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Abstract

Back-arc volcanism located to the east of the And€ardillera was sampled in the Argentina
provinces of Mendoza and Neuquen for paleomagtietie average field and paleosecular investigatidie
activity ranges from 2 Ma to very recent time, wighlarge variety of products, from basalts to highl
differentiated lavas. After removal of sites affgtiy lightning, those witlx,, higher than 10°, and combining
of nearby sites displaying close directions, wespne new paleomagnetic results from 31 flows umei®nging
to two volcanic massifs: the Payun Matru and ther@Célevado. Previous and new K-Ar age determination
constrain the volcanic activity of these massifanfr300 to 0 ka, and from 1.9 to 0.9 Ma, respedqtivislost
paleomagnetic samples have NRM intensities betvedeut 1 and 20 A/m and depict progressive remokal o
magnetization components in a consistent fashiamglstepwise AF or thermal demagnetization. Niepte
flows yielded a normal direction (declination = 384 inclination = -53.0°p,, = 6.8°) and 12 flows a reverse
direction (declination = 181.0°, inclination = 52.%,, = 5.9°). The combined data yielded a mean directio
(declination = 357.3°, inclination = -52.83,, = 4.6°), which is not statistically different frothe axial dipole

field (g,”) expected at this latitude (36°S). The angulapetision of virtual geomagnetic poles calculatednfro
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flows with normal directions (ASD = 16.5°) compasesll with the observed value from global datasetshis
site latitude, but flows with reverse directionsplay a surprisingly low dispersion (ASD = 12.88)nce most
reverse directions were sampled from flows randiegveen 1.9 and 0.9 Ma, this can be interpretednas
interval of low paleomagnetic secular variation.diinal data, also with accurate time constrairas
obviously needed to better support this observatamally, no convincing evidence for a complexdimverage

field significantly different from the axial dipolean be supported by this study for the last 2 Myr.

Keywords: Time averaged field; Paleosecular variation; palegnetism; K-Ar dating; Back-arc volcanism;

Argentina

1. Introduction

When averaged over a large time interval the Ear#ignetic field, or time average field (TAF), is
similar to that of a geocentric axial dipole (GALBuch assumption allows the calculation of the glatéude
(A) as a simple function of the paleomagnetic in¢lova(l) recorded in rocks, through the formula: tih=< 2
tan (1). It has been widely used for plate tectonics metrmictions, and such simple geometry of the TA§ ha
strong implication for our knowledge of the geodyrea Although it is generally accepted to a firden, early
global paleomagnetic studies (Wilson, 1971) havdesnced a significant departure from this simpledaipbest
accounted for an offset axial dipole, i.e., by fiesence of a persistent axial quadrupole supeseatpto the
GAD.

More recently, various attempts have been madeetect any persistent departure from the GAD
model, with two main kinds of TAF models proposédhe first kind (e.g., Merrill and McFadden, 2003;
Quidelleur et al., 1994; Schneider and Kent, 198i8plays a zonal geometry with various contribugicof
persistent axial quadrupolar {gand/or octupolar (§) terms. More complicated models based on inverse
calculations have suggested much complex geometvids persistent features of higher degree anérote.g.,
Gubbins and Kelly, 1993; Johnson and Constable7)13%wever their robustness has been questionadufC
and Couirtillot, 1998), mostly on the basis of tlwpgeographic distribution of sampling sites immyated in

paleomagnetic datasets covering the last 5 Mymglwi and Constable, 1995; McElhinny and McFaddeay;1
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Quidelleur et al., 1994). Different approachesudahtg the analysis of the statistical distributimindirections
led to inconclusive results regarding persistenh-nonal components, thereby reinforcing simple kona
geometry models (Khokhlov et al., 2001, 2006; Ta2095).

The paleosecular variation (PSV) of the paleomagriitid can also impact on persistent components
of TAF models, depending on the geographic sité¢ridigion (Hatakeyama and Kono, 2002; Quidelleud an
Courtillot, 1996). Most commonly, PSV is investigdtby scrutinizing the angular standard disperék8D) of
virtual paleomagnetic poles (VGP) and its depengemith sampling site latitude. A pronounced incesad
ASD with latitude, which has long been observed.(eMcFadden et al., 1988), is the most strikingtdee.
Most models proposed for PSV structure requiresraumiform structure of the spherical harmonic Gioefnts
in order to account for this latitudinal dependenky these models the field model coefficients wany as
random values with a Gaussian distribution, thedpces a set of field directions in each given $ita only the
mean (usually set to zero) but also the variandbe&pherical harmonic coefficients allow to chatige shapes
of the resultant PSV distribution. This approackgioally initiated by Constable and Parker (19§8pvides
coherent and interesting results albeit hard teadly connect to dynamo modeling. For instance, wite
standard deviation of the quadrupole with sphetieamonic degree n = 2 and order m =1 is largean that of
quadrupole terms with order n = 0 and m = 2, a fiesf the model to the paleomagnetic databassbh&erved
(Constable and Johnson, 1999; Kono and Tanaka, Q%@8elleur and Courtillot, 1996; Tauxe and Kez@p4).
However, such structure of the PSV might also lesdx by the relatively poor geographical distritnutof
sampling sites. Moreover, an improved timing cdntrfothe presently available databases could atletecting
any temporal dependency of PSV, as observed foddtitude sites during the Brunhes chron (Lawreeical.,
2006).

