Positive trigonometric polynomials for strong stability of difference equations
Didier Henrion, Tomas Vyhlidal

To cite this version:

HAL Id: hal-00532796
https://hal.archives-ouvertes.fr/hal-00532796
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Positive trigonometric polynomials for strong stability of difference equations1

Didier Henrion2, Tomáš Vyhlídal3

November 4, 2010

Abstract

We follow a polynomial approach to analyse strong stability of linear difference equations with rationally independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5.

Keywords: strong stability, spectral radius, trigonometric polynomials, LMI.

1 Introduction

In general, spectrum-based analysis of time-delay systems can be handled in the same way it is done for delay-free systems. Although the spectrum is infinite, stability is determined by the rightmost eigenvalues, more precisely by the sign of the spectral abscissa, the maximum real part of the eigenvalues. For retarded systems, the spectral abscissa is nonsmooth but continuous in all parameters of the system, including time delays, see [24]. However, it results from [12, 2, 4, 8], that, in general, it is not the case for neutral systems and kernel operators - the so-called associated difference equation, see also [17, 18, 19]. It is well-known that the spectral abscissa of the difference equation is not continuous in delays. Thus, arbitrarily small changes in the delay values can destroy stability. Moreover,
it can even happen that the number of unstable roots increases stepwise from zero to infinity. In order to handle this hypersensitivity of the stability of the difference equation with respect to delay values, the concept of strong stability was introduced by [8]. Let us remark that the strong stability concept has recently been generalized by [20] toward difference equations with dependencies in the delays.

As stability of its kernel operator is a necessary condition for stability of a neutral system, all the hypersensitivity stability issues are carried over to the stability of neutral systems. Thus the strong stability test should always be performed to guarantee practical stability of neutral systems. However, as will be shown later in the text, the strong stability test is rather complex. So far, a coarse numerical implementation of the test without guarantee or certificate has been used as a rule, see e.g. [18, 25]. Even though this brute force based approach works in most cases, it might fail due to approximation errors in the numerical scheme. As the main result of this paper we propose a more rigorous strong stability test that is based on a polynomial approach, relying on the numerical solution of a hierarchy of linear matrix inequalities (LMIs).

In the field of time-delay systems, LMIs are usually used as stability determining criteria resulting from the Lyapunov time-domain approach, see e.g. [21] or [16], among many others.

1.1 Problem statement

We consider a neutral system of the following form

\[
\frac{d}{dt} \left(x(t) + \sum_{k=1}^{m} H_k x(t - \tau_k) \right) = A_0 x(t) + \sum_{j=1}^{p} A_j x(t - \vartheta_j) \tag{1}
\]

where \(x \in \mathbb{R}^n \) is the state, \(\tau_k > 0, k = 1, \ldots, m \) and \(\vartheta_j > 0, j = 1, \ldots, p \) are the time delays. It is well-known, see [7], that a necessary condition for stability of neutral system (1) is stability of the associated difference equation

\[
x(t) + \sum_{k=1}^{m} H_k x(t - \tau_k) = 0. \tag{2}
\]

Moreover, strong stability of equation (2) is required, i.e. stability independent of the values of the delays, [2, 7]. In [8] (Theorem 2.2 and Corollary 2.2), a condition for strong stability condition is stated as follows:

Proposition 1 Delay difference equation (2) is strongly stable if and only if

\[
\gamma_0 := \max_{\theta \in [0, 2\pi]^m} r_\sigma \left(\sum_{k=1}^{m} H_k e^{-i\theta_k} \right) < 1, \tag{3}
\]
where \(r_\sigma \) denotes the spectral radius, i.e. the maximum modulus of the eigenvalues. Furthermore, if \(\gamma_0 > 1 \) then equation (2) is exponentially unstable for rationally independent delays.

Notice that the quantity \(\gamma_0 \) does not depend on the value of the delays, i.e. exponential stability locally in the delays is equivalent with exponential stability globally in the delays \(\tau_1, \ldots, \tau_m \).

