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Abstract9

10

We describe a new technique for three-dimensional lithospheric-scale modeling of solid state 11

deformation including strain localization processes. The new code, SLIM3D, includes a 12

coupled thermo-mechanical treatment of deformation processes and allows for an elasto-13

visco-plastic rheology with diffusion, dislocation and Peierls creep mechanisms and Mohr-14

Coulomb plasticity. The code incorporates an Arbitrary Lagrangian Eulerian formulation with 15

free surface and Winkler boundary conditions. SLIM3D is developed and implemented using 16

the C++ object-oriented programming language. We describe aspects of physical models as 17

well as details of the numerical implementation, including the Newton-Raphson solver, the 18

stress update procedure, and the tangent operator. The applicability of the code to 19

lithospheric-scale modeling is demonstrated by a number of benchmark problems that 20

include: (i) the bending of an elastic plate, (ii) the sinking of a rigid cylinder into a viscous 21

fluid, (iii) the initiation of shear bands in the brittle crust, (iv) triaxial compression test, and 22

(v) lithospheric transpressional deformation. Finally, we discuss possible directions of further 23

development.24

25

Keywords: 3D numerical modeling; Geodynamics; Lithospheric deformation; Strain 26

localization; Mohr-Coulomb27

28

1. Introduction29

30

On geological time scales, lithospheric rocks deform by three fundamentally different 31

phenomenological mechanisms. These are: (i) elastic mechanism (reversible), which on 32

geological time-scales occur mostly during flexural deformation of the lithospheric plates or 33

bending of slabs in subduction zones; (ii) viscous mechanism, typical of the convective 34

* Manuscript



Page 2 of 73

Acc
ep

te
d 

M
an

us
cr

ip
t

2

mantle, or for lower crustal flow at plate boundaries; and (iii) plastic mechanism, which 35

simulate brittle failure and manifests itself in the formation of narrow shear zones or faults. 36

37

The quantitative proportion between each of these mechanisms depends on many parameters, 38

the most important of which are temperature and stress. Viscosity, for instance, varies by 39

several orders of magnitude with temperature change of a few hundred degrees. At low 40

temperatures, viscous deformation is prohibited which leads to a buildup of elastic stresses 41

during deformation, until the rock fails. This type of behavior characterizes brittle or elasto-42

plastic deformation. At high temperatures, on the other hand, the rock may accommodate high 43

deformation rates through the viscous mechanism without excessive stress accumulation. This 44

is a typical manifestation of the ductile flow regime.45

  46

The lithosphere is not only a region of large compositional heterogeneity, contrasting in this 47

respect with asthenosphere, but it is also a locus of large temperature variations. In this 48

context, it becomes necessary not only to resolve separate brittle and ductile flow regimes, but 49

also to adequately model the brittle-ductile transition. Apart from many other complexities, 50

this single requirement makes lithospheric-scale modeling a challenging task.51

52

This is further complicated by several factors, including: the presence of the Earth’s free 53

surface, where erosion and sedimentation processes take place; the occurrence of 54

metamorphic reactions in rocks with changing temperature and pressure; the presence of 55

spontaneously evolving large-scale fault zones; by the inherent three-dimensional nature of 56

most lithospheric-scale problems, and many others. All these complexities pose severe 57

conceptual and implementation problems for lithospheric-scale modeling tools. 58

59

In recent decades, the geodynamic modeling community has accumulated significant 60

experience in the development and application of numerical tools designed for modeling 61

various geodynamic processes. These studies include Christensen and Harder (1991), 62

Weinberg and Schmeling (1992), Bercovici (1993), Poliakov et al. (1993), Braun and 63

Sambridge (1994), Bunge and Baumgardner (1995), Fullsack (1995), Trompert and Hansen 64

(1996), Schmalholz et al. (2001), Babeyko et al. (2002), Tackley and Xie (2003), Moresi et al. 65

(2003), Sobolev et al. (2005), Muhlhaus and Regenauer-Lieb (2005), Petrunin and Sobolev 66

(2006), O’Neil et al. (2006), Gerya and Yuen (2007), Braun et al. (this issue), and Petrunin 67
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and Sobolev (this issue), which have all contributed to the development of geodynamic 68

modeling techniques.69

70

In our research we are mostly interested in highly dynamic deformation processes occurring at 71

plate boundaries involving the combination of transform and compressional/extensional 72

deformation. Such processes are essentially 3D and operate on a temporal scale of a few to 73

several hundred million years and a spatial scale of hundreds to thousands of kilometers. 74

