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Temperature-dependent viscoelastic modeling of ground deformation: 
application to Etna volcano during the 1993-1997 inflation period 

 
Ciro Del Negro1, Gilda Currenti1, Danila Scandura1,2  

1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Italy 
2 Dipartimento di Matematica e Informatica, Università di Catania, Italy 

 

Abstract 

We used the Finite Element Method for modeling time-dependent ground deformation due to 

volcanic pressure sources embedded in a viscoelastic medium. Especially in volcanic areas, the 

presence of heterogeneous materials and high temperatures produce a lower effective viscosity of 

the Earth’s crust that calls for considering the thermal regime of crustal volume surrounding the 

magmatic sources. We propose a  thermo-mechanical numerical model for evaluating the 

temperature dependency of the viscoelastic solution. Both temperature distributions and ground 

deformation are evaluated by solving an axi-symmetric problem to estimate the effects of thermo-

viscoelastic response of the medium. The thermo-mechanical model permits to evidence that 

viscoelastic relaxation is responsible for significant time-dependent variations in long-term 

deformation. These effects may be relevant for the interpretation and quantitative assessments of 

the pressure changes within magmatic sources. With this in mind, we reviewed the ground 

deformation observed on Etna volcano during the 1993-1997 inflation period by setting up a fully 

3D temperature-dependent viscoelastic model. Since 1993 different geodetic measurements 

(EDM, GPS, SAR and leveling data) identified an inflationary phase characterized by a uniform and 

continuous expansion of the overall volcano edifice that was not perturbed by eruptive activity. The 

numerical model, including significant viscoelastic material and reduced crustal rigidity around the 

magmatic source, enables to produce deformation comparable with those obtained from elastic 

model, requiring a significantly lower pressure. For a purely elastic model with the same geometry 

and rigidity the pressure change necessary to describe the 1993 through 1997 inflation is around 

320 MPa, whereas for the viscoelastic model a pressure increase of about 200 MPa is required. 

 

Keywords: Etna volcano; ground deformation; Finite Element Method; 3D thermo-viscoelastic 

model. 

 

Introduction 

Measuring and interpreting the deformation of volcanoes improve our understanding of how 

volcanoes work. A variety of processes can cause ground deformation, and being able to 

recognize and distinguish between them not only broadens our knowledge but is also crucial for 
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predicting eruptions. Notwithstanding, most volcano deformation models developed to date 

assume that the Earth's crust behaves as a perfectly elastic solid and allow us to obtain only a 

simple image of volcanic deformation sources. Over the last decades, elastic numerical models 

have contributed to asses how medium heterogeneity and topography can influence ground 

deformation especially near the volcano summit (Cayol & Cornet 1998; Williams & Wadge 2000; 

Currenti et al., 2008a). All these mechanical deformation models based on an elastic rheology 

assumption have been successfully and widely applied to interpret geodetic data acquired on 

several volcanoes (e.g. Walsh & Decker, 1971; Yang et al., 1992; Okada and Yamamoto, 1991; 

Bonaccorso & Davis, 1999; Currenti et al., 2008b). However, in many cases elastic models seem 

to be unable to reproduce the observed uplifts unless unrealistic overpressures are considered 

(e.g. Berrino et al. 1984). In volcanic regions, elastic rheology assumption is oftentimes an overly 

simplification. The elastic approximation is generally appropriate for small deformations of crustal 

materials with temperatures cooler than the brittle-ductile transition, between 300 and 500°C 

depending mainly on composition and strain rate. Although elastic behavior well describes the 

upper 10-15 km of the Earth's crust, in active volcanic zones viscoelastic behavior is more 

appropriate to characterize the medium around the magmatic sources, which at relatively shallow 

crustal levels can extensively perturb the geothermal gradient. Materials surrounding a long-lived 

magmatic source are heated significantly above the brittle-ductile transition and rocks no longer 

behave in a purely elastic manner, but permanently deform because of the lower effective viscosity 

(Newman et al., 2001). Therefore, the thermal state of the volcanoes can greatly influence the 

surface deformation field, making the elastic approximation inappropriate to model the observed 

ground deformation.  

Some studies on the deformation of a viscoelastic Earth were developed since 1970’s, and very 

slow crustal deformations with the duration time of several days to a few years were investigated 

(Peltier, 1974). The multi-layer Earth model was rather difficult to deal with analytically, however a 

simpler case study was anticipated in order to describe the behavior of a viscoelastic half-space. 

Bonafede et al. (1986) presented the crustal deformation due to the Mogi model in a viscoelastic 

half-space and worked out analytical solutions for the displacements and associated stress fields 

induced by a pressure point source. Dragoni and Magnanensi (1989) computed an analytical 

model considering a spherical magma chamber in an infinite space and surrounded by a 

homogeneous shell of thermal metamorphic rocks, which is elastic dilatational and Maxwell 

deviatoric. Recently, Piombo et al. (2007) computed the viscoelastic effect on displacement, 

displacement gradient and stress fields due to shear and tensile dislocations. Investigations were 

also conducted using numerical methods, highlighting that rheological heterogeneities may be 

much more important than elastic heterogeneities in the interpretation of long-term deformation 

(Folch et al. 2000; Trasatti et al. 2003; Fernandez et al., 2001).  