Let us remark that by homogeneity, the expression of \(\gamma_0 \) can be simplified to

\[
\gamma_0 = \max_{\theta \in [0, 2\pi]^{m-1}} r_\sigma \left(\sum_{k=1}^{m-1} H_k e^{-i\theta_k} + H_m \right).
\]

We conclude the section with some properties of the quantity \(\gamma_0 \), see [19, 18], for more details.

Properties

1. Stability of difference equation (2) with rationally independent delays implies strong stability, and vice versa

2. In the case of one delay \((m = 1)\),

\[
\gamma_0 = r_\sigma(H_1).
\]

3. In the case of a scalar equation \((n = 1)\),

\[
\gamma_0 = \sum_{k=1}^{m} |H_k|.
\]

4. A sufficient, but as a rule conservative, condition for strong stability is given by

\[
\sum_{k=1}^{m} \|H_k\| < 1
\]

where \(\|\cdot\| \) denotes the matrix Euclidean norm, i.e. the maximum singular value.

1.2 Computational issues

The problem of solving (3) can be formulated as an optimization task with the objective to find the global maximum of spectral radius over \(\theta \in [0, 2\pi]^m \). However, in general the objective function \(r_\sigma(\theta) \) is nonconvex, i.e. it can have multiple local maxima. Besides, the function can be nonsmooth (e.g. at the points where the spectral radius is determined by

\footnote{The \(m \) numbers \(\tau = (\tau_1, \ldots, \tau_m) \) are rationally independent if and only if \(\sum_{k=1}^{m} n_k \tau_k = 0 \), \(n_k \in \mathbb{Z} \) implies \(n_k = 0 \), \(\forall k = 1, \ldots, m \). For instance, two delays \(\tau_1 \) and \(\tau_2 \) are rationally independent if their ratio is an irrational number.}
more than either one single eigenvalue or a couple of complex conjugate eigenvalues). The fact that the function is nonsmooth precludes the use of standard optimization procedures. Instead, nonsmooth optimization methods can be used, such as gradient sampling, see [4, 22]. However, even though these methods can handle the problem of nonsmoothness, they converge to local extrema as a rule. As suboptimal solutions are not sufficient (the global maximum of the spectral radius is needed) a brute force method has been used to solve the task so far, see [18, 20, 25]. In the first step, each dimension of \([0, 2\pi]^m\) is discretized to \(N\) points. Then evaluation of (3) consists in solving \(N^m\) times \(n \times n\) eigenvalue problems. Hence, the overall cost of one evaluation of \(\gamma_0\) is \(O(N^m n^3)\), see [25]. If the simplified expression (4), the computational costs reduces to \(O(N^{m-1} n^3)\).

Obviously, the complexity of the computation grows considerably with the number of delays in the difference equation. Moreover, the risk of missing global extrema due to sparse or inappropriate gridding cannot be avoided.

\section{Strong stability and Hermite’s condition}

Consider the characteristic polynomial

\[p(z) = \det(z_0 I_n + \sum_{k=1}^{m} z_k H_k), \]

which is homogeneous of degree \(n\) in \(m+1\) variables \(z_k, k = 0, 1, \ldots, m\).

Based on (3), considering \(z_k = e^{j\theta_k}, \theta_k \in [0, 2\pi], k = 1, \ldots, m\), the difference equation (2) is strongly stable if and only if the univariate polynomial

\[z_0 \to p(z) \]

is discrete-time stable, i.e. it has all its roots in the open unit disk.

In order to deal with stability of this polynomial, we use a stability criterion based on the Hermite matrix. It is a Hermitian matrix of dimension \(n\) whose entries are quadratic in the coefficients of the polynomial. The Hermite matrix \(z_1, \ldots, z_m \to H(z)\) is therefore a trigonometric polynomial matrix in \(m\) variables \(z_1, \ldots, z_m\).