Specific examples include continental collision processes in Tibet and transform deformation 75

at the San Andreas Fault System and the Dead Sea Transform. Numerical techniques to 76

handle such processes must be 3D, should operate with an elasto-visco-plastic rheology, as 77

this is the most adequate rheology to model lithospheric deformation, and must be suitable to 78

model geological time-scale processes. Unfortunately, none of the tools available at present79

can be directly applied to these problems. The most suitable 3D codes either still do not 80

include elastic deformation processes (Braun et al., this issue) or, being explicit codes 81

(Petrunin and Sobolev, 2006, this issue), require very small steps for time integration and 82

therefore are not efficient for modeling long-term deformation. The best candidate among 83

existing tools is the 3D version of visco-elasto-plastic code I2ELVIS, which is currently under 84

development (Gerya and Yuen, 2007). We note, however, that this code is based on a purely 85

Eulerian approach and uses fully staggered finite-difference discretization. Staggered schemes86

are inherently stable (Shih et al., 1989), but the Eulerian approach substantially complicates 87

treatment of the free surface.88

89

With this in mind, we propose here a new code for lithospheric-scale modeling (SLIM3D). It 90

is an implicit Arbitrary Lagrangian Eulerian Particle-in-Cell Finite Element code with a free 91

surface, designed specifically for the thermo-mechanical modeling of deformation processes 92

involving an elasto-visco-plastic lithospheric rheology on geologic time scales. SLIM3D is 93

being designed to model deformation at plate boundaries (the focus of the recently formed 94

geodynamic modeling group in GFZ-Potsdam). It is intended to complement the capability of 95

the explicit code LAPEX3D already used in the same group for similar problems (Petrunin 96

and Sobolev, 2006, this issue). SLIM3D is developed and implemented using the C++ object-97

oriented programming language.98

99

We emphasize that the potential advantage of SLIM3D over the other similar codes is in its 100

three-dimensional nature combined with the adequate description of lithospheric deformation 101
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(rheology, strain localization, free surface etc.). To our knowledge, such a combination is 102

unique at present. At the same time, we note that the code is still limited in certain aspects, 103

which are already implemented in the other codes. These aspects are, for example, the104

multigrid solver (e.g. Moresi et al., 2003) and the adaptive mesh (e.g. Braun et al., this issue). 105

Despite the present disadvantages, we suggest that SLIM3D has a good potential to be 106

substantially improved in the future versions.107

108

This paper is not intended to demonstrate the application of the code to certain geodynamic 109

problems, but rather to introduce the method in general with several benchmarks and 110

examples. The structure of the paper is as follows. In the next section, we describe the basic 111

physical and rheological framework that we utilize for lithospheric scale modeling. In section 112

3 we outline implementation details of the code. In section 4, we test our tool with five 113

benchmark problems which demonstrate aspects of elastic, viscous and plastic deformation 114

mechanisms both separately and in combination. Finally, we briefly conclude our work and 115

describe the direction we are planning to further develop our technique. 116

117

118

2. Physical models119

120

121

2.1 Conservation equations122

123

Lithospheric-scale deformation can be effectively characterized as a quasi-static thermo-124

mechanically coupled deformation process. Assuming a continuous media approximation, we 125

can describe this process by the conservation equations of momentum:126

ˆ 0


 


ij
i

j

g z
x


 , (1)127

and thermal energy:128


  


i

i

qDU
r

Dt x
. (2)129

Here, ix  ( 1, 2, 3i ) denote Cartesian coordinates, ij  is the Cauchy stress tensor,    is the 130

material density, g  is the gravitational acceleration, ˆiz  is the unit vector of the vertical axis 131

pointing downward, U is internal energy, /D Dt is the material time derivative, iq is the132
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heat flux vector, r is volumetric heat sources. In the above equations and in the rest of this 133

paper, we use indicial notation and apply Einstein summation convention over repeated 134

indices. Since there is no difference between covariant and contravariant components in the 135

Cartesian coordinate system, all tensor indices are written as subscripts. For convenience we 136

additionally explain notation, meaning, and dimension of basic quantities used in this paper in 137

Table 1.138

139

[Table 1]140

141

142

2.2 Deviatoric-volumetric decomposition143

144

The thermo-rheological behavior of the rocks is more conveniently formulated in terms of the 145

deviatoric-volumetric strain (stress) decomposition (e.g. Bonet and Wood, 1997). For the 146

