements must then be allocated (or mapped) onto system functions and/or components. Functions are 
modelled using classical Activity and/or Use Case diagrams. System components are modelled using SysML Block 
defined as class stereotypes. Structure of the control system is modelled using Block Definition Diagram (BDD) while 
detailed definition of control components can be modelled using Internal Block Diagram (IBD). IBD is an internal de-
scription of a component, similar to synchronous DES models, and which can be exported to widely used tools for con-
trol design (Simulink8, Scade9, ControlBuild10, etc). 
                                                 
8 Simulink is a MathWorks, Inc. product 
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Fig 2. Requirements refinement 

 
Allocation is made using the following SysML links: satisfy for the mapping between requirements and blocks (figure 
3) and refines for the mapping between requirements and functions (figure 4). Block and activity relationship is mod-
elled with allocate link: it means that an activity having a refines link with a requirement must be implemented by the 
block that satisfy this given requirement (figure 4). Note that requirement allocation is preserved by the block composi-
tion link. It means that if a requirement is satisfied by a component, then it is also satisfied by all its sub-components. 

 

 
Fig 3. Requirements allocation 

 
In order to provide proofs about requirements composition and allocation, we need a more formal description of the 
different safety properties, associated to each abstract and concrete requirement, respectively noted Pa(i) and Pc(j). In 
this way, we have extended the SysML meta-model to introduce property concept.  

  

 

a) Requirements, property, activity and blocs b) Properties refinement 
Fig 4. Requirements traceability 

 
Property is a requirement stereotype that formalizes requirements textual description in terms of logic predicates and/or 
numerical parameters (figure 4a). It proposes a list of attributes involving language type, regular expression, kind, and 
state machine describing some sequential properties. This extension enables: 

• to make the link between system modelling and trade-oriented design with the objective to prove that behaviour of 
a given component is compliant with local expected properties; in this way, concrete properties Pi of each 
components can be reused as logic or temporal predicates by model checking tools, such as UPPAAL11 or can be 
reused as post-conditions by simulation and testing tools, 

• to formally demonstrate that a logic combination of component’s concrete properties Pc(j) establishes the system 
abstract properties Pa(i), using a theorem prover, such as COQ12 (in figure 4a, P2 is composed of P2.1 and P2.2). 

                                                                                                                                                                  
9 SCADE is a Lustre-based Esterel Technologies product 
10 ControlBuild is IEC61131-3-based Geensys product 
11 UPPAAL is developed by the Information Technology Department of the Uppsala Univ. (Sweden) and the Computer Science Department of the 

Aalborg Univ. (Denmark). 
12 Huet G., Khan G.  and Paulin-Mohring C, 1995. The Coq proof assistant, Technical Report 178, Inria. 
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Integration of tools for system specification with SysML, for control system design & simulation using trade-oriented 
languages (ControlBuild) and for proving safety properties (UPPAAL model checker), have been impleneted using 
XML and XSLT transformations based on a meta-model of requirements, properties and blocks shared concepts (Figure 
4a). Following sub-sections illustrates all the steps of the proposed methodology using the INRS case study. 

4 APPLICATION ON THE INRS CASE STUDY 

4.2 Safety requirements modelling 

Safety requirements for the mechanical press are issued from the ISO 12100-1 risk analysis including: 
• a hazard identification and risk assesment based on risk analysis methods like fault tree analysis or Failures Modes 

Effects Criticality Analysis (FMECA). 
• a risk reduction based on prevention measures, integration of safety devices and information notices. 

Safety analysis shows that the most important risk is a crash risk of operator's hands during the stamping movement. It 
identifies two access types to the dangerous area, a front access and two lateral accesses. Because of the crankshaft 
position in the press architecture, lateral access are potentially damageable not only during the downing phase (when 
the tool stamp the iron sheet) but also during the rising phase (when the tool return to its initial position). So lateral 
access must be avoided during all the press movement (requirement SR3) and front access must only be avoided during 
the downing phase (requirement SR1).  
According to the ISO 12100-2 protector choice algorithm, we choose removable protectors for the lateral access (SR3) 
and a two hands command (THC) for the front access (SR1). THC role is to require that the operator use his two hands 
to press on the THC two devices (kind of pushing buttons) if he wants to activate the stamping movement. All protec-
tion devices are interlocked with the press stamping movement. It means that if a protection is not activated during the 
stamping movement then the movement is stopped (Requirement SR2). These first set of abstract requirements are 
modelled in Figure 5a. 