A major effort in collecting volcanic data, whichaorded accurate snapshot of the paleomagnetit fiel
as they cooled through the Curie temperature gbfieagnetic minerals such as magnetite (about 580AC)
areas previously devoted, was since conducted. [Bagrgites located in a low latitudinal band (e @arlut et
al., 2000; Elmaleh et al., 2004; Mejia et al., 2088mamoto et al., 2002), where the inclinationraaty due to
a persistent axial quadrupole superimposed to tfe dipole would be maximum, were preferentiallyosen.
Areas from the whole southern hemisphere were ialgestigated (Opdyke et al., 2006), including véaigh

latitude sites (Baraldo et al., 2003; Tauxe et2ilQ4a).
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Even recently, the whole South America continens Waly lacking reliable data obtained with modern
paleomagnetic techniques. Recent studies providém flom southern Patagonia (Brown et al., 2004jiaviet
al., 2004) and from the Ecuador (Opdyke et al.62@0 fill a major geographic gap of paleomagnédttabases.
In order to further improve the geographic coverage present here new paleomagnetic data from ewrth
Patagonia of Argentina in the Andean Southern MfotcZone (SVZ). They have been obtained from mbeaat

30 independent sites from the last 2 Myr.

2. Geological setting

The SVZ, which extents between 46 and 34°S isatiterized by an active magmatic arc overlying the
30° dip eastward subduction of the Nazca plate utidgeSouth American plate. North of 34°S, the latkctive
volcanism has been related to the flattening ofstiteduction dip (e.g., Ramos, 1999). In additioth® North
South volcanic lineament of the SVZ arc, an impurtaack-arc volcanism is observed between 36 arfi§,38
north to the Mesozoic Neuquen basin. Such volcarfiiasibeen related to the change of subductionrdip f
Miocene to present. Kay et al. (2006) suggestet tttea Miocene arc-like lavas of the Sierra de Chaéi,
located about 500 km east of the present-day aece wrupted during a transient shallowing of theléem
subduction zone. Since 5 Ma, following this episdtie subduction angle steepened. The widespreagddra
volcanism of the Llancanelo Volcanic field (LLVF)h@& the Payun Matru Volcanic field (PMVF), with
characteristic within plate signatures, has bedateae to the injection of hot asthenosphere in® tiicker
mantle wedge above the steepening slab (Kay €2G04).

Such magmatism is dominated by effusive volcaniaithough major episode of caldera forming
explosion did occur, as attested by the existerfidheo7 km wide Payun Matru caldera. Basalts arshltia
andesites are dominant but highly differentiateddpcts have been emitted as both large area igitéabr
related to caldera formation, pumice fall depositghick lava flows emitted along the caldera marfsults
(Germa et al., 2008).

In the studied area, contractionnal regime climagtedng late Miocene in the foreland area, and was
followed by Pliocene extension, which favored thepéion of the back-arc volcanism (Ramos and K&0&3.

East of the Las Loicas trough (Figure 1), the teation of which is marked by the Tromen volcanol@bera et
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al., 2006), no major post-volcanism tectonic fabkise been reported. Therefore, the choice of Quatg far-
East lying back-arc volcanism for the paleosecuariation investigation conducted here is well sarpgd. Two
main back-arc volcanic massifs have been sampleithégpresent study, the PMVF and the LLVF.

The PMVF is characterized by a large variety ofteedi products with a very good timing constraint
(Germa et al., 2008). Los Volcanes is a basaléld fivith mainly effusive activity with ages covegitthe last
230 kyr. The occurrence of several strikingly déiokvs in the satellite photo (Figure 1) stronglgaes for their
emplacement during the Holocene. The Payun stritawo has a restricted period of activity betwe88 and
261 ka. The Payun Matru composite volcano liesh rtorth of Payun volcano and to the east of the Lo
Volcanes field. Its activity is constrained betwel8 + 3 ka and 7+1 ka, from ages obtained foratler rim
and for the younger intra-caldera lava, respedtivElnally, basaltic lavas from this volcanic complcan be
extremely long, with length reaching 180 km (Paséu al., 2008).

The Cerro Nevado volcano (3810 m) is the only ma&difice of the LLVF and is dominated by
trachyandesite products. Satellite photo examinashows that no recent lavas have likely eruptedtsn
vicinity. Furthermore, erosional features such ssetted flanks and radial valleys development esigthat a
relatively long time interval occurred since itstlactivity. Prior to the present study, no ageadeas available

for the LLVF but it was considered to be PlioceBerfnudez et al., 1993).