Cauchy stress tensor we may write:147

1
3,   ij ij ij iip p    , (3)148

where ij  is the Cauchy stress deviator and p  is hydrostatic pressure (positive in 149

compression). The deviatoric strain rate tensor and the rate of volume change, respectively, 150

may be written directly as:151

   1 1
2 3

/ / / , /          i j j iij k k ij i iv x v x v x v x   , (4)152

where iv  is the spatial velocity vector. We adopt the second (Euclidean) norm as the effective 153

scalar measure of deviatoric tensorial quantities. For an arbitrary tensor ija  the second norm is 154

expressed as:155

1 2( )II ij ija a a . (5)156

157

158

2.3 Continuity equation159

160

We include the effects of elastic compressibility and thermo-elasticity. In this case, the 161

continuity equation can be conveniently coupled with the constitutive equation for hydrostatic 162

pressure:163

Dp DT
K

Dt Dt
     
 
 . (6)164
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Here, K  is the bulk modulus and   is the coefficient of thermal expansion. The presence of 165

volumetric deformations evokes the following corrections of material density:166

 0 01
      

p
T T

K
   , (7) 167

where 0  is the density at reference temperature and zero pressure and 0T  is the reference 168

temperature. Note that Eq. (7) can be easily replaced by the equation of state applicable for 169

high pressure and temperature for models involving deep portions of the mantle. 170

171

172

2.4 Additive decomposition and elasticity 173

174

Taking benefit from the smallness of elastic strains, we adopt conventional additive 175

decomposition (e.g. Simo and Hughes, 2000) of total deviatoric strain rate. The elastic, 176

viscous and plastic components, respectively, can be written as follows:  177

1 1
ˆ

2 2


     


el vs pl

ij ij ij ij ij ij
eff ij

Q

G
      

 
     , (8)178

where G  is the elastic shear modulus, îj is the objective stress rate (e.g. Bonet and Wood, 179

1997),  eff is the effective creep viscosity,  is the plastic multiplier, and Q is the plastic 180

potential function (e.g. Simo & Hughes, 2000). Note that for numerical integration of elastic 181

stresses over the finite time step, we use the incrementally objective scheme of Hughes and 182

Winget (1980). For more details see the next section of this paper.183

184

185

2.5 Ductile creep186

187

We adopt a detailed description of the ductile deformation component. The total viscous 188

strain rate is additively decomposed into three temperature- and stress-dependent creep 189

mechanisms, namely diffusion creep, dislocation creep and Peierls creep (see e.g. Kameyama 190

et al., 1999). The corresponding effective creep viscosity is given by:191

  11
2eff II L N P          , (9)192

where II  is effective differential stress (see Eq. 5), and L , N  and P  are the effective scalar 193

strain rates due to the diffusion, dislocation and Peierls mechanisms, respectively. Specific 194

expressions for each strain rate can be written as follows:195
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exp
   
 

L
L L II

H
B

RT
  , (10)196

  exp
   
 

n N
N N II

H
B

RT
  , (11)197

 2
exp 1

          

s

IIP
P P

P

H
B

RT


 


 , (12)198

where199

 2 1  PH
s

RT
  . (13)200

In the above equations, LB , NB , PB  and LH , NH , PH  denote the creep parameter and 201

activation enthalpy, respectively, of each correspondent mechanism, R  is the gas constant, n202

is the power law exponent, P is the Peierls stress, and 0 1   is an adjustable 203

approximation parameter. Note that in Eq. (12) we have adopted an asymptotic approximation 204

of Peierls mechanism (see Kameyama et al. 1999), since the original equation is inappropriate 205

for stresses below 2(10 )O MPa. 206

207

Here we assume that the creep parameter and activation enthalpy are constant for all creep 208

mechanisms. In the general case, the creep parameter can depend on grain size (Karato et al., 209

2001), and activation enthalpy may be sensitive to pressure (Regenauer-Lieb and Yuen, 210

2004). If necessary, these complexities can be easily introduced in the presented numerical 211

formulation.  212

213

In Fig. 1, we plot the effective logarithmic viscosity versus temperature and differential stress, 214

assuming parameters for dry olivine from Kameyama et al. (1999). Each creep mechanism 215

dominates over the others (produces a higher strain rate) in different temperature-stress 216

domains. In Fig. 1, these domains are separated by black solid lines and labeled. Note that for 217

olivine, most of effective viscosity reduction from extremely high ( 2710  Pas) to extremely low 218

( 1810  Pas) values occurs within a relatively narrow temperature range between 500 and 1000 219

C for all stress levels. 220

221

[Figure 1]222

223

2.6 Brittle failure224
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225

We describe brittle failure of rocks by the classical Mohr–Coulomb plasticity model (see e.g. 226

Vermeer, 1990). The expression for the Mohr–Coulomb yield surface can be written as:227