In the present study, we investigated the temporal evolution of the ground deformation caused by a 
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heating pressurized magma chamber embedded in a viscoelastic heterogeneous medium using 

Finite Element Method (FEM). We developed a  thermo-mechanical model, in which the 

viscoelastic properties of the medium are derived from the computed temperature distribution. 

Initially, we carried out several axi-symmetric models to appraise the influence of temperature field 

on ground deformation. Next, we developed a 3D finite element model to analyze the ground 

deformation accompanying the 1993-1997 inflation period on Mt Etna. The real topography of 

volcanic edifice and the crustal heterogeneities inferred from the seismic tomography data were 

included in the 3D model. We evaluated the effects of conductive thermal propagation on long-term 

deformation in terms of viscoelastic response of the medium. 

 

Linear Viscoelastic model 

The phenomenological behavior of large classes of materials, including elasticity, linear viscosity, 

and some time-effects, can be studied using analogue models. Simple viscoelastic rheologies can 

be derived from extrapolations of 1D mechanical models composed of linear combinations of linear 

springs with spring constant of shear modulus µ and dashpots with coefficient of viscosity η 

(Currenti et al, 2008c). In such a case analytical solutions can be derived for a homogeneous half-

space model using the Correspondence Principle. The computation of the analytical solution is 

useful to properly set up the numerical model and test the accuracy of the numerical solutions.   

Viscoelastic material 

We considered linear viscoelastic material in which the stress linearly depends on the strain and its 

time derivatives. It is usually assumed that the viscous part of the deformation is incompressible, 

so that the volumetric strain is completely elastic and the viscoelastic deformation may be 

expressed purely in terms of deviatoric components. Therefore, the bulk modulus K=E/3(1-2υ) 

behaves elastically and is simply defined in terms of Young’s modulus E and Poisson’s ratio υ.  In 

such a case, the rheological constitutive equation can be written as: 

 ( ) ( )es QP =  (1) 

where s and e are the stress and strain deviators respectively (Ivins and Sammis, 1996). P and Q 

are differential operators expressed as: 
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where ai and bi come from the assumed material constants for i=0,…,m. The differential operators 

are defined depending on the type of viscoelastic model. Commonly the generalized Maxwell 

model is represented by a set of M Maxwell models in parallel (Fig. 1). In this case, the operator 
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may be written as: 
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where the variable qi is the solution of differential equation: 

 
eqq i

i
i =+

τ
1

 (5) 

The material is completely defined by assigning the total shear modulus G=E/2(1+υ) (which is 

identical to the elastic shear modulus), the fractional shear moduli µi and the viscosity ηi for each 

spring element, leading to the relaxation times τi=ηi/(Gµi). It is not necessary to specify the 

fractional modulus µ0, since it is obtained by subtracting the sum of the other ratios from one. A 

number of common material models may be obtained from the generalized Maxwell model by 

setting the shear moduli of various springs to zero, such as the Maxwell model. 

Viscoelastic analytical solution 

For a linear viscoelastic material, the solution of the governing equations can be obtained 

employing the Correspondence Principle (Fung 1965; Christensen 1971), which allows to solve a 

linear viscoelastic problem using the associated elastic solutions, in which the elastic moduli are 

replaced by the Laplace transform complex moduli. The Correspondence Principle cannot be 

applied to a general thermo-viscoelastic problem, but it can be applied to thermo-rheologically 

simple materials, i.e. when the temperature dependence of mechanical properties is amenable to 

analytical description, and one of following conditions is satisfied: (i) the temperature field is 

spatially uniform but time dependent; (ii) the temperature field has a spatial dependence but is 

independent of time (Christensen, 1982). If the analytic solution for the deformation field of any 

linear elastic model is given, we can apply the Correspondence Principle to the elastic solution to 

obtain the viscoelastic behavior of deformation field. The Laplace transform of the viscoelastic 

solution ( )sW i
~  is given by: 