 

a) Abstract requirements b) Requirement refinement 
Fig 5. Requirements modelling 

 
Our study focuses onto the two hands command. Requirement SR1 is split according to EN954-1 general standard 

and to EN 574 two hands commands dedicated standard into a set of five detailed requirements related to: 
• ergonomics of the two hands command (requirement SR1.2 prevent that THC can be activated with only one 

hand), 
• self fault detection (requirement SR1.4 says that THC must be desactivated if a fault is detected), 
• two hands command activation and deactivation (requirements SR1.1 means that THC is reactivated only if both 

devices have been released, SR1.3. means that THC is activated only if both devices have been actuated in a 0,5 s 
interval and SR1.5 means that THC is deactivated if one device is released. 

These new sub-requirements are modelled by enriching the previous SysML Requirement Diagram and by associat-
ing semi-formal predicates associated to each requirement (figure 5b) using property stereotype. It means that satisfying 
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property P1 is equivalent to fully satisfy properties P1.1. to P1.5. Proving this equivalence between first order logic 
predicates can be done manually or using a theorem prover such as COQ. Note that a same approach must be used to 
refine requirement SR2 and SR3. 
Next phase consist identifying the system architecture including software and hardware components in order to allocate 
each requirement on a supporting device. 

4.3 Safety requirements allocation 

Requirements allocation using “satisfy” link enable to link one or more blocks (system component) to one or more 
requirements. Two hands command requirements allocation is given in table 1.  

 
Requirements Components 
SR 1 All 
SR 1.1 Software / Device 
SR 1.2 Cover / Switch 
SR 1.3 Software / Device  
SR 1.4 Software / Device  
SR 1.5 Software / Device 

Table 1. Requirements allocation 
 

Description of structural and functional views of the press-system is done using respectively: 
• block diagrams that define the system component architecture. For example classical THC has been architecture 

involve devices (pushing buttons), a cover, two switches for faults detections, and software component (Figure 
6a). 

• activity diagrams that define operation calls and data exchange. For example, Figure 6b describes operations that 
are supported by the tow hand command. 

 

a) THC Block definition diagram b) THC activity diagram 
Fig 6. Block definition and activity diagrams 

 
Requirements allocation is modelled using “satisfy” link between requirements and blocks. For example, THC require-
ments allocation leads to the figure 7 SysML diagram. 

 

 
Fig 7. THC requirements allocation 
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Properties associated to requirements become the properties that each component must satisfy. This operation can lead: 
• to decompose a property into several sub-properties when a requirement and its associated property is allocated to 

several component; this is the case for properties 1.1, 1.3, 1.5 which are projected on software component 
(properties 1.1.a, 1.3.a, 1.5.a) and on device component (1.1.b, 1.3.b) and for 1.4 property which is split into 
software (1.4a), device (1.3b/1.4c) and switch blocks (1.4b).  

• to possibly merge properties when a same component satisfies several properties; this is the case of the device 
block which satisfies part of 1.3 and 1.4 properties that can be merged into 1.3b/1.4c property. Merging operation 
between predicates results from a logical AND between elementary predicates. 

Correctness of these decomposition and merging operations can be established and demonstrated using manual or a 
theorem prover. It leads to the final THC requirements allocation given by the figure 11 where LD and RD represent 
respectively the activation of left and right devices or pushing buttons, C_LD and C_RD represent respectively the 
activation of fault switch associated to left and right pushing devices while HTC represent the activation of two hand 
command. 
Next phase consists in a detailed design of the identified components (and more particularly the behavioural description 
of the system), and in proving that the system design is compliant with the identified properties. 

4.4 Safety requirements verification 

The behavioural design of the THC software control part has to satisfy the properties 1.1a, 1.3a, 1.4a and 1.5a identified 
in figure 8. This design must also be compliant with the functional architecture shown in figure 8. It can be done using 
internal block diagrams (IBD) and state diagrams provided by SysML. Note that the synchronous data flow structure 
provided by IBD facilitates its transcription into dedicated control design tool based on synchronous DES models such 
as Simulink, Scade or ControlBuild (figure 9). 

 

 
Fig 8. THC properties 
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satisfy

satisfy

satisfy

satisfy

satisfy



8/10 
   

 
Fig 9. THC Intrenal Block Diagram 

 
Verifying that all behavioural descriptions of the blocks satisfy the local properties identified by figure 8 requires the 
use of a model checker and the translation of the behavioural models (internal block diagrams and state diagrams) into a 
dedicated language supported by the model checker. For this study, UPPAAL model checker has been chosen. State-
based machine are used for the description of the behavioural model and temporal logic for the description of the prop-
erties to be proved. Translation of the behavioural models from SysML to UPPAAL is quite obvious due to the use of 
State machines both in SysML and UPPAAL modelling. For the properties translation, three kinds of properties can be 
mentioned: 

• combinatory properties (P1.5.a ; P1.3.a) 
• sequential properties (P1.4.a) 
• temporal properties (P1.1.a). 