3. Techniques

3.1 Paleomagnetism

Paleomagnetic samples were collected during twd figps in December 2002 and 2003. A portable
hand drill was used and orientation was made uaimgagnetic and a sun compass. Site locations slmwn
Figure 1 were determined using a GPS. A total ofld@ units were collected during the two fieldpsi for
PMVF and LLVF areas. Twenty-three flows are frore Berro Nevado massif (labeled CN) and 26 flows are
from the Payun Matru massif (labeled PY or PN)vgetn 8 and 10 cores were collected from each flow.

The measurements were made in the Institut de §iwsilu Globe de Paris (IPGP) magnetically

shielded room using a JR5 spinner magnetometerw#R5preferred to 2G cryogenic magnetometer beocafuse
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the high magnetization of the samples. For each, fkamples were demagnetized using both therméb (@0
the samples) and alternating field (AF) demagngtira(80%). AF demagnetization was shown to be more
efficient mostly because many sites were affectedidghtning and were better magnetically cleanethgis
alternating field. Two flows (PN21 and PN27), whiglelded too high magnetization intensities caubgd
lightning strikes (from 10 to £0A/m), were discarded. The characteristic directiai magnetization were
determined with the Paleomac software (Cogné, 2008)ng Zijderveld projections (Zijderveld, 1967)da
principal component analysis (Kirschvink, 1980)mizned with great circles analysis for a few cashen the

primary direction seems to be partly overlappe@ lsgcondary component.

3.2 K-Ar dating

K-Ar dating has been performed in the present sindgrder to provide the first radiochronological
constraints for the LLVF and to constrain the ordatolcanism in the PMVF.

Hand size samples (1-2 kg) of representative umése crushed to a 250 - 4Q0n size fraction and
were ultrasonically cleaned for 15 minutes in a Bi#ic acid solution to remove possible trace ofatiered
material. In order to make the contribution of madjm argon and weathered phases negligible, we have
removed mafic phenocrysts using heavy liquids, @malyzed only the remaining groundmass obtainekinvé
narrow density range, typically between 2.95 ar@ 3y/cni. Potassium was measured by flame emission
spectroscopy and was compared with reference vali®DO-G and ISH-G standards (Gillot et al., 1992)
Between 1 and 2 g of sample were wrapped in Cuafud fused for 15 minutes at temperature above 1600
using a high-frequency furnace, which is sufficiéot complete extraction of argon from basalticugrdmass.
Before analysis, multiple steps gas cleaning wafpeed using Ti foam at 700 °C and SAES MP-10egstat
400 °C. Argon, the remaining gas, was measuredyusia K-Ar Cassignol-Gillot technique (Cassignoddan
Gillot, 1982), which is based on an atmospherioargomparison, with a mass spectrometer identictie¢ one
described by Gillot and Cornette (1986). The isteoratory standard GL-O, with the recommended vafue
6.679 x 18" atom/g of "Ar* (Odin et al., 1982), was used f8Ar signal calibration. Typical uncertainties of 1%
are achieved for th€Ar signal calibration (including GL-O standard urtenty) and for the K determination.
The uncertainty on th€Ar* determination is a function of the radiogeniontent of the sample. The detection

limit of the system is presently of 0.1% BGAr (Quidelleur et al., 2001). All uncertainties ayaoted at the 1
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173  sigma level. The decay constants and isotopic gatis K of Steiger and Jager (1977) have been used
174  throughout.

175

176

177 4. Results

178

179 4.1 Paleomagnetism

180

181 Examples of typical demagnetization diagrams amvehin Figure 2. All samples have lost more than
182  90% of their initial magnetization at 585°C or 10Dnduring thermal or AF treatment, respectivelyggesting
183  that magnetite or low Ti titanomagnetite is the mearrier of the natural remanent magnetizationN\)R

184 The individual characteristic direction from eacgmple was in most cases easily identified from both
185 thermal and AF demagnetization techniques (Figararl b). As previously recognized, AF was moriiefit
186 than thermal treatment to remove isothermal remtameagnetization (IRM) acquired during lightningilstis
187  which was a frequently occurring feature, as itlatgtd in Figures 2c and d, and, 2e and f, for sa/and normal
188 characteristic remanent magnetization (ChRM), retbpedy. The IRM overprint was easily removed befd0
189 mT, while the great circles method (Halls, 1976swacessary to isolate the ChRM from the IRM coreptin
190 The paleomagnetic direction from each flow was ioleté using Fisher statistic (Fisher, 1953) or migéatistic
191  when great circles were necessary. Finally, a padgmetic direction was calculated from 40 out ef 44 units
192  collected (Table 1). Very high scatters leadingimoesolved directions and therefore rejection weost likely
193  due to lightning, as attested by very high magaétn of some cores, or small bloc rotations ungeczed in
194  the field. Results from the 40 flows are reportedable 1 and in Figure 3.