  ( ) ( ) ( )sUsgsW ii
~~~

=   (6) 

where ( )sg~  is the Laplace transform of the source time function g(s) giving the temporal evolution 

of the pressure amplitude, and ( )sU i
~  indicates the displacement function Ui in which the constant 

moduli are replaced with their Laplace transform moduli. The Laplace transform of the shear 

modulus, which depends on the particular rheology considered, can be easily obtained using Eq. 

(1) as: 

 
( )
( )sP
sQGs ~2

~
)(~ =µ  (7) 

where ( )sQi
~  and ( )sPi

~  are the Laplace transforms of Eqs. (2) and (3). For a generalized Maxwell 

model with M Maxwell linear viscoelastic models in parallel (Fig. 1), the Laplace transform of the 
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shear modulus is: 
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When the shear modulus has been defined and the elastic analytical solution is available, the 

resulting expression in Eq. (8) must be inverted in order to obtain the viscoelastic solution for the 

displacement field in the time domain. 

Spherical pressure source in a viscoelastic half-space  

The elastic analytical solution of a point dilatation source embedded in an elastic and 

homogeneous half-space was proposed by Mogi (1958). The model well reproduces a finite 

spherical source if the source depth d is twice compared to the radius a  (McTigue, 1987). The 

elastic displacements are described by the spherical source position, its radius a , and the 

pressure change ∆P: 
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where R is the radial distance from the source center to the observation point. We derive the 

viscoelastic solution applying the Correspondence Principle to Eq. (9). Only the first term in Eq. (9) 

(3K+4µ)/2µ(3K+µ) depends on the rheology assumption. Adopting a generalized Maxwell rheology 

with one Maxwell model in parallel and using Eq. (8), the Laplace transform of the shear modulus 

is given by: 
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Since we assume that the viscous part of the deformation is incompressible, the bulk modulus 

K=E/3(1-2υ) is constant. As source time history, we consider a step-like increase in pressure 

amplitude at t=0 on the source wall: 
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where H(t) is the Heaviside function whose Laplace transform is ∆P/s.  

To derive the analytical viscoelastic solution we have to multiply the second term of Eqs. (9) with 

the inverse Laplace transform of the following equation: 

 ( )
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which is given by: 
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For the generalized Maxwell rheology, the viscoelastic response depends on time through two 

characteristic times: 

 0
00
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1 τ
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=  (14) 
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with 
10 µG

η
τ =0 the Maxwell time.  

 

Numerical model 

The analytical solutions of displacement field in a viscoelastic half-space were used to asses the 

accuracy of the numerical solutions obtained by Finite Element Method (FEM). We assumed a 

pressurized spherical source located at 4 km depth with a radius a  of 0.7 km and a step-like 

temporal increase in pressure of ∆P=100 MPa at t=0. The source is embedded in a homogeneous 

half-space having Poisson ratio υ=0.25, total shear modulus G=30 GPa, fractional shear moduli 

µ0=µ1=0.5, viscosity η=2⋅1016 Pa*s giving characteristic times τo=1.33⋅106 s, τ1=1.45⋅106 s and 

τ2=2.66⋅106 s.  
The numerical analysis needs to set some parameters that could affect the accuracy of the 

solution. In particular, the size of the computational domain and the size of the finite elements are 

to be accurately chosen. The domain size is important because of the assignment of finite 

boundary conditions. We assumed free displacement values at the upper surface and zero 

displacement values at bottom and lateral boundaries. Since in numerical methods the size domain 

is finite, these boundary conditions are implemented by considering a domain big enough that the 

assumption of zero potential at the boundary does not affect the solution in the interested area.  

Preliminarily, we considered a 3D axi-symmetric model. In such a case a simpler two dimensional 

domain can be considered by exploiting the symmetries. Hence, the number of nodes, in which the 

solution is computed, decreases significantly. This model was chosen to perform a coarser 

analysis and carry out several tests to assess the goodness of numerical solutions. The FEM 

model is made up of ~16000 triangular elements of variable size, in axi-symmetric configuration. 

The domain extends 25 km horizontally from the source centre and 35 km below the surface, and 

well reproduces the conditions generally imposed to half-space models (vanishing stresses at 

infinity). Computations are carried out by using the commercial software COMSOL Multiphysics, 
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version 3.3 (Comsol, 2006). Benchmark tests were carried out on the axi-symmetric models in 

order to verify the accuracy of the numerical solution. For the sake of simplicity, we report only the 

vertical displacements but similar results are achieved for horizontal displacements. The 

viscoelastic solution at t=0 coincides with the elastic solution. Subsequently, the deformation grows 

exponentially approaching a finite value. The numerical deformation solution practically coincides 

with the analytical ones (Fig. 2). This result allowed to validate the numerical technique used in 

these computations. The ground deformation of the viscoelastic model is enhanced with respect 

the elastic solution. Particularly, the ratio between the steady-state viscoelastic solution and the 