Translation of the combinatory properties is the simpler one. Indeed, they can all be expressed as “it is always true that 
…” and can be modelled using AG operator in UPPAAL : 

• AG (NOT(LD) OR NOT(RD) ⇒ NOT(HTC)   [P1.5a] 
• AG (NOT(LD XOR C_LD) OR NOT(RD XOR C_RD) ⇒ NOT(THC) [P1.3a] 
 

Translation of sequential properties is more difficult. It requires the use of an observer; i.e. a state machine that registers 
the system evolution and that introduces a faulty state in which the system must never go. For example, P1.4a is repre-
sented by such an observer which involves 3 states (figure 10): the first one with THC active, the second one with THC 
inactive and both devices released and a third one, halfway, with THC inactive and only one device released. The prop-
erty P1.4a formalizes that activating THC is only possible if both devices have been released since the previous activa-
tion. So when state 3 is active (THC have just been deactivated), it is possible to reach state 1 only by activating state 2. 
Consequently, the faulty state, corresponding to the evolution that must be avoided, can be reached from state 3 if THC 
is activated. Verification of the properties is done by proving using UPPAAL that the faulty state can never be reached. 

 

 
Fig 10. Observer for property P1.4a 

 
All these translations have been implemented using model transformation as recommended by Model Driven Engineer-
ing. It is based on the definition of a XML common format using XSLT transformations to enable the exchange of data 
and models between different commercial tools, such as those used for the INRS case study: SysML system specifica-
tion (Magic Draw), control system design and simulation using trade-oriented languages (ControlBuild), model-checker 
for proving the safety properties (UPPAAL). 

4.5 Discussion 

In this study, only safety properties have been focused on, the functional properties have not been considered. This is 
justified by the chosen implementation that follows the recommendations provided by the standards related to manufac-
turing machines, i.e. to separate safety related components from nominal components. Consequently, the chosen im-
plementation in Safe-PLC is based on a safety filter that is placed between control system and physical system and that 

THC_react

THC_desact

THC_fault

THC
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enables or disables the control system outputs [22]. In other words, it means that this filter ensures that the safety re-
quirements are always satisfied whatever the outputs of the control system are (figure 11). 

 

 
Fig 11. Safety filter [22] 

 
Benefit is that functional components of the machine control can be developed according classical approaches while 
more costly methods needed to reach level 2, 3 or 4 of SIL (Safety Integrity Level) are limited to safety components 
that are involved in safety filter. Note that splitting functional and safety requirements is not always an obvious task: if a 
component realizes both safety and nominal functions then it must be consider entirely as safety related.  

5 CONCLUSION 

There is a growing interest in formal methods and tools that facilitate the validation of software-intensive automation 
systems. This interest becomes a legal requirement when dealing with safety-critical systems; the IEC 61508 safety-
related standard strongly recommends the use of formal verification methods to be applied in the certification process 
by the suppliers, integrators, or independent external authorities, but without defining how they can be applied. On the 
other way, system engineering semi-formal approaches appears to be essential for capturing and structuring the re-
quirements of a complex system and for proposing high level system functional architectures that cope with the identi-
fied requirements. 

 
Trying to match theses apparently opposite way of thinking, we have proposed a system modelling approach that com-
bines non-formal methods based on SysML requirements and block diagrams, and formal methods such as model-
checking to prove that the local behaviour of each system component contributes to satisfy system requirements. This 
work is based on the mapping between structured models of the requirements to be satisfied, the functions to be realized 
and the component to be implemented. 
One limit must be mentioned: composition of properties is assumed to be described by a simple logical expression (i.e. 
satisfying a property is assumed to be equivalent to satisfy a logical combination of sub-properties) but it is not always 
true especially when manipulating temporal expression involving operators such as before, after or until. Further work 
is currently developed in this way. Benefit relies on the requirements traceability all along the system engineering proc-
ess and on the associated verification capabilities. This point is very helpful for the development of COTS-based (com-
mercial off-the-shelf) control, where subcontractors’ requirements must be clearly identified. 

 
Although these interdisciplinary exchanges between computer science and system engineering approaches demonstrate 
that they contribute to verify the safety integrity highest levels, common experiments on laboratory-scale and industrial-
scale case-studies emphasize that effort must still be employed to make the proposed engineering framework effective 
in practice. 
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