Derived by the French mathematician Charles Hermite in 1854, the Hermite matrix criterion is a symmetric version of the Routh-Hurwitz criterion for assessing stability of a polynomial. It says that a polynomial \(p(z) = p_0 + p_1 z + \cdots + p_n z^n\) has all its roots in the open upper half of the complex plane if and only if its Hermite matrix \(H(p)\) is positive definite. Note that \(H(p)\) is \(n\)-by-\(n\), Hermitian and quadratic in coefficients \(p_k\), so that the above necessary and sufficient stability condition is a quadratic matrix inequality (QMI) in coefficient vector \(p = [p_0, p_1, \ldots, p_n]\).

The standard construction of the Hermite matrix goes through the notion of Bézoutian, a particular form of the resultant. A bivariate polynomial is constructed, from which a quadratic term is factored out, yielding a quadratic form shaped by the Hermite matrix. The construction is explained e.g. in [9] and references therein. See especially [15] which
explains that a discrete-time Hermite matrix, sometimes called Schur-Cohn or Schur-Fujiwara matrix, can be obtained similarly. The discrete-time Hermite matrix is also quadratic in the p_k, and it is positive definite if and only if polynomial $p(z)$ has all its roots in the open unit disk.

Zdeněk Huráček pointed out that there is a much simpler construction of the Hermite matrix in the discrete-time case. The construction can be traced back to Issai Schur [23], and it is explained in [1]. Entrywise formulas are also described in [3, Theorem 3.13]. Let

$$S_1(p) = \begin{bmatrix} p_n & p_{n-1} & p_{n-2} \\ 0 & p_n & p_{n-1} \\ 0 & 0 & p_n \\ \vdots & & & \ddots & \ddots & \vdots & \end{bmatrix} \quad S_2(p) = \begin{bmatrix} p_0 & p_1 & p_2 \\ 0 & p_0 & p_2 \\ 0 & 0 & p_0 \\ \vdots & & & & & & \ddots & \ddots & \ddots & \end{bmatrix}$$

be n-by-n upper-right triangular Toeplitz matrices. Then

$$H(p) = S_1^T(p)S_1(p) - S_2^T(p)S_2(p).$$

Strong stability of the difference equation is hence equivalent to positive definiteness of the Hermite matrix of the univariate characteristic polynomial, which is a multivariate trigonometric polynomial matrix in z_1, \ldots, z_m. We express this constraint as

$$H(z_1, \ldots, z_m) \succ 0.$$ \hspace{1cm} (6)

3 Positivity of trigonometric polynomials

As shown in the previous section, the key ingredient in our approach to strong stability of difference equation is assessing positivity of multivariate trigonometric polynomials. This topic has been subject to recent studies, and the recent monograph [5] is a good introduction focusing on signal processing applications.

In this section we start with a scalar multivariate trigonometric polynomial, formulate its positivity test as a minimization problem, describe an LMI hierarchy yielding an asymptotically converging monotonically increasing sequence of lower bounds. We also describe a hierarchy of eigenvalue problems (linear algebra, much simpler computationally than LMI methods) to generate a hierarchy of upper bounds.

Then we extend these results to matrix polynomials, and describe the hierarchy of LMI problems that must be solved to guarantee positivity of a trigonometric matrix polynomial at the price of solving a hierarchy of convex problems, the decision variables being entries of a Gram matrix yielding a sum-of-squares decomposition for the matrix polynomial.

3.1 Minimising trigonometric polynomials

A trigonometric polynomial has the form $h(z) = \sum_\alpha h_\alpha z^\alpha$ where integer vector $\alpha \in \mathbb{N}^n$ is a multi-index such that $z^\alpha = \prod_{i=1}^n z_i^{\alpha_i}$, complex vector $z \in \mathbb{C}^n$ contains indeterminates
such that \(z_i = e^{i\theta_i} \) for some \(\theta \in [0, 2\pi]^n \), and complex numbers \(h_\alpha \in \mathbb{C} \) are coefficients. We use the notation \(z \in \mathbb{T}^n \) to capture the constraint that each variable \(z_k \in \mathbb{C} \) belongs to the unit disk \(\mathbb{T} \).