   1 1
max min max min2 2 sin cos 0     F c      , (14)228

where max  and min  are the maximum and minimum principal stresses (negative in 229

compression),   is the material angle of friction, c  is cohesion, 1
max min2 ( )  is the 230

maximum differential stress, and 1
max min2 ( )  is the normal stress. 231

232

In the principal stress space, the Mohr-Coulomb yield surface can be represented as a 233

hexagonal pyramid with a singular apex point in the tensile domain. Physically, this 234

singularity means that the Mohr-Coulomb yield surface is inappropriate to model tensile 235

failure of the rocks. A more adequate description in the context of lithospheric deformation 236

would require coupling with the continuity equation to account for large plastic dilatation. 237

Such sophisticated treatment of the tensile failure is not yet available. Therefore in this paper 238

we adopt a standard ad-hoc approach and approximate the Mohr-Coulomb yield surface in the 239

tensile domain with the Tresca criterion which is given by:  240

 1
max min2 cos 0F c      . (15)241

The resulting composite yield surface is shown in Fig. 2.242

243

[Figure 2]244

245

Associative Mohr–Coulomb in 3D is essentially a multi-surface plasticity model which has 246

so-called corner regions (Simo et al., 1988) in both yield surface and flow potential. 247

Integration of such a model constitutes a particularly nontrivial task (Sloan and Booker, 1986; 248

Larsson and Runesson, 1996; Borja et al., 2003). Another issue is related to the associativity 249

of the flow rule, which significantly overestimates plastic dilatation of the rocks (e.g. Alejano 250

and Alonso, 2005). We resolve both these issues by adopting the purely deviatoric corner-free 251

Prandtl-Reuss flow rule (e.g. Zienkiewicz and Taylor, 2000), which is non-associative with 252

the Mohr–Coulomb yield surface. In this case the plastic potential function takes the 253

following simple form:254

IIQ  . (16)255

The Prandtl-Reuss flow rule assumes complete plastic incompressibility (i.e. dilatation angle 256

is zero), which is a suitable approximation for rocks in the large strain regime. At the same 257
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time, the integration of the plasticity model becomes considerably simpler due to a lack of 258

corners in the plastic potential.    259

260

We approximate the degradation of the strength in faults and gouge zones by the strain 261

softening model. The friction angle is assumed in the following product form:262

0 ( )D   , (17)  263

where 0  is initial friction and ( )D   is the function that controls degradation of the friction 264

angle with progressive increase of the accumulated plastic strain. We assume ( )D   in 265

piecewise linear form. The accumulated plastic strain is given by:266

 1 2
  pl pl

ij ij

t

dt    . (18)267

We note that the adopted plasticity model with strain softening does not incorporate any 268

length scale for the strain localization (e.g. Muhlhaus and Aifantis, 1991). Thus the theoretical 269

thickness of the shear band is zero. In the numerical model the thickness of the shear band is 270

limited from below by the element size. Therefore in the context of an adaptively refined grid 271

one must incorporate the length-scale or certain regularization (e.g. Belytschko and Tabbara, 272

1993) to prevent the element size from reducing to very small values. In this paper we do not 273

explicitly address this mesh-dependence issue, since at present we only consider uniform non-274

adaptive grids. 275

276

277

2.7 Heat flow278

279

At present, we neglect latent heat effects due to phase change and assume internal energy in 280

the form of linear function of temperature, i.e.:281

pU C T , (19) 282

where pC is specific heat. 283

284

We define the heat flux vector according to Fourier law as follows:285


 

i ij
j

T
q

x
 , (20)286

where ij  is the isotropic thermal conductivity tensor. 287

288
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The volumetric heat sources include radiogenic heat and heat produced by visco-plastic 289

deformation, i.e.:290

( )vs pl
ij ij ijr A       , (21)291

where A  is radiogenic heat per unit mass and 0 1   is the constant regulating degree of 292

thermo-mechanical feedback. This coupling constant is an ad-hoc approach that effectively 293

accounts for the processes which we do not include in our models, such as heat transport by 294

the fluids, etc.295

296

297

2.8 Boundary conditions298

299

The conservation equations (1) and (2) must be complemented with initial and boundary 300

conditions. This may include specified velocity, temperature, stress and heat flux. 301

Additionaly, in the context of lithospheric-scale modeling it becomes necessary to 302

approximate the boundary conditions at the base of the lithosphere. In this paper we use the 303

classical Winkler foundation (see e.g. Fig. 5 in Regenauer-Lieb, 2006), which assumes zero 304

viscous drag forces and takes into account buoyancy forces. The boundary stress tensor of the 305