elastic one is about 1.7. Therefore, the inclusion of a viscoelastic rheology significantly lowers the 

pressures changes, necessary to obtain the same amount of ground deformation, from 100 MPa to 

58.9 MPa. To estimate the increase in ground deformation with respect to the elastic solution, we 

computed the relative misfit for the vertical displacement as: 

 100%
U

UU
E

elastic

elasticicviscoelast
% ∑

∑ −
=  (16) 

The steady-state viscoelastic solution yields a misfit E% of 71%. In order to get a more realistic 

result, we used a pressure source that evolves following a trapezoidal source history instead of a 

step-like source function. Trapezoidal shape function describes the pressurization followed by 

depressurization of the magmatic source, usually observed in volcanic areas. The source history 

increases linearly in time from 0 to ∆P for t ranging between 0 and t1, remains constant to ∆P for 

t1≤ t ≤ t2, and finally decreases from ∆P to 0 for t2≤ t ≤ t3: 
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whose Laplace transform is: 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

+
−∆

=
−−−

231
2

2311)(~
tt
ee

t
e

s
Psg

ststst

  (18) 

Following the procedure described above, we firstly derived the analytical solution and secondly 

compared it with the numerical one. As shown in Fig. 3, the numerical solution is nearly identical to 

the analytical one.  

The assumption of a homogeneous viscoelastic half-space is too restrictive and limits the 

application of the model to more realistic case study. In fact, the upper lithosphere does not 

participate in viscoelastic flow due to its lower temperature. To overcome this limitation, we explore 

a viscoelastic shell model in which the spherical source is embedded in an elastic half-space and 

surrounded by a concentric shell of viscoelastic material. It is reasonable to assume that rocks 

near the inflation source are considerably heated and weakened beyond the brittle-ductile 

transition temperature, where viscoelastic rheology is more appropriate to describe the mechanical 

behavior of the surrounding rocks. We supposed a viscoelastic behaviour inside the shell, while an 
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elastic behaviour outside it. We firstly choose a homogeneous viscoelastic shell with radius 1.7 km. 

The viscoelastic medium parameters within the shell are the same as in the homogeneous half-

space model.  As we can notice from Fig. 4, after the introduction of the viscoelastic shell the 

surface uplift is less enhanced with respect to the previous model when the entire half-space 

medium is assumed viscoelastic. The relative misfit E% is decreased to 54%. The amplitude of the 

viscoelastic response is dependent on the size of the shell (Dragoni and Magnanensi, 1989): wider 

the shell, higher the deformation observed at the ground surface. Both the thickness and the 

viscosity of the shell are strongly influenced by the temperature state of the volcanic source.  

 

Temperature-dependentviscoelastic solution 

The spatial dependence of viscosity on temperature can be included in the model solving a thermal 

model to compute the temperature field distribution. Therefore, we conducted a thermo-mechanical 

model in which the viscoleastic properties of the medium are derived from the computed 

temperature distribution. We simulated the model in two steps solving separately: (i) the heat 

conduction equation to compute the temperature profile, and (ii) the viscoelastic problem to obtain 

the numerical solution of the deformation field.  

To derive the temperature profile, we numerically solved the heat conduction equations in an axial 

symmetric formulation, given by:  

 ATk −=∇⋅∇ )(  (19) 

where T=T(r,z) is the temperature field, r is the radial coordinate, z is the vertical coordinate, k is 

thermal conductivity, and A(z)=ASexp(-z/b)  is the crustal volumetric heat production, where As is 

the volumetric rate of heat production, and b is a characteristic depth of the order of 10±5 km. 

Since the deformation timescales are much shorter than those over which the magma chamber 

evolution takes place, the temperature distribution, and therefore the viscosity profile inside the 

shell, can be considered as steady. As boundary condition at the ground surface, we assumed that 

the surface is kept constant at atmospheric temperature, since the thermal conductivity of the air is 

much smaller than that of the ground. At bottom and lateral boundaries we assigned the 

geothermal temperature values, because they are far enough to not be affected by the magmatic 

source. We used the steady-state geothermal profile given by (Ranalli, 1995; Turcotte and 

Schubert, 1982): 
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where Ts is the surface temperature, qm is the heat flow coming from the mantle. The temperature 

on the magma wall was set to T0=1000 K. Physically, this boundary condition is equivalent to 

stating that the magma walls act as heat sources, simulating a continuous refilling of the magma 

chamber (Dragoni et al., 1997; Civetta et al., 2004).  
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Starting from the temperature distribution, a variety of empirical relationships can be used to infer 

the temperature-viscosity dependence. We estimated the medium viscosity surrounding the source 

region using the Arrhenius formula: 

 ⎟
⎠
⎞

⎜
⎝
⎛=
RT
EexpAη D  (21) 

where AD is the Dorn parameter, E is the activation energy, R is the Boltzmann constant, and T the 

absolute temperature. Additional work is needed to define plausible values for the rheological 

parameters, and determine the extent to which these parameters vary in the region of high thermal 