We consider real trigonometric polynomials such that \(h(z) = h(z)^* \) where the star denotes complex conjugation. These are such that \(\sum_\alpha h_\alpha z^\alpha = \sum_\alpha h_\alpha^* z^{-\alpha} \) and hence \(h_\alpha = h_{-\alpha}^* \).

Since \(h(z) \) maps \(\mathbb{T}^n \) onto \(\mathbb{R} \), we are interested in solving the problem

\[
\begin{aligned}
 \min_{z \in \mathbb{T}^n} h(z).
\end{aligned}
\]

3.2 Hierarchy of lower bounds via SDP

In this section we construct a monotonically decreasing sequence of lower bounds on \(h_{\min} \) that converges asymptotically. Each bound can be computed by solving an LMI, a convex semidefinite programming (SDP) problem.

First note that by definition

\[
 h_{\min} = \min_{\mu} \int_{\mathbb{T}^n} h(z) d\mu(z)
\]

where the minimisation is over all probability measures defined on the sigma-algebra of the multidisk \(\mathbb{T}^n \), see Chapter 5 in [14].

Let us express polynomial \(h(z) \) as a Hermitian quadratic form

\[
 h(z) = b_k^*(z) X_k b_k(z)
\]

where \(b_k(z) \) is a vector basis of trigonometric polynomials of degree up to \(k \), e.g. containing monomials \(z^\alpha, \alpha \geq 0, \max_i \alpha_i \leq k \). Matrix \(X_k \) is called the Gram matrix of polynomial \(h(z) \) in basis \(b_k(z) \). Then a result of functional analysis by M. Putinar, transposed to trigonometric polynomials [5, Theorems 3.5 and 4.11], states that \(h(z) > 0 \) if and only if there exists a finite integer \(d \) and a positive semidefinite Hermitian matrix \(X_d \succeq 0 \) such that (8) holds for \(k = d \).

As soon as \(k \) is fixed, finding a matrix \(X_k \succeq 0 \) satisfying (8) can be cast into an SDP feasibility problem which amounts to expressing polynomial \(h(z) \) as a sum-of-squares (SOS) of trigonometric polynomials of degree \(k \).

Now defining

\[
 \underline{h}_k = \sup_{h} \frac{h}{h(z) - \underline{h}} = b_k^*(z) X_k b_k(z)
\]

for some \(X_k \succeq 0 \) it follows that \(\underline{h}_k \leq \underline{h}_{k+1} \) and we expect that \(\lim_{k \to \infty} \underline{h}_k = h_{\min} \), even though a rigorous proof of convergence is out of the scope of this paper.

3.3 Hierarchy of upper bounds via EVP

In this section we show that we can construct a monotonically increasing sequence of upper bounds on \(h_{\min} \) that converges asymptotically. Each bound can be computed by solving an eigenvalue problem (EVP)
In problem (7) let us consider that measure μ is absolutely continuous w.r.t. measure ν, the probability measure supported uniformly on the multidisk. Let us further restrict the class of measures by considering that there exists a trigonometric polynomial $q_k(z) = \sum_{0 \leq \alpha \leq k} q_{k\alpha} b_k(z)$ of total degree k such that $\mu_k(dz) = q_k^*(dz)q_k(dz)\nu(dz)$, with $\lim_{k \to \infty} \mu_k = \mu$ since \mathbb{T}^n is compact. Let $y_\alpha = \int_{\mathbb{T}^n} z^\alpha d\nu(z)$ denote the moment of order α of ν. Finally, let us define

$$\overline{h}_k = \min_{\mu_k} \int_{\mathbb{T}^n} h(z)d\mu_k(z)$$

as an optimisation problem over this restricted class of measures.