Winkler foundation can be parameterized as follows:306

 0 0 ,     ij ext ijp g z z   (22)307

where 0p  is pressure at the reference surface, ext  is the density of the external material, and308

z  and 0z  are the vertical coordinates of the bottom boundary and the reference surface, 309

respectively. Typically, we use the initial position of the bottom boundary as the reference 310

surface. The pressure at the reference surface is assigned as total weight divided by the depth 311

of the model. 312

313

Other non-standard boundary conditions include more complicated effects such as erosion on 314

the free surface and material in-flux and out-flux. These effects are considered in more detail 315

in the next section. 316

317

318

3. Numerical algorithms319

320

321
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3.1 Spatial discretization322

323

We build numerical models of lithospheric-scale deformation on the basis of the Finite 324

Element Method (e.g. Hughes, 1987; Zienkiewicz and Taylor, 2000; Belytschko et al., 2000). 325

Following the Galerkin procedure (e.g. Belytschko et al., 2000), we transform the momentum 326

balance equation (1) into a corresponding nodal force residual:327

ˆ 0
  


     

  I
iI ij I i I ij j

j

N
f d N g z d N n d

x
   . (23)328

Similarly, we approximate the energy balance equation (2) by a nodal power residual:329

0I
I I i I I i i

i

NDUw N d q d N r d N q n d
Dt x


   


     

    . (24)330

Here N  denotes the nodal shape function (Zienkiewicz and Taylor, 2000),  I  is the nodal 331

index, ij  and iq  are surface stress and surface heat flux, respectively, in  is the outward unit 332

normal, and   and  stand for the volume and surface of the domain. 333

334

We employ hexahedral finite elements with linear interpolation functions (e.g. Zienkiewicz 335

and Taylor, 2000) to approximate volume integrals in the above equations, and similar 336

quadrilateral elements to approximate surface integrals (see Fig. 3). Element integrals are 337

expressed in terms of parametric coordinates and evaluated over the unit cube or square using 338

numerical integration (e.g. Belytschko et al., 2000). This stage is directly followed by 339

assembly of the global residual equations (23) and (24) from element contributions (e.g. 340

Hughes, 1987).341

342

[Figure 3]343

344

In each element, the shape function derivatives with respect to global coordinates are 345

computed using standard coordinate transformation (summation over repeated nodal indices is 346

implied): 347

1 ,  
 

  
I I I

ij ij jI
i j i

N N N
J J x

x  
,  (25)348

where i  are the local coordinates and ijJ  denotes Jacobian matrix. The unit outward normal 349

vector is evaluated according to:   350

 1/ 21 ˆ ˆ ˆ, i i i in J n J n n , (26)351
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where J  stands for surface Jacobian and ˆin  is the cross-product between two surface tangent 352

vectors, which can be expressed as follows:353

(1) (2) ( )ˆ , , 1, 2a I
i ijk j k i i I

a

N
n t t t x a




  


. (27)354

Here  ( )a
it  are the surface tangent vectors and ijk  is the Levi-Civita permutation symbol. To 355

ensure a positive determinant of the Jacobian matrix and outward orientation of the unit 356

normal vector, we perform appropriate control over the numbering of nodes in the element.357

358

359

3.2 Locking and Hourglass  360

361

In nearly incompressible problems the finite element mesh is prone to locking, which 362

manifests itself in severe underestimation of velocities/displacements (e.g. Belytschko et al., 363

2000). Locking is cured either by suitable under-integration of stress terms (Malkus and 364

Hughes, 1978) or by using higher interpolation order for displacements (velocities) than for 365

the stresses (e.g. Zienkiewicz and Taylor, 2000). Both approaches are essentially equivalent. 366

367

We suppress locking by evaluating constitutive equations only in one point per element 368

(Flanagan and Belytschko, 1981). This approach implies that strains (strain rates) and other 369

spatial gradients are evaluated using the following element-average derivatives of the shape 370

functions:   371

1



 

 I
iI

E i

N
b d

V x
. (28)372

where EV  is the element volume. For element integrals, we use standard quadrature. 373

374

The hexahedral elements employed here violate the so-called LBB stability condition named 375

after Ladyzhenskaya (1969), Babuska (1973) and Brezzi (1974), which leads to mesh artifacts 376

known as “hourglass modes” (e.g. Flanagan and Belytschko, 1981) (see also Fig. 4a). Despite 377

this, we use them together with careful monitoring of the stress and displacements fields, 378

because the more stable quadratic element is computationally very expensive in 3D problems. 379

With the same element resolution, quadratic interpolation requires roughly an order of 380

magnitude more nodes (degrees of freedom) than the linear interpolation.381

382
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We have tested some of the anti-hourglass techniques available for hexahedral (quadrilateral) 383

and tetrahedral (triangular) elements (see e.g. