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Abstract 21 

 22 

Coagulase-negative staphylococci (CNS) are isolated commonly from bovine 23 

milk and skin. Their impact on udder health and milk quality is debated. It has been 24 

suggested that sources and consequences of infection may differ between CNS species. 25 

Species-specific knowledge of the impact and epidemiology of CNS intramammary 26 

infections is necessary to evaluate whether species-specific infection control measures are 27 

feasible and economically justified Accurate measurement of impact, sources, and 28 

transmission mechanisms requires accurate species level identification of CNS. Several 29 

phenotypic and genotypic methods for identification of CNS species are available. Many 30 

methods were developed for use in human medicine, and their ability to identify bovine 31 

CNS isolates varies. Typeability and accuracy of typing methods are affected by the 32 

distribution of CNS species and strains in different host species, and by the ability of test 33 

systems to incorporate information on new CNS species into their experimental design 34 

and reference database. Generally, typeability and accuracy of bovine CNS identification 35 

are higher for genotypic methods than for phenotypic methods. As reviewed in this paper, 36 

DNA sequence-based species identification of CNS is currently the most accurate species 37 

identification method available because it has the largest reference database, and because 38 

a universally meaningful quantitative measure of homology with known species is 39 

determined. Once sources, transmission mechanisms, and impact of different CNS 40 

species on cow health, productivity and milk quality have been identified through use of 41 

epidemiological data and accurate species identification methods, appropriate methods 42 

for routine use in research and diagnostic laboratories can be proposed. 43 
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1. Introduction 46 

 47 

The role of coagulase-negative staphylococci (CNS) as etiological agents of 48 

bovine mastitis has not been fully elucidated and previous studies in this area have 49 

yielded contradictory results. For example, some researchers regard CNS as an important 50 

cause of bovine mastitis (Pyörälä and Taponen, 2008), while others consider them minor 51 

pathogens with limited impact on milk quality and udder health (Schukken et al., 2008). 52 

Presence of CNS is associated with clinical mastitis and with somatic cell counts (SCC) 53 

that are, on average, higher than those in culture-negative quarters (Schepers et al., 1997; 54 

Kudinha and Simango, 2002). Increased SCC is generally associated with decreased milk 55 

production (Seegers et al., 2003) but subclinical intramammary infections by CNS have 56 

been associated with increased milk production (Wilson et al., 1997). By contrast, clinical 57 

CNS mastitis was linked to decreased milk production (Gröhn et al., 2004) and increased 58 

risk of culling (Gröhn et al., 2005). Mere detection of CNS in a milk sample was not 59 

associated with an increased risk of treatment or culling for mastitis (Reksen et al., 2006). 60 

In addition to debate about the impact and relevance of CNS infections, there is debate on 61 

whether or not specific CNS species are associated with the outcome of infection. A 62 

Finnish study showed an association between CNS species and severity of clinical 63 

symptoms (Honkanen-Buzalski et al., 1994), but a different study from the same country 64 

did not show such an association (Taponen et al., 2006). One CNS species, 65 

Staphylococcus chromogenes, is thought to protect the udder from intramammary 66 

infection (Matthews et al., 1990a; De Vliegher et al., 2003), whereas Staphylococcus 67 

hyicus, a closely related species, does not have this effect. CNS have been categorized 68 



Page 5 of 37

Acc
ep

te
d 

M
an

us
cr

ip
t

 5

into human and animal-associated species (Watts and Owens, 1989). Human-associated 69 

CNS species, specifically Staphylococcus epidermidis, are thought to be more likely to 70 

invade and infect the udder than animal-associated species (Devriese and De Keyser, 71 

1980; Watts and Owens, 1989). Prevalence of Staphylococcus epidermidis may be 72 

associated with herd management factors. Specifically, S. epidermidis is more common in 73 

herds that use linear dodecyl benzene sulphonic acids for postmilking teat disinfection 74 

than in herds that use iodine (Hogan et al., 1987; Watts and Owens, 1989). Whether 75 

species specific transmission routes and control strategies exist for other CNS species is 76 

largely unknown. Because little species-specific information on control of CNS mastitis 77 

is available, identification to the group level, possibly supplemented with antimicrobial 78 

susceptibility testing, is currently sufficient for most therapeutic and management 79 

decisions. The defining characteristic of CNS as a group is the lack of coagulase 80 

expression, which is a phenotypic trait. To evaluate whether species-specific infection 81 

control measures are feasible and economically justified, species-specific knowledge of 82 

the impact and epidemiology of CNS infections is necessary. Accurate measurement of 83 

the impact, sources, transmission mechanisms and control options for individual CNS 84 

species requires accurate species level identification of CNS (Thorberg and Brändström, 85 

2000; Heikens et al., 2005; Sivadon et al., 2005). In this contribution, merits of 86 

phenotypic and genotypic methods for CNS species identification are compared with 87 

special consideration of identification of CNS isolated from bovine milk. 88 

89 
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2. The Species Concept 89 

 90 

Interpretive criteria for the definition of bacterial genera and species are not 91 

consistent in the literature and may differ between species, genera and authors (Freney et 92 

al., 1999; Lan and Reeves, 2001; CLSI, 2007). In fact, the whole concept of what defines 93 

a bacterial species is a matter of debate (Lan and Reeves, 2001). Standards for description 94 

of new staphylococcal species were last defined by the Subcommittee on the taxonomy of 95 

staphylococci and streptococci of the International Committee on Systematic 96 

Bacteriology in 1999 and were based largely on phenotypic criteria (Freney et al., 1999). 97 

Nowadays, combinations of phenotypic and genotypic methods are used to define new 98 

species, such as biochemical profiling, gas chromatographic analysis of cellular fatty 99 

acids, ribotyping, sequencing of the 16S rRNA gene and sequencing of additional 100 

housekeeping genes (Becker et al., 2004; Carretto et al., 2005). For many species, there is 101 

only a single or a limited number of type strains, and their phenotype and genotype 102 

defines the species (Becker et al., 2004; Shah et al., 2007). The aim of this paper is not to 103 

discuss the definition of species, but the accurate designation of species names to clinical 104 

isolates. Given that species and type strains exist, our task as diagnosticians and scientists 105 

is to determine to which species the CNS isolates that we study belong. 106 

 107 

3. Phenotypic Identification of CNS 108 

 109 

Phenotypic identification methods are based on evaluation of the expression of 110 

genetically encoded characteristics by bacterial isolates. Phenotypic traits include 111 
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morphology, growth characteristics, ability to metabolize substrates, antimicrobial 112 

resistance, and other features that result from DNA-expression but that are not based on 113 

detection of the bacterial DNA itself. Over the years, many phenotypic methods have 114 

been developed for the identification of staphylococci in diagnostic laboratories. Methods 115 

include commercial test systems such as the API 20 Staph system (bioMérieux), API ID 116 

32 Staph (bioMérieux), Staph-Zym (Rosco), the Vitek system (bioMérieux) and other 117 

combinations of biochemical tests, which may not be available in commercial formats 118 

(Bannerman et al., 1993; Devriese et al., 1994; Watts and Yancey, 1994; Ieven et al., 119 

1995).  120 

 An inherent weakness of phenotypic methods is that there is variability in 121 

expression of phenotypic characteristics by isolates belonging to the same species 122 

(Bannerman et al., 1993; Ieven et al., 1995; Heikens et al., 2005). Furthermore, the 123 

interpretation of phenotypic tests can be subjective (Carretto et al., 2005). Variability in 124 

the expression and interpretation of phenotypic characteristics limits the reproducibility 125 

of tests, i.e. the ability to generate the same results every time the tests are used. In 126 

addition to reproducibility, the typeability and accuracy of phenotypic testing are 127 

imperfect. Typeability is the proportion of isolates that are assigned a type by a typing 128 

system (Struelens et al., 1996). An increase in the number of tests that is included in a 129 

system generally improves typeability. For example, a study of human CNS isolates with 130 

an API-system based on 20 biochemical reactions showed a typeability of only 37% 131 

(Carretto et al., 2005) whereas a system that included 32 reactions had a typeability of 132 

85% (Maes et al., 1997).  133 
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 Accuracy does not have a single standard definition. The concept can be 134 

interpreted in two major ways. First, accuracy can denote the level of certainty assigned 135 

by a test to its own results. The statement "isolate 13 was identified to S. cohnii by API 136 

Staph with 99.1% accuracy" (from Heir et al., 1999) would be an example of this 137 

interpretation. Second, accuracy can denote the level of agreement between a method and 138 

a reference method, i.e. the correctness of the identification. The statement "Isolate 13, 139 

identified to S. cohnii by API Staph with 99.1% accuracy was identified as S. 140 

caseolyticus by 16S rRNA gene sequence analysis " (based on Heir et al., 1999) shows 141 

that the 99.1% "accuracy" assigned to the phenotypic test score did not reflect correct 142 

species identification. In the same study, a second isolate was not identified by API Staph 143 

typing, and identified as S. cohnii by 16S rRNA gene sequencing and tDNA-ILP (tDNA 144 

intergenic spacer length polymorphism) (Heir et al., 1999). Results for the second isolate 145 

provide an example of limited typeability of the phenotypic method, but without incorrect 146 

or inaccurate species identification. The acceptable level of accuracy for phenotypic 147 

methods is subjective. In one study, 111 of 122 CNS isolates were identified by the Vitek 148 

GPI system, with 29% of those at more than 90% probability of accuracy (Lee and Park, 149 

2001). The typeability of this system could be calculated as 111 of 122 = 91%, if all 150 

isolates for which a species name was generated were considered typeable, or as 32 of 151 

122 = 26%, if only results with more than 90% probability of accuracy were considered 152 

acceptable for species identification. In a study on CNS isolates from ovine milk between 153 

81.4% and 96.5% typeability was reported for three phenotypic species identification 154 

methods, but only 29% of isolates were identified in the same manner by all three 155 

methods (Burriel and Scott, 1998). This casts considerable doubt on the accuracy of the 156 
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species identification obtained with each method. In our opinion, high apparent accuracy 157 

resulting in incorrect species identification is a bigger concern than limited typeability. 158 

The latter alerts the user to the fact that the correct species identity was not determined by 159 

the test whereas the former gives a false sense of security. Other authors have also 160 

expressed concerns about false rather than ambiguous identification of CNS species by 161 

phenotypic systems (Sivadon et al., 2004). 162 

 Past identification errors or changes in taxonomy may contribute to incorrect 163 

species identification by phenotypic methods (Carretto et al., 2005). For example, S. felis 164 

was named in 1989 (Igimi et al., 1989) and it is thought that many supposed S. simulans 165 

isolates from cats that were identified before that time were really S. felis isolates 166 

(Lilenbaum et al., 1999). It is unfair to penalize a system retroactively for 167 

misidentification of isolates prior to species reclassification, but once species 168 

reclassification occurs, test design, isolate identification and species distributions from 169 

studies preceding the reclassification may need to be reinterpreted. Until 1986, S. 170 

chromogenes and S. hyicus were not recognized as different species but seen as two 171 

subspecies, i.e. subspecies chromogenes and subspecies hyicus, of the species S. hyicus 172 

(Hajek et al., 1986). In studies conducted after 1986, S. chromogenes was often the most 173 

common CNS species found in milk (Table 1). Before 1986, these isolates would have 174 

been classified as S. hyicus, which would be incorrect under current species definitions. 175 

Errors in identification are not limited to the species level, but may occur at the genus 176 

level. For example, some versions of the Vitek 2 system erroneously classified human 177 

clinical CNS isolates as Kocuria species (Ben-Ami et al., 2005; Boudewijns et al., 2005). 178 

The distinction between Staphylococcus and Kocuria is not just of academic interest. 179 
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CNS isolates are viewed as pathogens and as an indication for treatment, while Kocuria 180 

species are considered contaminants that do not warrant treatment. Misclassification of 181 

Staphylococcus as Kocuria could result in withholding treatment from a patient, with 182 

potentially damaging consequences (Ben-Ami et al., 2005). The limitations of phenotypic 183 

methods are not unique to CNS. Similar concerns have been reported for other bacterial 184 

genera, such as Enterococcus and Lactobacillus in foods (Huys et al., 2006) and 185 

Streptococcus and Enterococcus isolates of animal origin (Watts and Yancey, 1994; 186 

Hudson et al., 2003; Loch et al., 2005).  187 

 Phenotypic methods are usually considered less expensive than genotypic 188 

methods. Whether or not this is true depends in part on turnover, which affects overhead 189 

costs and opportunities and needs for automation. In some clinical laboratories, 190 

phenotypic tests are used with such high frequency that an investment in automation of 191 

reading and interpretation of tests is profitable (Ieven et al., 1995). In other laboratories, 192 

test frequency may be so low that expiration of reagents and the costs of replacing them 193 

are a concern. Regardless of test volume, additional testing may be needed to obtain final 194 

results from phenotypic methods. This increases cost and turn-around-time of 195 

phenotyping testing, thereby narrowing or eliminating the cost and time differences 196 

between phenotypic and genotypic identification methods (Ieven et al., 1995; Thorberg 197 

and Brändström, 2000). When comparing the cost of phenotypic and genotypic methods, 198 

the costs of obtaining inaccurate results must also be considered.  199 

200 
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4. Genotypic Identification of CNS 200 

 201 

Genotypic methods use DNA as the basis for identification. Genotypic methods 202 

are used for identification to the species level and for strain typing, i.e. differentiation of 203 

isolates at the subspecies level. Genotypic methods used for identification of CNS species 204 

include amplified-fragment length polymorphism (AFLP) analysis (Taponen et al., 2006, 205 

2007), ribotyping (Carretto et al., 2005), tDNA-ILP analysis (Maes et al., 1997; Heir et 206 

al., 1999; Lee and Park, 2001; Rossi et al., 2001; Stepanović et al., 2005), and DNA-207 

sequencing (Heir et al., 1999; Sivadon et al., 2004; Heikens et al., 2005; Sivadon et al., 208 

2005). Across bacterial genera the most common target for DNA-sequencing is the 16S 209 

rRNA gene (Lan and Reeves, 2001). Many CNS species are closely related, and 16S 210 

sequence based typing may not have sufficient discriminatory power to differentiate all of 211 

them (CLSI, 2007; Shah et al., 2007). Therefore, species identification systems based on 212 

the housekeeping genes cpn60 (chaperonin or heat-shock protein 60) (Kwok et al., 1999), 213 

dnaJ (heat-shock protein 40) (Shah et al., 2007), rpoB (beta subunit of RNA polymerase) 214 

(Drancourt and Raoult, 2002; Mellmann et al., 2006), sodA (superoxide dismutase A) 215 

(Poyart et al., 2001; Sivadon et al., 2004; Heikens et al., 2005; Sivadon et al., 2005), and 216 

tuf (elongation factor Tu) (Heikens et al., 2005) have been developed and implemented 217 

for CNS identification.  218 

  In general, genotypic methods have higher discriminatory power, reproducibility 219 

and typeability than phenotypic methods. For example, automated ribotyping identified 220 

166 of 177 (94%) of CNS isolated from humans (Carretto et al., 2005). tDNA-ILP 221 

identified 157 of 161 (97.5%) S. sciuri group isolates from human, animal and 222 
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environmental sources (Stepanović et al., 2005), 162 of 163 (99%) of human clinical 223 

CNS isolates from Belgium (Maes et al., 1997) and 114 of 122 (93%) of human clinical 224 

isolates from Korea (Lee and Park, 2001). DNA-sequencing of CNS from bone and joint 225 

infections identified 211 of 212 (99%) of isolates (Sivadon et al., 2005). An advantage of 226 

DNA sequence-based methods is that they allow for recognition of previously unreported 227 

sequences from novel species (Sivadon et al., 2004; CLSI, 2007).  228 

 Genotypic methods, like phenotypic methods, use cut-off values for acceptable 229 

levels of similarity to identify bacterial species. For example, banding pattern similarity 230 

of 90% or more is used as a cut-off value to consider isolates members of the same 231 

bacterial species in automated ribotyping of CNS with restriction enzyme EcoRI 232 

(Carretto et al., 2005). Categorization of banding patterns is often based on automated 233 

analysis followed by visual inspection and manual correction, introducing some 234 

subjectivity in the interpretation (Carretto et al., 2005) Automated data analysis is also 235 

used for interpretation of tDNA-ILP results, but thresholds for species identification are 236 

not defined clearly (Maes et al., 1997). Because tDNA-PCR is based on banding patterns 237 

generated by PCR and separated by electrophoresis, results are somewhat susceptible to 238 

PCR and electrophoresis conditions (Maes et al., 1997; Lee and Park, 2001). For analysis 239 

of sequence data, interpretation criteria are gene-specific. For the highly conserved 16S 240 

rRNA gene, 98% or 99% has been used as cut-off value (Nelson et al., 2003; Gill et al., 241 

2006; CLSI, 2007). Other housekeeping genes, such as sodA and tuf, are less conserved, 242 

which allows them to be used in sequence-based strain typing methods (Zadoks et al., 243 

2005). For these genes, homology values of 97% or more are considered acceptable 244 

(Heikens et al., 2005; Sivadon et al., 2005). Within-species heterogeneity of 245 
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housekeeping genes differs between bacterial species (Loch et al., 2005). Thus, both 246 

within species-variability and between-species variability of sequence data may need to 247 

be considered to decide on appropriate cut-off values for homology (Lan and Reeves, 248 

2001). Some authors specifically include criteria for difference in sequence identity from 249 

the next closest species, e.g. 5% or more, in guidelines for interpretation of DNA 250 

sequence data of CNS species (Sivadon et al., 2005).  251 

 When genotypic methods were first developed, they tended to be more labor-252 

intensive than phenotypic methods, more expensive, or both. While some methods, such 253 

as automated ribotyping, are still costly, other methods are not necessarily more 254 

expensive than phenotypic methods. Affordability and feasibility of use of genotypic 255 

methods differs between laboratory settings, just like affordability and feasibility of use 256 

of phenotypic methods. Some laboratories have easy access to an automated RiboPrinter, 257 

and other laboratories have in-house AFLP or tDNA-ILP facilities. DNA sequencing is a 258 

highly portable method because material for sequencing can be shipped to specialized 259 

laboratories by mail, and sequence data are routinely provided in electronic format for 260 

remote downloading and analysis. There is no need for physical proximity of the 261 

investigator or diagnostician to the sequencing facility. In one of our laboratories, species 262 

identification of CNS isolates for diagnostic purposes is currently done by DNA 263 

sequencing rather than phenotypic methods. Turnover of commercial phenotypic test kits 264 

for identification in that laboratory is low. As a result, reagents tend to expire, and the 265 

cost of replacing them increases the cost of phenotypic typing. By contrast, PCR and 266 

DNA-sequencing are performed routinely so that reagents are fresh and CNS 267 
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identification fits into the workflow easily. Hands-on time per isolate is similar for 268 

phenotypic and DNA sequence-based methods in this laboratory.  269 

 270 

5. Databases 271 

 272 

For interpretation of results from phenotypic or genotypic assays, comparison 273 

with reference data is essential. Most phenotypic species identification methods were 274 

developed for microbial isolates obtained from humans (Watts and Yancey, 1994). 275 

Common CNS species in humans include, among others, S. epidermidis, S. haemolyticus, 276 

S. hominis, S. simulans, S. xylosus and S. capitis (Maes et al., 1997; Lee and Park, 2001; 277 

Carretto et al., 2005). Results of eight studies from seven countries and three continents 278 

indicated that the most common CNS species isolated from bovine milk are S. 279 

chromogenes, S. hyicus, S. simulans, S. epidermidis and S. xylosus (Table 1). 280 

Staphylococcus chromogenes and S. hyicus, the two most common CNS species from 281 

bovine milk, were not recognized by an early version of the Staph-Zym system, while the 282 

latter three species, all of which are also important in human medicine, were identified 283 

correctly (Watts and Washburn, 1991). This is an example of the fact that most 284 

commercial systems are developed for identification of human rather than animal 285 

pathogens, and that the systems may not identify animal pathogens accurately. Early 286 

versions of the Vitek and API Staph system also showed limited ability to identify S. 287 

chromogenes and S. hyicus (Matthews et al., 1990b). Recent work in our laboratory 288 

showed that API 20 Staph and BBL Crystal tests had low sensitivity and specificity in the 289 

detection of S. chromogenes and S. hyicus isolates, respectively, when analyzing 82 290 
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isolates obtained in the USA from heifers around calving (unpublished data). In a second 291 

dataset, encompassing 172 CNS isolates from lactating animals in The Netherlands, 292 

StaphZym and API 20 Staph testing also showed limited typeability and accuracy. For 293 

example, all S. epidermidis isolates were identified correctly but many isolates of S. 294 

chromogenes and S. hyicus were not (Sampimon et al., in preparation). Thorberg and 295 

Brändström (2000) reported more favorable results for StaphZym analysis, i.e. 94% 296 

accuracy across bacterial species. They suggest that cost may be the main impediment to 297 

routine use of the method. Considering, however, that accuracy of detection of S. 298 

chromogenes was only 86%, even after additional tests were performed, and that S. 299 

chromogenes is the most common species isolated from bovine milk (Table 1), the value 300 

of the test for routine diagnostics can be questioned.  301 

 Strain differences between bacterial isolates from different host species may 302 

compound species identification problems (Watts and Yancey, 1994). For some Gram-303 

positive bacteria that are commonly found in humans and in bovine milk, specifically 304 

Streptococcus agalactiae and Staphylococcus aureus,  host-species specific groups of 305 

strains have been identified (Smith et al., 2005; Sukhnanand et al., 2005). To our 306 

knowledge, strain level comparisons of CNS isolates from humans and cattle have not 307 

been reported. If host-species associated strains exist within CNS species, phenotypic 308 

methods that were developed using human isolates may not identify bovine strains 309 

correctly, even if the bacterial species is common to both host species. 310 

 The problem of a CNS-species distribution that differs from the one found in 311 

humans is not unique to bovine CNS. CNS populations in other animal species and in 312 

foods also differ from those in humans (Table 2). As a result, phenotypic methods that 313 
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were developed for identification of human CNS may also fail to identify CNS from 314 

other animal species accurately. Some CNS species are common to many hosts, including 315 

humans, e.g. S. epidermidis, S. haemolyticus, S. saprophyticus, S. simulans, and S. 316 

xylosus. Other CNS species, such as S. caprae, S. chromogenes, S. felis, S. gallinarum 317 

and S. sciuri are the most common species in small ruminants (Deinhofer and Pernthaner, 318 

1995; Pengov 2001), cattle (Table 1), cats (Igimi et al., 1994; Lilenbaum et al., 1999), 319 

chickens (Awan and Matsumoto, 1998; Aarestrup et al., 2000) and treefrogs (Slaughter et 320 

al., 2001), respectively, while they are rare in other host species. Species that are rarely 321 

isolated from human clinical samples, e.g. S. equorum, S. pasteuri and S. capitis 322 

(relatively common in birds and horses, Table 2), are not included in the API 20 Staph 323 

database (Ieven et al., 1995; Carretto et al., 2005) or, in the case of S. fleuretti and S. 324 

vitulinus, in any commercial system (Stepanović et al., 2005). Staphylococcus equorum 325 

was the fifth-most common species isolated from milk in the Netherlands in the 326 

aforementioned study (Sampimon et al., in preparation). Because this species is not 327 

recognized by API 20 Staph testing, and because many studies of bovine CNS use API 328 

testing (Chaffer et al., 1999; Matthews et al., 1990b; Sampimon et al., 2007) the 329 

prevalence of S. equorum in milk may be underestimated. In contrast to the API 20 Staph 330 

test, the API Staph ID 32 test does have the ability to identify S. equorum from milk 331 

samples (Taponen et al., 2006). 332 

 Keeping databases up to date is a major challenge. In 1995, 31 Staphylococcus 333 

spp. had been named (Ieven et al., 1995). By 2003, this number had increased to 38 334 

(Spergser et al., 2003). By 2007, the NCBI Taxonomy database 335 

(http://www.ncbi.nlm.nih.gov/) listed 43 named Staphylococcus spp. and more than 50 336 
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unnamed Staphylococcus spp. These numbers do not include subspecies within named or 337 

unnamed species. Recently named CNS species include Staphylococcus nepalensis, 338 

which was first isolated from a goat in the Himalayas and identified as a new species in 339 

2003 (Spergser et al., 2003), and Staphylococcus fleuretti, which was first named in 2000 340 

(Vernozy-Rozand et al., 2000). Among CNS isolates from bovine milk that were 341 

characterized in our laboratory, both S. nepalensis and S. fleuretti have been identified 342 

using DNA sequencing and comparison with on-line databases. Phenotypic systems for 343 

routine diagnostic use cannot be updated every time a new bacterial species is identified 344 

or every time strain level differences between isolates from different host species are 345 

recognized. By contrast, it is extremely easy to add sequences from new strains or species 346 

to a reference DNA database such as GenBank shortly after detection. The availability of 347 

reference data affects the typeability and accuracy of phenotypic as well as genotypic 348 

methods. Like phenotypic methods, genotypic methods that have been used for 349 

identification of human CNS but not bovine CNS may suffer from limited typeability 350 

when bovine isolates are first characterized. For example, AFLP failed to identify 19 of 351 

99 isolates (19%) upon its first use with a reference database of 39 staphylococcal species 352 

and subspecies (Taponen et al., 2006). In a subsequent study using a reference database 353 

of 48 species and subspecies, including S. equorum and S. fleuretti, only 11 of 120 354 

isolates (9%) could not be identified (Taponen et al., 2007). Although isolate collections 355 

differed between the two studies (Taponen et al., 2006, 2007), it seems reasonable to 356 

infer that typeability increased when the reference database of the system was expanded. 357 

Initial comparison of DNA sequence data with tDNA-PCR data showed only 75% 358 

typeability of bovine CNS by tDNA-PCR and 73% agreement with DNA sequence data. 359 
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With use of sequence-based species identification, previously unidentified tDNA-PCR 360 

patterns could be named and added to the tDNA-PCR database to improve typeability 361 

(Supré et al., in preparation). 362 

 Because the use of DNA-sequencing for CNS identification is relatively new, 363 

interpretive critiera are still under development (CLSI, 2007). Some genes are so 364 

conserved that differentiation of species or subspecies based on sequence data is not even 365 

possible. For example, 16S rRNA gene sequencing failed to distinguish S. caprae from S. 366 

capitis, whilst automated ribotyping was able to differentiate the two species (Carretto et 367 

al., 2005). Interpretation of sequence data for genes that are less conserved than 16S can 368 

be a challenge too. When we first started to use rpoB sequencing for identification of 369 

bovine CNS in our laboratory in 2005, many S. hyicus isolates could not be identified 370 

with certainty based on rpoB data alone, because the homology between rpoB sequence 371 

data available in GenBank and those obtained from milk isolates was 94%, which is 372 

below the 97% homology criterion that was suggested at the time for housekeeping genes 373 

other than 16S (Heikens et al., 2005; Sivadon et al., 2005). The next best match in the 374 

rpoB database showed 89% homology, which did meet the criterion of 5% difference to 375 

the next bacterial species (Sivadon et al., 2004). Sequencing of additional housekeeping 376 

genes, i.e. the 16S rRNA and cpn60 genes, confirmed the isolates as S. hyicus with more 377 

than 99% homology. It appears that within the species S. hyicus, considerable sequence 378 

diversity exists within the rpoB gene. Once a larger variety of rpoB alleles is added to the 379 

on-line database, identification of S. hyicus based on this gene should no longer be a 380 

problem. In the mean time, Mellmann et al. (2006) have proposed to use 94% homology 381 

as the cut-off value for rpoB homology in CNS species, underscoring that there is 382 
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considerable within-species heterogeneity in the DNA sequence of this gene. By this 383 

criterion, our original rpoB sequence data would have been sufficient to categorize all 384 

potential S. hyicus isolates as such. Whether the rule that the difference in sequence 385 

homology to the next best match should be 5% (Sivadon et al., 2004) should be 386 

maintained is doubtful. For some species, e.g. S. fleuretti vs. S. pulveri or S. haemolyticus 387 

vs. S. croceolyticus, the difference in DNA sequence homology is routinely 4%, 388 

exemplifying that the difference between within-species and between-species homology 389 

may be more relevant than a single pre-defined cut-off value. As the uptake by 390 

laboratories of DNA sequencing for microbial identification increases, more reference 391 

data and standard protocols for generating and interpreting of sequence data will become 392 

available (CLSI, 2007).  393 

 One undeniable advantage of DNA sequence-based methods over all phenotypic 394 

and genotypic methods is that it provides a quantitative measure, down to the last base 395 

pair of the genetic code, of the certainty with which an isolate has been identified (CLSI, 396 

2007). For other genotypic methods, such as automated ribotyping and tDNA-ILP, some 397 

of the limitations of phenotypic methods apply, i.e. similarity coefficients can be 398 

calculated but there is no universally meaningful quantitative measure of the genetic 399 

relatedness of isolates. 400 

 401 

6. Discussion 402 

 403 

Efforts are underway to compare species identification of bovine CNS by 404 

genotypic and phenotypic methods, as documented in references cited in this paper, or in 405 
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manuscripts that were still in preparation at the time this paper was written. Using DNA-406 

sequencing, over 99% of CNS isolates from bovine milk can be identified. So far, other 407 

genotypic methods and phenotypic methods have lower typeability and accuracy, which 408 

may manifest in missing, incorrect, or ambiguous results. As databases grow, other 409 

methods may become more accurate, although database updates may not keep pace with 410 

the increase in number of described Staphylococcus species and subspecies. 411 

 For diagnostic work, the choice of typing methods should be determined by a 412 

number of considerations, such as the goal of isolate identification, speed, ease of use, 413 

cost, availability of equipment and trained personnel, etc. In the case of CNS 414 

identification in the context of mastitis control, the best method would be a fast, simple 415 

and cheap method that provides a relevant level of differentiation. The amount of 416 

information regarding clinical relevance, treatment or management of CNS mastitis that 417 

is based on accurate species level identification is limited. Until proven otherwise, CNS 418 

may be the most relevant level of identification for mastitis diagnostics, and this level is 419 

achieved through phenotypic methods. If CNS species of specific importance to udder 420 

health and mastitis control are identified, simplified phenotypic or genotypic methods 421 

targeting this subset of CNS may be of value for routine diagnostics. Simplified 422 

phenotypic diagnostic methods have been developed for identification of clinically 423 

significant CNS species in hospitals (Ieven et al., 1995). Such simplified methods can be 424 

of great utility if they are rapid and inexpensive, and if they do not misidentify isolates 425 

belonging to species that are not covered by the simplified method. For example, in the 426 

hypothetical situation that S. chromogenes and S. epidermidis were shown to have 427 

positive (Matthews et al., 1990a; De Vliegher et al., 2003) and negative (Devriese and De 428 
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Keyser, 1980; Watts and Owens, 1989) impact on udder health, respectively, whereas 429 

other CNS species are merely innocent bystanders, it would suffice to have a system that 430 

classified CNS isolates as S. chromogenes, S. epidermidis, or "other CNS species". This 431 

would be similar to existing diagnostics for streptococci from bovine milk, which are 432 

commonly differentiated into Strep. agalactiae, Strep. dysgalactiae, or Strep. uberis with 433 

the remaining group comprised of other species of streptococci and enterococci. 434 

Unidentified isolates from rest groups can be identified by additional testing as necessary. 435 

Simplified schemes for routine diagnostics could be phenotypic or genotypic. A 436 

simplified phenotypic scheme for identification of CNS from bovine mastitis has already 437 

been proposed (Devriese et al., 1994). If clinically relevant, a simplified genotypic 438 

scheme, such as a multiplex PCR for a limited number of clinically relevant CNS species, 439 

could be developed, as has been done for the most clinically relevant Streptococcus spp. 440 

(Phuektes et al., 2001). In light of the discovery of new species, such as S. equorum, 441 

which was in the top-5 of most common species in our laboratory, and in changes in 442 

identification methods, existing simplified diagnostic schemes may need to be re-443 

evaluated and updated. When evaluating simplified identification schemes, it is important 444 

to assess sensitivity, i.e. the ability to recognize known members of the species, and 445 

specificity, i.e. the ability to exclude isolates that are not members of the species. The 446 

latter is not always done (Devriese et al., 2002). As for any other diagnostic test, the 447 

positive and negative predictive value of a test result will not only depend on the 448 

sensitivity and specificity of the test, but also on the composition of the bacterial 449 

population. This composition may differ significantly between dairy cattle, humans and 450 
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other host species, and a test system that is useful in one diagnostic or research setting 451 

may not be as useful in a different setting.  452 

 453 

7. Conclusion and Outlook 454 

 455 

DNA sequence-based species identification of CNS is currently the most accurate 456 

species identification method available because it has the largest reference database, and 457 

because a universally meaningful quantitative measure of homology with known species 458 

is determined. DNA sequence-based species identification could therefore be considered 459 

the Gold standard and should be used as the reference identification methodology. If a 460 

diagnostic laboratory does not have access to a reference method, or a method that has 461 

been validated through comparison with a reference method, characterization of CNS 462 

isolates is best limited to actual observations, such as coagulase reaction, novobiocin 463 

resistance, etc. Reporting as "coagulase-negative Staphylococcus species" may be more 464 

appropriate than reporting of more detailed but potentially inaccurate results. At present, 465 

species-specific recommendations for management and control of CNS mastitis in dairy 466 

herds have not been formulated, and identification of CNS as such will suffice for routine 467 

diagnostics. In research, genotypic methods for species identification are to be preferred 468 

over phenotypic methods. Once the source, transmission mechanisms, and impact of 469 

different CNS species on cow health, productivity and milk quality have been identified 470 

through use of epidemiological data and accurate species identification methods, 471 

appropriate identification methods for routine use in research and diagnostic laboratories 472 

can be proposed. 473 

474 
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Table 1 487 

Distribution of coagulase-negative staphylococcal species (in % of isolates tested) in 488 

bovine milk. Based on phenotypic and genotypic methods as specified in Matthews et al., 489 

1990b; Watts and Washburn, 1991; Devriese et al., 1994; Waage et al., 1999; Thorberg 490 

and Brändström, 2000; Kudinha and Simango, 2002; Taponen et al., 2006; Sampimon et 491 

al., 2007. 492 

Country 1 Belgium Finland NL Norway Sweden USA USA Zim Total 3

State 2 TN LA
Isolates 65 99 108 149 77 105 94 131 828
S. auricularis 0 0 0 1 0 0 0 0 0
S. capitis 0 0 7 1 0 1 0 0 1
S. caseolyticus 0 0 0 0 0 0 0 2 0
S. chromogenes 12 27 42 15 17 40 11 24 24
S. cohnii 0 0 0 0 8 0 0 0 1
S. epidermidis 9 5 7 0 13 5 12 23 9
S. equorum 0 1 0 0 0 0 0 0 0
S. fleuretti 0 1 0 0 0 0 0 0 0
S. haemolyticus 0 3 7 2 8 4 1 0 3
S. hominis 3 0 0 0 0 4 7 18 4
S. hyicus 5 2 6 15 12 12 35 8 12
S. intermedius 0 0 0 0 0 0 3 0 0
S. kloosii 0 0 0 0 0 0 0 1 0
S. lentus 0 0 0 0 0 0 0 3 0
S. muscae 0 0 0 0 0 0 0 1 0
S. saprophyticus 0 0 5 0 3 1 0 4 2
S. sciuri 0 2 0 1 6 6 3 2 2
S. simulans 34 36 10 54 16 13 3 1 22
S. warneri 25 3 0 1 5 5 7 0 4
S. xylosus 12 0 16 3 13 9 17 7 9
unknown 0 19 0 8 0 1 0 7 5  493 

1) NL = the Netherlands, USA = United States of America, Zim = Zimbabwe. 494 

2) TN = Tennessee, LA = Louisiana. Two states were included to reflect some of the 495 

geographic diversity within the USA. 496 

3) Total calculated as weighted average of results for each studied, where weight 497 

equals the number of isolates per study. 498 
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Table 2 499 

Distribution of coagulase-negative staphylococcal species from various host species and 500 

food. Based on phenotypic and genotypic methods as specified in Cox et al., 1988; Igimi 501 

et al., 1994; Deinhofer and Pernthaner, 1995; Madsen and Christensen, 1995; Maes et al., 502 

1997; Awan and Matsumoto, 1998; Lee et al., 1998; Lilenbaum et al., 1999; Aarestrup et 503 

al., 2000; Lilenbaum et al., 2000; Pengov, 2001; Slaughter et al., 2001; Carretto et al., 504 

2005 and in Table 1. 505 

CNS species Avian Bovine Canine Caprine Equine Feline Human Ovine Sausage Treefrog

S. capitis X - - - X - - - - -

S. caprae - - - X - - - X - -

S. carnosus - - - - - - - - X -

S. chromogenes - X - - - - - - - -

S. cohnii X - - - - - - - - -

S. epidermidis - - X X - X X X - -

S. felis - - - - - X - - - -

S. gallinarum X - - - - - - - - -

S. haemolyticus - - - - X X X - - -

S. hyicus X X - - - - - X - -

S. lentus X - - X X - - - - -

S. saprophyticus - - - - - - - - X -

S. sciuri - - - - - - - - - X

S. simulans X X - X - X - X X -

S. xylosus X - X - X - - - X X  506 

507 
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