With these notations

$$\int h(z)d\mu_k(z) = \int h(z)q_k^*(z)q_k(z)d\nu(z) = \int h(z)q_k^*b_k(z)b_k^*(z)d\nu(z)$$

is the same as

$$q_k^* \left(\int h(z)b_k(z)b_k^*(z)d\nu(z) \right) q_k = q_k^*M_k(h\ y)q_k$$

where $M_k(h\ y)$ is called the localising matrix of order k of measure ν w.r.t. polynomial h, see [14]. Its rows and columns are indexed by multi-indices β and γ respectively, and its entry (β, γ) is equal to $\sum_\alpha h_\alpha y_{\alpha - \beta + \gamma}$. Therefore matrix $M_k(h\ y)$ can be obtained from the moments of ν, and hence it is given. It is positive definite.

If $h(z) = 1$, matrix $M_k(y)$ is called the moment matrix of order k of measure ν. Its entry (β, γ) is equal to $y_{\beta + \gamma}$, and hence matrix $M_k(y)$ is given as well. Since μ_k is a probability measure

$$\int d\mu_k = \int q_k^*q_k d\nu_k = q_k^*M_k(y)q_k = 1$$

and hence

$$\overline{h}_k = \min_{q_k} \begin{array}{c} q_k^*M_k(h\ y)q_k \\ \text{s.t.} \quad q_k^*M_k(y)q_k = 1 \end{array}.$$

It follows that $\overline{h}_k \leq \overline{h}_{k+1}$ and $\lim_{k \to \infty} \overline{h}_k = h_{\min}$ even though I am not totally confident that this latter result is correct.

Finally, given positive definite Hermitian matrices A and B, optimisation problem $\min_v v^*Av$ s.t. $v^*Bv = 1$ can be solved via linear algebra. Indeed, let z denote an eigenvalue of the pencil $zB - A$, and let \bar{v} denote the corresponding unit eigenvector. Then vector $v = (\bar{v}^*B\bar{v})^{-\frac{1}{2}}\bar{v}$ is such that $v^*Bv = 1$ and $v^*Av = z$. Minimising this quantity then amounts to finding the minimum eigenvalue of pencil $zB - A$.

3.4 Polynomial matrices

The above results on scalar polynomials can be extended directly to polynomial matrices by considering a matrix basis instead of a vector basis to build the Hermitian matrix representation (8).
In the context of our strong stability analysis problem, the core idea is then to replace the (typically difficult) Hermite matrix positivity condition \((6)\) with a hierarchy of tractable SDP problems. We write
\[
\tilde{h}_k = \sup_{\text{s.t.}} h \quad H(z) - h = (b_k(z) \otimes I_n) \cdot X_k (b_k(z) \otimes I_n)
\]
as an LMI relaxation of order \(k\) of positivity condition \((6)\).

If \(\tilde{h}_k > 0\) for some \(k\), then it implies that \((6)\) is satisfied.

If \(\tilde{h}_k \leq 0\) for some \(k\), then we cannot conclude directly, but we can try to extract from the dual (moment) SDP problem a certificate that indeed matrix \(H(z)\) cannot be positive definite, see \([11]\) even though the trigonometric polynomial matrix case is not developed in this reference. If we cannot extract useful information from the dual problem, we have to increase the value of \(k\) and solve the next LMI in the hierarchy.

4 Complexity

Let \(M\) denote the size of the Gram matrix \(X_k\) in SDP problem \((9)\). If we use an interior-point method, the worst-case complexity of one Newton iteration for an SDP problem in a cone of that size is \(O(M^6)\). Experiments reveal that the practical complexity is approximately \(O(M^4)\).

The number of monomials of \(m\) variables of degree \(k\) in basis \(b_k(z)\) is equal to \((k + 1)^m\). Polynomial \(p(z)\) has \(m\) variables and degree \(n\) so degree \(k\) in \((8)\) should be such that \(2k \geq n\). Note that we can have \(2k > n\) since higher-degree terms may cancel in the right handside of equation \((8)\).