195 A few flows that are geographically close displaydistinguishable directions at the 95% level, which
196  we interpret as the result of eruptions taking @laca narrow time-span. This is the case for CEG& CNO9,
197 CN37 and CN38, CN40 and CN42, PY15 and PY16, aM@1Rand PY22 (shown in grey in Figure 3). In order
198 to avoid any bias due to over-sampling, all sampkage been combined before the calculation of glesimean
199  direction for each of these couples of flows (Table

200 From the remaining 35 mean directions, all PMVIessif21 data) display a normal polarity, except

201 PY21-22, and, all LLVF sites (14 data) with the epion of CN11 and CN34 are of reverse polarityurFsites
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(CN34, CN39, PY18 and PY31) yield a mean directissociated with an,, above 10°, which is generally
considered as an upper threshold for PSV studiéesd sites will be rejected from further mean field
calculations which therefore rely on 31 directigRigure 4).

The overall mean direction calculated from the &&ssof this study, all transformed into normal
polarity, is Dec=357.3°, Inc=-52.8%,, =4.6°. The mean direction from normal (reverselapty flows is

Dec=354.8°, Inc=-53.0%,, =6.8°, N= 19 (Dec=181.0°, Inc=52.3f, =5.9°, N=12).

4.2 K-Ar dating

New K-Ar Cassignol-Gillot ages are given in Tabke &d b, for the LLVF and PMVF, respectively.
They range from 1.88 + 0.03 to 0.944 + 0.016 Md. &lalyses have been duplicated and yield in akesa
reproducible values at the one-sigma level. Previemes from the PMVF (Germa et al., 2008), obtairsidg
the same technique, for flows also sampled foptiesent paleomagnetic study are given in Table 3.

The ages obtained here for the LLVF provide th& fiadiometric dating of this extinct field. Itstizdty
probably initiated at about 2 Ma and lasted aboMyt. The construction of the Cerro Nevado volcéavell
constrained at 1.32 + 0.02 Ma from two undistinbatde ages obtained for two flows (CN 11 and CNlahle
2a) sampled at the base and towards its summitectisely. The oldest flow dated here (CN34; 1.878.028
Ma) is located to the south of the LLVF, while theungest (CN42; 0.944 + 0.016 Ma) belong to a resrth
volcanic center (Figure 1). Regarding PMVF, thegmew age (1.72 + 0.02 Ma, Table 2b), obtainethfthe
northern part, is much older than the ages ranfiog present to about 0.3 Ma previously reportedtfis

volcanic field (Germa et al., 2008). Hence, itather recognized as from a distinct older volcaeiater.

5. Discussion

5.1 Age reliability and comparison with the geomagnetic polarity time scale

Figure 5 shows the perfect agreement between thiéable paleomagnetic polarity (Table 1) and K-Ar

ages (Table 2a and b), compared with the geomagoerity time scale (GPTS; Cande and Kent, 1988gry
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sites from the PMVF but PY21-22 display normal diiens, in agreement with their age younger tha &9
(Germa et al., 2008), and hence falling within Brenhes chron. Flow PY21 dated here at 1.716 +3N2a
(Table 2b) belongs to the early Matuyama chrorexgected from its reverse polarity (Tablel). Fldwesn the
LLVF encompass four polarity changes within the Mama chron, from the Olduvai to the Jaramillo

subchrons (Figure 5).

5.2 Mean directions

The present day field (PDF) throughout South Angedisplays directions strongly departing from a
purely dipolar field with an inclination of —35.5fuch shallower than the expected value of -55@hfthe
GAD hypothesis at the present site location. Onlyu8 of 31 paleo-inclinations measured in the preséudy
(Table 1) reach the PDF value, which highlightsriit@er anomalous character of the latter.

As reported in Table 4 and shown in Figure 4, treamdeclination for all sites, as well as for each
subgroup, is undistinguishable from 0 or 180° wattliea,, confidence cone. This shows that possible regional
tectonic rotation is not a concern here, and ma@eahat the paleomagnetic field at the site lacais fully
compatible with a zonal geometry. When comparing iticlination values and the GAD value (-55.0°), al
subgroups from Table 4 display a slightly shallowiection, although it also remains within thg confidence
cone. There is no difference between normal andrsey nor between the two time intervals investiddtere.
The time dependency of the TAF suggested in somierestudies at the 1@o 10 years timescale (Carlut et al.,
2000; Elmaleh et al., 2004; Zanella, 1998) doessaetn to be observed here at they#@rs timescale.

Most TAF models require a small but significant gedsistent quadrupole {gterm, offsetting slightly
the dipolar component of the field, to fit the ghblpaleomagnetic dataset covering the last 5 Mybfins and
Kelly, 1993; Hatakeyama and Kono, 2002; Johnson @adstable, 1995; McElhinny and McFadden, 1997;
Quidelleur et al., 1994). However, some recentviddial studies (e.g., Carlut et al., 2000; Yamametal.,
2002) from near equatorial sites, where such qumdieueffect should be best recorded, revealednattn
close to the GAD value, rendering thg gomponent unnecessary. Alternatively, a persisigrdomponent on
the order of 5% of §appears required to explain the mean directioardsd at other individual equatorial sites,

such as in Indonesia (Elmaleh et al., 2004), fstaince.
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In the present study no persistent zonal term appecessary to account for the small, not steaikyi
significant at the 95% confidence level, departioren the axial dipole field. Furthermore, if anpetrequired
g, component would be of negative sign qf, gvhich is opposite of what observed in most glogtidies
(Constable and Parker, 1988; Johnson and Consta®8y,; Merrill and McFadden, 2003; Quidelleur et al
1994). Even when a persistent axial octupqldésgadvocated (as sometimes proposed), it wouldf moposite
sign of what expected from these global studiess $hggests that no significant non-dipolar compbreuld
be derived from the present single study and thia¢rodata from South America should first be comed

before deriving any regional mean paleomagnetiection.

5.3 Comparison with previous results from the Americas and the southern hemisphere

Although South America was devoted of paleomagngdita for TAF determinations when this study
was initiated, a number of results have since Ipedatished. In southern Patagonia (Mejia et al. 4206om 33
flows covering a time interval of 4 Myr, the meaiedtion (I1=-68°; D=-1.3°0,=3.5°) is not statistically
different from that of the GAD (expected inclinatio-68°). Slightly to the north, another study fretLago
Buenos Aires area, yielded 26 directions coverhigQ to 3 Ma time interval (Brown et al., 2004).eTimean
direction (1=-63°; D=3.4°n,.=5.4°) is also compatible with the GAD hypothesigfected inclination: -62°). To
the north of the present study, in Ecuador, Opdtkal. (2006) reported a mean direction of (I=25@3=-0.1°;
0,=4.2°) for 51 flows younger than 2.6 Ma, which rgyoslightly different from the GAD, and is best deded
when a small (5% of 9 axial quadrupole (§ is superimposed.

Within the central and northern Americas, thregent studies were conducted in Mexico, western US
and Canada. While a’germ of 5% superimposed to the GAD is suggestetddrformer (Mejia et al., 2005) and
the latter (Mejia et al., 2002), the GAD alone eaount for the mean direction reported in the arestyS
(Tauxe et al., 2004b). In addition, The GAD aloa® @lso account for results obtained in many stuftiem a
wide range of site location, such as Lesser Asti(l€arlut et al., 2000), French Polynesia (Yamansttal.,

2002), Australia (Opdyke and Musgrave, 2004) anthAita (Baraldo et al., 2003; Tauxe et al., 2004a)

5.4 Virtual geomagnetic poles

10
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Virtual geomagnetic poles (VGP) calculated for ea€lthe 31 final sites are reported in Table 1 and
plotted in Figure 6. All VGP latitudes lie above°61(for reverse directions) and 59°N (for normakdiion),
which shows that no transitional direction was reed here. This is not surprising, since when gkirto
account the total time interval covered here (atdoB8tMyr), the total number of transitions coverdd, the
typical duration of a single transition (about ¥ knaximum; e.g., Quidelleur et al., 2003), onlyput of 130
flows would be statistically emitted during a pdhkarchange. Even if excursions of the geomagneél fare
considered, although they occur quite often as rebgewithin the Brunhes chron (Langereis et al.97)9
because of their probably shorter duration we wdalde statistically recorded one excursional dioacat the
most.

Figure 7 shows the scatter in paleomagnetic doestirepresented by the angular dispersion of VGP
(ASD) as a function of latitude for both the datani a global 0-5 Ma dataset (Quidelleur et al.,49@nd
values derived from the C1 statistical model (Qlde and Courtillot, 1996). This model is closetie basic
model of Constable and Parker (1988) as it assuheseach spherical harmonic coefficient vary agoom
random gaussian values with zero mean and decgesisindard deviation as a function of the degreerder to
improve the fit of the ASD increase with latitudeserved for the data, the quadrupolar terms betiffezently
as a function of the spherical harmonic order. ®iisws that such simple model can accurately rejped
important observations concerning the paleomagriiid properties Note that the strength of the persistent
axial quadrupole (§ has little influence regarding the increase ofDA®ith latitude (Constable and Parker,
1988). ASD values for the present study were catedl for normal and reverse directions (Table 4 REigdre
7). Normal data (closed star) are compatible withithe C1 model the global dataset while reveega (bpen
star) are significantly lower. All sites combinegréy star) are compatible with the model within emainty.
When only data from the last 300 kyr are consideted ASD is 16.7° (Table 4), in full agreementtwihe
expected value for this site latitude (Figure 7ptéNthat similar conclusions are reached with mdgebf
McFadden et al. (1988), and with other statistfet models (Constable and Johnson, 1999; TauxeKamnt,
2004) that also fit well the global datasets.

It is interesting to compare our angular deviatirafues with other recent studies from nearby drea.
southern Patagonia (Mejia et al., 2004), the VGatsc of 17° is compatible with statistical PSV ratzd(e.qg.,
Quidelleur and Courtillot, 1996). In Ecuador, (Rettk et al., 1997) recorded an ASD of 11.2° inGadapagos

Islands during the 0-2 Ma interval, while on-la@pdyke et al., 2006) observed an ASD of 13.3°tlfier last
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2.6 Myr, both results being also compatible witk #xpected value within uncertainties. On the ottard, a
large scatter greater than 20° was obtained in_t#go Buenos Aires nearby area (Brown et al., 208#)ce
many transitional directions (10 out of 36) haverbeeported there, we suspect that for uncleaonsathis
latter study is not representative of the PSV.

Regarding our PSV results for reverse directiorab(@ 4 and Figure 7) two hypotheses arise; eitleer w
do not have sampled enough the paleomagnetic se@ration during the 0.9 — 1.9 Ma time intervat, the
PSV was significantly lower during this interval.ethink that the first hypothesis can be ruled lmetause of
the relatively large geographic distribution of @ites within the LLVF (Figure 1), and becausehf karge time
covered by these sites (Table 2a). However, onlgite3 display reverse directions, which might dmufficient
for PSV investigations (Tauxe et al., 2003). Altively, the second hypothesis, if validated byeotkites at
this latitude, would have strong implications far anderstanding of the timescales of the PSV.Ikinae note
that in a recent compilation of new and previousddohnson et al., 2008) there is also, at tiéslatitude, a
slight tendency (although not statistically sigegint) for a lower VGP dispersion during the revdvkguyama

chron (14.5°; N=40) than during the normal Brunbleon (16.1°; N=194).

6. Conclusions

The mean direction (declination = 357.3°, inclioat= -52.8°,0,, = 4.6°) from the 31 sites of the
present study is compatible with the expected alkijable field direction. Similar conclusions areaceed when
only normal or reverse directions are considered.

Other recent studies from South American site®\{Bret al., 2004; Mejia et al., 2004; Opdyke et al.
2006) also support a TAF without any non-zonal isegat components. On the other hand, they disgigitly
contradictory conclusions regarding the presence aignificant persistent zonal quadrupole termis Ihot
observed in southern Patagonia (Brown et al., 200djja et al., 2004), while a small positive termems
required in Ecuador (Opdyke et al., 2006). Whensm®red together with our results, which show ghsli
tendency (although not statistically significargy & small negative term, all presently availatdeadrom South

America support an axial dipole only TAF.
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345 PSV from normal and reverse polarity data disglagtrasting features. For normal directions, PSV is
346  as expected for this site latitude, while VGP digpla very small dispersion for reverse data, falhem being
347  from the 1.9 — 0.9 Ma time interval.

348 Finally, our results from South America increase #vailable number of recent high quality data from
349 this area of the globe in particular, and from ket hemisphere sites in general. Together with #ssociated
350 age constrains, they improve global datasets whidlhallow the construction of the next generatiohTAF
351  model which, hopefully, will allow the investigatiof the 10yr timescale variations.

352
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Figure captions

Figure 1: Location of sampled areas. K/Ar ages iptely available for PMVF (Germa et al., 2008) and

obtained herein are given in ka.

Figure 2: Typical demagnetization diagrams. Zijeéddv projections obtained during thermal and AF
demagnetization for reverse (a) and normal poldtdws (b). Zijderveld and stereographic projectioof a
reverse (resp. normal) sample affected by a sligM easily removed during AF (c; resp. e), but dating
thermal treatment (d; resp. f). In zijderveld podiens, solid symbols correspond to projectionsootite
horizontal plane, while open symbols are projedionto the vertical plane. For stereographic ptigas, solid

and open symbols indicate directions in the uppdrlawer hemisphere, respectively.

Figure 3: Stereographic projection of individuaivil directions. Rejected flow directions (see tex® labeled

and shown in grey.

Figure 4: Stereographic projections a) all rema@nmiormal and reverse polarity flows (N=31), b) foftom the
1.9 — 0.9 Ma time interval (N=13) and c) flows frahe last 300 kyr (N=18). Same symbols as in Fi@uréhe

open star in b) and ¢) shows the mean direction.

Figure 5: Comparison between the magnetic polasftydated flows from this study with the geomagnetic
polarity time scale (Cande and Kent, 1995). Clogad open symbols are for flows with normal and rese
polarity, respectively. All ages are in Ma. Noteattlior PN and PY flows the age uncertainty is lowem the

symbol size.

Figure 6: VGP positions shown with theiy, confidence interval for a) all flows, b) normallgaty flows and c)

reverse polarity flows.

Figure 7: VGP scatter in terms of the ASD obtaifredn this study (star) plotted as a function oftlete and

compared with values of C1 model (black curve) aatlies derived from their global dataset (grey ejrv
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525  (Quidelleur and Courtillot, 1996). Close, white agity stars are for normal, reverse and both pylaata,
526  respectively (see Table 4). Uncertainties wereinbthfrom Cox (1969).
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527

528 Tablecaptions

529

530 Table 1: Paleomagnetic directions. Column headindiate Site # , flow location: Lat. (site latie)l Long.
531 (Site longitude), n/N (number of data used/totahber of samples measured), Dec. (declination, gneds, Inc.

532  (inclination, in degree)igs (radius of the 95% confidence cone fréinsher (Fisher, 1953) statistics), (virtual

533 geomagnetic pole latituded, (virtual geomagnetic pole longitude), Comment (NCG- N great circle analyses
534  were used).

535

536 Table 2: New Cassignol-Gillot K-Ar ages from a) t@ero Nevado volcanic field, and b) the Payun Matru
537  Volcanic field (°Ar* (%): radiogenic argon 40 in perceffar* (x10* at/g): radiogenic argon 40 in number of
538 atoms per gram of sample).

539

540 Table 3: Previous K-Ar ages from the Payun Matricawic field (Germa et al., 2008).

541

542  Table 4: Mean directions paleomagnetic resultsnumper of average directions), Dec (mean declinatio
543  degree), Inc (mean inclination, in degree), k (lajppecision parameterdigs (radius of the 95% confidence
544  cone fromFisher (Fisher, 1953) statisticsppl (observed inclination — dipole inclination, ingtee), VGP lat.
545  (virtual geomagnetic pole latitude), VGP long. {wval geomagnetic pole longitude), ASD (angular dtead
546  deviation) , VGP sc. (VGP scatter around the me@\pole).

547
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547

548

Table 1.

Site Lat. Long. n/N Dec(°) Inc(°) k Oy VGP VGP Comment

lat. long.
CNO1  -3551942 -68.64081 8/9  216.1 -61.5 256.4 35 -61.3 -133.1
CNO2  -3550167 -68.62328 6/9  190.4 -53.8 140.2 58 -81.4 1967 2GtC
CNO5  -35.63069 -68.53278 10/10 173.4 -57.3 248.8 3.1 -84.2 -4.1
CNO7  -3558919 -68.50011 7/7  179.8 -60.0 391.8 3.1 -847 -66.9
CNO8* -3559308 -68.50361 6/8  171.7 -55.8 383.2 3.6 - - 2GtC
CNO09* -35.62939 -68.53036 7/9  168.4 -54.4 108.4 5.8 - -
CN10  -35.62939 -68.53036 7/8  177.8 -56.5 232.6 4.0 -87.7 -188
CN11 -3559939 -68.63992 7/8 344.4 -51.2 256.4 40 765 -147.0 3GtC
CN33  -35.76556 -68.29103 9/9  178.8 -39.6 48.1 7.7 -76.6 1069 3GtC
CN34  -35.77406 -68.29867 4/7 10.8 -60.8 399 156 L - 1GtC
CN36  -35.32572 -68.38858 9/9  180.7 -47.8 39.5 83 -835 117.1
CN37* -35.32572 -68.38858 8/9  179.6 -31.2 25,0 116 - - 3GtC
CN38* -35.32833 -68.36644 5/8  180.8 -34.6 573.2 3.2 4 -
CN39  -3528722 -68.23881 3/4  154.6 -34.4 63.6 15.6 - -
CN40*  -3525014 -68.25347 8/9  179.7 -53.6 411 8.7 - -
CN42*  -3521561 -68.25564 6/8  181.5 -50.4 192.1 4.8 - -
CN44  -3518006 -68.24900 8/9  178.7 -45.6 48.1 8.2 -81.8 103.7 2GtC
PN15 -36.42375-69.66111 8/9 0.6 -47.3 101.4 5.5 82.0 -65.9
PN16 -36.42389-69.66008 6/8 4.6 -62.3 149.7 5.5 82.0 85.7
PN17 -36.31331-69.66397 7/7  347.7 -51.7 260.1 3.7 79.1 -142.0
PN22 -36.39422-69.39839 6/6  343.1 -42.3 221.0 45 712 -124.7
PN23 -36.44211-69.38072 7/7  331.4 -36.9 95.8 6.2 60.5 -134.8
PN24 -36.48217-69.37269 5/8 8.1 -50.9 391.7 3.9 817 -13.2
PN25 -36.48217-69.37269 5/8  348.7 -65.7 56.9 10.2 75.9 1432
PN26 -36.51331-69.34542 6/8  354.2 -62.5 13985 1.8 814 1400
PY12 -36.43792 -69.63217 8/9 12.7 -62.0 96.0 5.7 781 504 1GtC
PY14 -36.47342 -69.64694 8/8 2.5 -55.8 158.3 4.4 88.0 16.7
PY15*  -36.53731 -69.61611 6/8 17.2 -64.3 226.2 4.5 - -
PY16* -36.53800 -69.61839 7/7 16.1 -63.6 384.0 3.1 - -
PY18 -36.47228 -69.37975 6/8  328.5 -61.5 16.2 17.2 - -
PY19 -36.47311 -69.38047 6/8 3.1 -54.6 2455 43 871 -7.1
PY20  -36.37281 -69.40289 5/7  350.2 -64.3 94.8 79 778 1447
PY21*  -36.21300 -69.39747 7/7  165.4 59.8 86.7 6.5 - -
PY22*  _36.18450 -69.40069 5/5 170.5 58.6 180.0 6.1 - - 2GtC
PY26 -36.30239 -69.33172 7/7 3521 -59.8 74.8 72 824 1631 2GtC
PY27 -36.30953 -69.29875 8/10 344.8 -29.3 65.6 6.9 65.3 -106.5
PY28 -36.30794 -69.29669 5/9 4.2 -49.5 4869.5 12 831 -376 2GtC
PY29 -36.37392 -69.21347 7/8  330.3 -69.0 178.5 4.7 637 1537 3GtC
PY31 -36.38031 -69.21014 5/7 27.3 -55.3 41.1 150 - - 4GtC
PY32 -36.39375 -69.21911 7/7 6.9 -12.2 113.9 59 591 557 3GtC
CNO08-09 - - 14/17 172.2 56.0 84.8 4.4 -83.6 10.7
CN37-38 - - 11/13 182.9 331 163.0 3.6 -72.6  120.8
CN40-42 - - 14/14 180.5 52.2 64.3 5.0 -87.6 1217
PY15-16 - - 13/13 16.6 -63.9 315.1 2.3 74.6 61.6
PY21-22 - - 11/12  166.0 58.0 219.2 3.1 -78.6 3.9
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548

549

550

551

552
553

Table 2a.

Flow K(%)  “Ar (%) “Arx(x10%at/g)  Age * 1o (Ma) Mean (Ma) Sample
CNO3 1.742 26.2% 1.9020 1.045 + 0.015

32.9% 1.8973 1.043+0.015 1.044 +£0.015 94D2
CNO7 2.246 44.1% 3.1038 1.323 + 0.019

47.1% 3.1210 1.330 £ 0.019

46.8% 3.0954 1.319+0.019 1.324 +£0.019 94|
CN10 3.398 29.7% 4.6662 1.314 + 0.019

31.3% 4.7066 1.326 £+ 0.019 1.320 + 0.019 94L
CN11 0.790 16.9% 0.83289 1.009 + 0.015

21.2% 0.85197 1.032+0.015 1.022 £0.015 94M
CN34 0.914 28.0% 1.7882 1.872 + 0.027

21.9% 1.7999 1.884 +0.028 1.878 +£0.028 94BB
CN36 0.794 24.3% 1.1148 1.344 + 0.020

10.4% 1.1380 1.372+0.020 1.352 +0.020 94BD
CN42 0.882 16.0% 0.86756 0.942 + 0.015

5.5% 0.87565 0.950 + 0.022 0.944 +0.016 94BJ

Table 2b.

Flow K(®%)  “Art(%) “Ar* (x10"at/g)  Age * 1o (Ma) Mean (Ma) Sample
PY21 0.811 28.1 1.4547 1.717 + 0.025

29.1 1.4543 1.716 £+ 0.025 1.716 + 0.025 94X
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553 Table 3.

Flow Age + 10 (ka) Sample

PN16 233+11 88R
PN17 26+5 88S
PN23 26+ 2 88z
PN25 9+6 88AB
PN26 285+5 88AC
PY27 15+1 94AE
PY28 28+5 94AF
PY29 168+ 4 94AH1
PY31 82+2 94AK
PY32 71 94AL
554
555
556  Table 4.
Data n Dec (°) Inc (°) k O Al (°) VGP lat. VGP long. ASD  VGP sc.
All 31 357.3 -52.8 32.6 46 27 87.5 233.9 14.8 14.6
N polarity 19 3548 -53.0 25.6 6.8 25 85.8 214.9 16.5 15.9
R polarity 12 181.0 52.3 54.2 5.9 -3.2 -87.9 137.7 125 123
< 300 ka 18 3555 -53.1 24.4 71 24 86.4 215.4 16.7 16.2
09-19Ma 13 359.7 -52.3 55.2 56 3.2 88.0 -73.7 12.6 125
557
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Figure 1 (Quidelleur et al., 2008)
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Figure 2 (Quidelleur et al., 2008)



Figure 3 (Quidelleur et al., 2008)
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Figure 5 (Quidelleur et al., 2008)
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