gradients near the magma chamber. The values of the parameters used in the computations are 

summarized in Table I. The viscosity inside the shell depends on the temperature distribution. 

However, the thickness of the shell was kept constant at 1.7 km.  

Several simulations were also conducted to investigate how the temperature of the magmatic 

source affects the ground uplift. Different values of temperature in the range 1000-1500 K were 

used. The steady-state temperature profiles using T=1000 K and T=1500 K at the source wall are 

shown in Fig. 5 together with the estimated medium viscosity from Eq. (21). The viscosity within 

the viscoelastic shell is ranging from 1015 Pas to 1020 Pas for T=1000 K, and from 1013 Pas to 1017 

Pas for T=1500 K (Fig. 5). The amplitude of the deformation after 120 days is dependent on the 

temperature profile (Fig. 6). The vertical uplift at the ground surface above the source center varies 

from 6.9 cm at 1000 K to 7.9 cm at 1500 K with a relative misfit E% of 29% and 47%, respectively 

(Fig. 7). However, the increase is not linearly proportional, but a saturation effect is observed for 

higher temperatures. This could be ascribed to the fixed dimension of the shell and to the 

exponential dependency of the viscosity on the temperature. It is reasonable to assume that the 

thickness of the viscoelastic shell increases with the temperature.  

The viscoelastic behaviour is appropriate around the magmatic source where the temperature is 

higher. Instead of using a constant thickness for the viscoelastic spherical shell, we modified the 

properties of the medium through the constitutive equations, allowing the element of the domain to 

behave elastically or viscoelastically in function of the temperature distribution. We associated to 

the medium elastic proprieties where the temperature values are below a fixed threshold and 

viscoelastic proprieties above this threshold. The solutions vary as a function of the threshold. We 

made a comparison between this model in which the thickness of the shell is temperature 

dependent and the model in which all the medium is fully viscoelastic. We observed that these 

results does not differ too much using temperature threshold lower than 700 K (Fig. 8). Far away 

from the source, the temperature decays, yielding a higher value of viscosity which makes the 

medium to behave as elastically (Williams and Richardson, 1991). As before, the deformation 

raises with temperature (Fig. 9), but no saturation phenomena are observed (Fig. 10). The vertical 

uplift at the ground surface above the source center reaches, after 120 days, a deformation of 7.4 

cm at 1000 K (E% = 38%) and 8.8 cm at 1500 K (E% = 59%). It is worth to note that in this case the 
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deformation is enhanced with respect to the case in which the viscoelastic behavior is restricted to 

a fixed shell around the source. The temporal evolutions of the vertical uplift with source wall 

temperature at T=1000 K and T=1500 K are shown in Fig. 11. As the temperature increases, the 

viscoelasticity decreases yielding lower relaxation times (Fig. 11) and the ground deformation 

raises faster. Even when the viscoelastic shell thickness is fixed (Fig. 11a), the temperature profile 

affects the amount of deformation reached after the exponential increase. When the rheological 

behavior of the whole surrounding medium is temperature-dependent (Fig. 11b), the region, which 

behaves viscoelastically, becomes wider as the temperature increases and gives more contribution 

to the viscoelastic part of the deformation field. 

 

 

An application to Etna volcano 

We extended the finite element method, used for the axi-symmetric model, to a fully 3D formulation 

to study the long-term deformation observed at Mt Etna in 1993-1997 period. Etna is one of the 

better monitored and successfully studied volcanoes in the world, where continuously running 

geodetic networks are operating (Bonaccorso et al. 2004). Since 1993, different geodetic 

techniques (EDM, GPS, SAR and leveling data) identified an inflation phase characterized by a 

uniform expansion of the overall volcano edifice. The beginning of the inflation phase was detected 

from the comparison of SAR images covering the 1993-1995 time interval. The inversion of 

interferograms required the inflation from a spheroidal magmatic source located at about 5 km bsl 

(Lundgren al., 2003). Also levelling data supported the presence of a pressurized spherical source 

beneath the summit craters at 4.5 km bsl (Obrizzo et al., 2004). Recently, Bonaccorso et al. (2005) 

interpreted the 1993-1997 GPS and EDM data by a pressurized ellipsoidal source using a 

numerical elastic model. In order to reproduce the observed displacements, an effective 

overpressure of about 320 MPa was needed, which is exceedingly high. The inclusion of a realistic 

viscoelastic component could significantly lower the inferred pressure necessary to explain the 

observed surface deformation (Newman et al., 2006). With this in mind, we reviewed the 1993-

1997 inflation phase on Mt Etna using a 3D thermo-viscoelastic numerical model. We adopt the 

same ellipsoidal source determined by Bonaccorso et al. (2005), which is located 4.2 km bsl 

beneath the central craters (latitude 4177.9 UTM km and longitude 500.7 UTM km). The ellipsoid 

has a semi-major axis of 1854 m and the other two semi-axes of 725 m and 544 m, respectively 

with an orientation angle of 124° and a dip angle of 77°. In the numerical model we also included 

the rheological heterogeneities of the medium. Instead of using a simple multi-layered crustal 

rigidity model, a complex distribution of rheological medium properties was considered (Currenti et 

al., 2007). We used P-wave and S-wave seismic velocities, inferred from recent seismic 

tomography studies (Chiarabba et al., 2000; Patanè et al., 2006), to derive the elastic medium 

parameters. Particularly, the Young modulus was estimated by using the following equation 
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(Kearey and Brooks, 1991): 

 ( )νρ += 12 2
sVE  (22) 

where Vs is the seismic S-wave propagation velocity, and ρ is the density of the medium which was 

fixed to 2500 kg/m3. Instead, the values of Poisson ratio were obtained using the equation (Kearey 

and Brooks, 1991) 

 ]2)/(2/[]2)/[( 22 −−= spsp VVVVν  (23) 

where Vp is the seismic  P-wave propagation velocity. On the basis of Eqs. (22) and (23), the 

Young modulus varies from 11.5 GPa to 133 GPa, while the Poisson ratio is in the range 0.12-

0.32.  

The 3D model drastically increases the computational load. In this case, no symmetries can be 

exploited and the number of elements and nodes hugely increases. The procedure for computing 

the viscoelastic deformation field is the same as for the previous axi-symmetric model. The 

computational domain was set up to a large volume extending 100x100x100 km3 in order to avoid 

artifacts in the numerical solution because of the proximity of the boundary. The mesh of the 

ground surface was generated using a digital elevation model of Etna volcano from the 90 m 

Shuttle Radar Topography Mission (SRTM) data. The computational domain was represented by 

number of 20000 arbitrarily distorted tetrahedral elements connected by 4000 nodes. The mesh 

resolution is about 100 m around the ellipsoidal source, about 300 m in the area surrounding the 

volcano edifice, and decreases to 2 km in the far field. Firstly, we solved the conductive heat 

transfer equation. As thermal boundary condition, a steady-state geothermal profile was set up 

along the bottom and lateral boundaries. A vertical geothermal gradient of 22 °C/km was assumed 

for the areas surrounding the volcano edifice in agreement with the temperature measurements 

carried out in deep boreholes (AGIP, 1977). A continuous refilling of the magma chamber was 

simulated by setting the temperature on the ellipsoidal source wall. We performed two simulations 

using T=1000 K and T=1500 K to understand the role played by the temperature values on the 

source wall. The temperature profile was used to compute the viscoelasticity of the overall domain. 

Then, we solved the mechanical viscoleastic model using the computational scheme described in 

the axi-symmetric model. The comparison between the elastic solutions and the viscoelastic 

response after about 3 years and half are shown in Fig. 12.  

Two other simulations were carried out. In the first one we assumed a step-like pressure change, 

in the second one we assumed a linear pressure increase in order to simulate the continuous 

inflation phase of the pressurized magmatic source. The pressure source evolves like a ramp 

function from 0 MPa to 320 MPa during 1993-1997 with a increment of 90 MPa/year. Even if the 

temporal evolution is very different, the final uplift is quite similar (Fig. 13). Therefore, a comparison 

with the temporal evolution of real data could allow for distinguishing between them. In Bonaccorso 

et al. 2005, no temporal evolution of ground deformation data was shown. However, a cumulative 
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planar areal dilatation was computed for the Etna networks. Since a fairly continuous expansion 

seems to affect the volcanic edifice starting from 1993 to 1997, we can better consider a 

continuous linear feeding rate of the pressure source. 

The relative misfit with respect to the elastic solution at the ground surface is 55% for a wall 

temperature of T=1000 K and 66% for T=1500 K. Both the horizontal and vertical deformation in 

the viscoelastic solution are enhanced of about 1.6 in comparison with the elastic solution. 

Therefore, the temperature-dependent viscoelastic model requires a lower pressure changes 

(~200 MPa) that is nearer to the lithostatic load (~170 MPa), but still higher than the crustal 

strength (~45 MPa).  

 

Discussion and Conclusions 

Numerical models have been carried out to investigate the temporal evolution of viscoelastic 

deformation caused by pressure changes within a magmatic source. The presence of viscoelastic 

material, which likely characterizes the crust around magmatic sources, greatly alters the 

deformation field. We found out that the ground uplift grows in time and its temporal evolution is 

mainly dependent on the average rigidity and  viscosity of the medium surrounding the source.  

Initially, we assumed a spherical source embedded in a homogeneous viscoelastic half-space 

model with a generalized Maxwell rheology. In this simple case, we derived the analytical 

viscoelastic solution applying the Correspondence Principle. It allowed to compare the numerical 

solution with the analytical one to verify the accuracy of the numerical method. The homogeneity 

assumption is an overlay simplification that was overcome with the introduction of a viscoelastic 

spherical shell around the magmatic source and an elastic medium outside it. However, the 

thickness and the viscosity of the spherical shell depend on the magma temperature and the 

thermal state of the surrounding rocks. The definition of elastic\anelastic rock properties cannot 

disregard the thermal regime of the crust especially in volcanic regions. To this aim, we examined 

the effect of magma source temperature on viscoelastic deformation implementing a thermo-

mechanical model. The simulations evidenced that the thermal state of the crust influences both 

the temporal evolution of deformation field, in terms of relaxation time, and the amplitudes of the 

steady-state ground deformation.  

Successively, we extended the procedure to a fully 3D model to investigate the effects of 

viscoelastic rheologies surrounding a pressurized prolate spheroid source during the inflation 

period of time-dependent deformation occurred at Mt Etna between 1993 and 1997. This period of 

increasing pressurization of the plumbing system was not perturbed by eruptive activity, which 

resumed afterward in 1998 from the summit craters (Bonaccorso et al., 2005). The viscoelastic 

model enables to produce deformation comparable with those obtained from elastic model, 

requiring a significantly lower pressure. For a purely elastic model with the same geometry and 

rigidity the pressure change necessary to describe the 1993 through 1997 inflation is around 320 
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MPa, whereas for the viscoelastic model a pressure increase of about 200 MPa is required. 

Nevertheless, the pressure change is still high. Since no eruption had occurred, the overall 

pressure change should remain below the lithostatic load. Assessing source pressure is essential 

for improving the knowledge of the physics of volcano deformation and eruption hazard. Because 

of the  strict link between crustal rigidity and source pressure, a lack of insight into the rheology can 

increase the uncertainty on source volumes and associated pressures (Newman et al., 2001). 

Moreover, Trasatti et al. (2007) showed that the presence of heterogeneities strongly modify the 

position of the pressure sources inferred by numerical inversion. Therefore, the rheology 

assumption strongly affects the estimates of both pressure and position.  

In order to validate thermal and mechanical numerical models it is necessary to have a more 

complete overall picture of the thermal state and the elastic/anelastic rock properties in the crust of 

Mt Etna. The medium heterogeneity, estimated from the 3D velocity model, can be significantly 

affected by: (i) the low spatial resolution of 3 km in the tomography model by Chiarabba et al. 

(2000), (ii) the variation of 3D velocity model in the analyzed period, (iii) the difference between the 

static elastic modulus and the dynamic elastic modulus deduced from the P-wave velocity. Patanè 

et al. (2006) obtained new 3D velocity models at higher resolution on Mt Etna, detecting significant 

variations in the elastic parameters during different volcanic cycles. A correction factor of 0.7 can 

be used to account for the difference between the static and dynamic moduli at confining pressure 

of about 100 MPa. That would also contribute to a proportional decrease in the source pressure to 

140 MPa. Therefore, the inclusion of significant viscoelastic material and lower crustal rigidity near 

a magmatic source, which is geologically expected, can considerably reduce the pressure 

necessary to produce the observed surface deformation. 

The thermal parameters involved in the thermo-mechanical model can be better constrained using 

temperature data, when available, and seismic attenuation tomography. The study of attenuation of 

seismic waves can provide a more realistic image of the thermal regime in the upper crust inside 

the Mt Etna. Laboratory measurements in the seismic frequency range indicate an exponential 

Arrhenius-law type increase of intrinsic attenuation with the temperature of the rocks (Kampfmann 

and Berckemer, 1985). Several recent works (Arevalo et al., 2005; De Gori et al., 2005; Patanè et 

al., 2006) have shown that the imaging of Vp/Vs and quality factor Qp could be useful tools to 

define location and extension of melt or highly fractured materials accompanying the volcanic 

activity at Mt Etna. On the west of the high rigidity body recognized beneath the South-East flank of 

Etna volcano, De Gori et al. (2005) hypothesized a shallow broad region of low Qp hot fluids, which 

is in agreement with the location of the estimated ellipsoidal source. With the inclusion of 

temperature distribution coming from local temperature T and Qp relationship, we will be capable 

of performing more realistic numerical simulations.  
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Table I - Thermal and mechanical parameters. 

 

Thermal parameters 
Ts Surface temperature 273 K 

qm Heat flow 0.03 mWm-2 

k Thermal conductivity 4 Wm-1K-1 

As Volumetric rate of heat production 2.47 10-6 Wm-3 

b Length scale for crustal radioactive decay 14.170 km 

Mechanical parameters  
AD Dorn parameter 109 Pas 

E Activation energy 120 kJ/(mol) 

R Boltzmann constant 8.314 J/(mol K) 
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Figure Captions  
Figure 1 - Generalized Maxwell model.  

Figure 2 - Comparison between analytical solutions (solid line) and numerical results ( circles) for 

the vertical uplift due to a spherical pressure source in a homogenous and viscoelastic half-space. 

Figure 3 - Comparison between analytical solution (solid line) and numerical result ( circles) for the 

ground uplift as a function of time. A trapezoidal source history is assumed with t1=τ0/2, t2=5τ0 and 

t3=5.5τ0. The pressure reaches 100 MPa. 

Figure 4 – Ground uplift due to a spherical pressure source embedded in a viscoelastic half-space 

(solid line) and in an elastic half-space and surrounded by a viscoelastic shell (circles). 

Figure 5- Temperature (color scale) and viscosity (contour lines in Pas) profiles for source wall 

temperature at T=1000 K (on the left) and T=1500 K (on the right).  
Figure 6 - Vertical uplift at 120 days after the pressure increase within a magma source embedded 

in an elastic medium and surrounded by a viscoelastic spherical shell. Different thermal regimes 

are considered.  

Figure 7 – Misfit on the vertical uplift between the elastic solution and the viscoelastic response at 

120 days after the pressure step-like increase. The uplift increases with the temperature on the 

source wall. 

Figure 8 - Comparison between the model in which the thickness of the shell is temperature 

dependent (dashed line) and the model in which all the medium is fully viscoelastic (solid 

line).Figure 9 - Vertical uplift at 120 days after the pressure increase within a magma source 

embedded in a temperature-dependent viscoelastic half-space. The temperature on the source 

wall is varied from 1000 K to 1500 K. 

Figure 10 - Misfit on the vertical uplift between the elastic solution and the viscoelastic solution at 

120 days after the pressure increases. The viscoelastic response is strongly dependent on the 

temperature along the source wall. 

Figure 11 – Ground uplift at r=0 as function of time. (a) The pressure source is surrounded by a 

viscoelastic spherical shell and the wall temperature is T=1000 K (solid line) and T=1500 K 

(dashed line). (b) The pressure source is embedded in a temperature-dependent viscoelastic half-

space and the wall temperature is T=1000 K (solid line) and to T=1500 K (dashed line).  
Figure 12 – Comparison between GPS observed (black) and computed deformation during the 

1993-1997 period. The numerical computations are performed assuming a heterogeneous elastic 

medium (blue, after Bonaccorso et al., 2005) and a temperature-dependent viscoelastic medium 

with pressure source of 320 MP and source wall temperature at either 1000 K (green) or 1500 K 

(red).  

Figure 13 – Vertical uplift at OBS (circle), ESLN (square) and TDF (diamond) computed for a step-

like pressure increase (black lines) and linear pressure change (grey lines). 
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Figure 1 – Generalized Maxwell model. 
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Figure 2 - Comparison between analytical solutions (solid line) and numerical results (circles) for 

the vertical uplift due to a spherical pressure source in a homogenous and viscoelastic half-space. 
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Figure 3 - Comparison between analytical solution (solid line) and numerical result (circles) for the 

ground uplift as a function of time. A trapezoidal source history is assumed with t1=τ0/2, t2=5τ0 and 

t3=5.5τ0. The pressure reaches 100 MPa. 

 

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 0 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 1 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 3 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

z-
di
s
pla
ce
m
en
t 
[m
]

time = 5 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 7 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 9 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 11 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

radial coordinate [m]

time = 13 [days]

0 2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1
time = 15 [days]

 
Figure 4 – Ground uplift due to a spherical pressure source embedded in a viscoelastic half-space 

(solid line) and in an elastic half-space and surrounded by a viscoelastic shell (circles). 
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Figure 5- Temperature (color scale) and viscosity (contour lines in Pas) profiles for source wall 

temperature at T=1000 K (on the left) and T=1500 K (on the right).  
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Figure 6 - Vertical uplift at 120 days after the pressure increase within a magma source embedded 

in an elastic medium and surrounded by a viscoelastic spherical shell. Different thermal regimes 

are considered.  
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Figure 7 – Misfit on the vertical uplift between the elastic solution and the viscoelastic response at 

120 days after the pressure step-like increase. The uplift increases with the temperature on the 

source wall. 
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Figure 8 - Comparison between the model in which the thickness of the shell is temperature 

dependent (dashed line) and the model in which all the medium is fully viscoelastic (solid line). 
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Figure 9 - Vertical uplift at 120 days after the pressure increase within a magma source embedded 

in a temperature-dependent viscoelastic half-space. The temperature on the source wall is varied 

from 1000 K to 1500 K. 
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Figure 10 - Misfit on the vertical uplift between the elastic solution and the viscoelastic solution at 

120 days after the pressure increases. The viscoelastic response is strongly dependent on the 

temperature along the source wall. 
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Figure 11 – Ground uplift at r=0 as function of time. (a) The pressure source is surrounded by a 

viscoelastic spherical shell and the wall temperature is T=1000 K (solid line) and T=1500 K 

(dashed line). (b) The pressure source is embedded in a temperature-dependent viscoelastic half-

space and the wall temperature is T=1000 K (solid line) and to T=1500 K (dashed line).  
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Figure 12 – Comparison between GPS observed (black) and computed deformation during the 

1993-1997 period. The numerical computations are performed assuming a heterogeneous elastic 

medium (blue, after Bonaccorso et al., 2005) and a temperature-dependent viscoelastic medium 

with pressure source of 320Mpa and source wall temperature at either 1000 K (green) or 1500 K 

(red).  
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Figure 13 - Vertical uplift at OBS (circle), ESLN (square) and TDF (diamond) computed for a step-

like pressure increase (black lines) and linear pressure change (grey lines). 