If we choose \(k = n/2\) or \(k = (n+1)/2\) depending on whether \(n\) is even or not, in terms of complexity \(M = O(n^{m+1})\). The overall complexity of our SDP approach to strong stability analysis therefore grows exponentially in the number of delays \(m\), and polynomially in the number of states \(n\). However the exponent of this polynomial growth is quite large.

In comparison, the gridding approach mentioned at the beginning of the paper has a complexity which also grows exponentially in the number of delays, but the dependence on the number of states is only cubic. However, contrary to the SDP approach, the gridding approach does not provide guarantees.

5 Examples

Preliminary numerical examples indicate that the EVP approach of paragraph 3.3 yields a sequence of bounds which converges slowly (sublinearly). This is why in this section we focus exclusively on the SDP approach of paragraph 3.2.

We implemented a collection of Matlab functions to manipulate trigonometric polynomials, Hermite matrices, and formulate SDP problems corresponding to positivity checks.
The functions are available for download and they provide the following functionalities:

- **sampledet.m** - given a collection of matrices \(H_k, k = 0, \ldots, m \), this function computes the coefficients of the multivariate polynomial \(p(z) = \det(H_0 + H_1 z_1 + \cdots + H_m z_m) \); it proceeds by sampling and interpolation, as described in [10].

- **trigoherm.m** - computes the Hermite matrix of a homogenized multivariate polynomial; it uses the formula of [3, Theorem 3.13] adapted to complex coefficients.

- **trigohermgram.m** - computes the SDP problem corresponding to the positivity test for a given Hermitian multivariate polynomial matrix; the SDP problem is given in SeDuMi’s input format:

\[
\begin{aligned}
\min & \quad c^T x \\
\text{s.t.} & \quad A x = b \\
\max & \quad b^T y \\
\text{s.t.} & \quad z = c - A^T y \\
& \quad x \in K \\
& \quad z \in K
\end{aligned}
\]

where \(x \in \mathbb{R}^N \), \(y \in \mathbb{R}^M \), and \(K \) is the cone of positive semidefinite matrices of size \(S = \sqrt{N} \).

Some instrumental functions are also provided, namely **genmon.m** which generates powers of monomials and **locmon.m** which locates a monomial in a Gram matrix. Besides, the function **bfssde.m** is available to evaluate (3) by brute force, as explained in subsection 1.2.

5.1 Three states, two delays

We adopt the illustrative example from [18] with \(n = 3, m = 2 \), where

\[
H_1 = \begin{bmatrix}
0 & 0.2 & -0.4 \\
-0.5 & 0.3 & 0 \\
0.2 & 0.7 & 0
\end{bmatrix}, \quad H_2 = \begin{bmatrix}
-0.3 & -0.1 & 0 \\
0 & 0.2 & 0 \\
0.1 & 0 & 0.4
\end{bmatrix}
\]

for which **bfssde.m** (with \(N = 360 \)) provides \(\gamma_0 = 0.7507 \) in less then 0.1 seconds under Matlab 7.7 on our Linux PC equipped with Intel Xeon 2.67GHz CPU with 8GB RAM. On Fig. 1 shows the spectral radius as a function of \(\theta_1 \).

The following Matlab script assesses stability of the corresponding difference equation by first building the determinantal polynomial, then the corresponding Hermite matrix, then the SDP problem, and eventually by solving the SDP problem with SeDuMi, a primal-dual interior-point solver:

```matlab
H1=[0 0.2 -0.4;-0.5 0.3 0;0.2 0.7 0];
H2=[-0.3 -0.1 0;0 0.2 0;0.1 0 0.4];
p=sampledet({eye(3),H1,H2}); % evaluate determinant
p=p(:,abs(p(1,:))>1e-8); % remove small coefficients
H=trigoherm(p); % compute Hermite matrix
[A,b,c,K]=trigohermgram(H); % build SDP problem
[x,y,info]=sedumi(A,b,c,K); % solve SDP problem
```

\(^2\) homepages.laas.fr/henrion/software/trigopoly.tar.gz
The resulting SDP problem has size $N = 2304$, $M = 225$ and a positive semidefinite Gram matrix of size $S = 48$ is found after less than 0.1 seconds with SeDuMi 1.3.

We can also specify the strong stability radius γ_0 as a second input argument to function `trigoherm`. Internally, the polynomial is scaled appropriately and positivity of the Hermite matrix is assessed:

\[
H = \text{trigoherm}(p, 0.750); \\
[A, b, c, K] = \text{trigohermgram}(H); \\
[x, y, info] = \text{sedumi}(A, b, c, K);
\]

With the above sequence the SDP problem is found feasible. Changing the first instruction to

\[
H = \text{trigoherm}(p, 0.751);
\]

makes the resulting SDP problem infeasible, and this is certified by SeDuMi which returns a dual Farkas vector. As discussed at the end of paragraph 3.4, further analysis is required to conclude that indeed the Hermite matrix cannot be positive definite. We leave a comprehensive treatment of this case for further work.

5.2 Four states, three delays

We consider a system with $n = 4$, $m = 3$, where

\[
H_1 = \begin{bmatrix}
-0.15 & 0 & 0.32 & 0; & 0 \\
0 & -0.07 & 0 & 0.05; \\
0.08 & 0 & 0.04 & 0; & 0.2 \\
0 & 0.03 & 0 & -0.13;
\end{bmatrix};
\]
H2=[-0.02 0.12 0 0.25;0 -0.05 0.04 0;
0 0.23 0 -0.3;0.19 0 0.28 -0.09];
H3=[0 0 -0.03 0.14;0.01 -0.04 0 0;
0 0 0.09 0.26; 0.05 -0.27 -0.06 0];

for which `bfssde.m` (with $N = 360$) provides $\gamma_0 = 0.6028$ in 4.5 seconds, see Fig. 2 with the distribution of the spectral radius with respect to values of θ_1 and θ_2.

The resulting SDP problem has size $N = 250000$, $M = 5840$ and a positive semidefinite Gram matrix of size $S = 500$ is found after approximately 6 minutes of CPU time, certifying that the spectral radius is less than one.

5.3 Four states, four delays

We conclude with an example with $n = 4$, $m = 4$ and the matrices

$$
H1=[0.1\ 0\ 0\ -0.2;\pi/5\ -0.1\ 0\ -0.3;
0\ 0\ 0.03\ 2;0\ \exp(-1)\ 0\ 0.23]
H2=[0\ 0\ 0.0456;0\ -0.33\ 0.11\ 0];
$$
for which `bfssde.m` (with \(N = 360 \)) provides \(\gamma_0 = 1.7649 \) in more than 30 minutes.

The resulting SDP problem has size \(N = 6250000, M = 52496 \) and a positive semidefinite Gram matrix of size \(S = 2500 \). This problem cannot not be solved on our computer, SeDuMi issues an out of memory error message. In this case, we may to try to exploit the problem structure (sparsity) to generate a smaller SDP problem, but this is out of the scope of this paper.

6 Conclusions

In the context of neutral time-delay systems, strong stability of difference equations is generally assessed numerically with a brute force gridding approach. A parallel can be draw with the \(\mu \)-analysis approach to robustness of linear systems, see e.g. [26] where brute force gridding can yield misleading results and should be replaced, if possible, with more rigorous certificates of robustness.

In this paper, using the Hermite stability criterion for discrete-time polynomials the problem of assessing strong stability is reformulated as the problem of deciding positive definiteness of a trigonometric matrix polynomial of size equal to the state dimension and number of variables equal to the number of delays. This decision problem is hard, but it can be approached through a converging hierarchy of tractable semidefinite programming (SDP) or linear matrix inequality (LMI) relaxations. Numerical experiments reveal that the approach is limited to small state dimension and a small number of delays, as expected.

Acknowledgements

This work benefited from exchanges with Jean-Jacques Loiseau and Wim Michiels.

References

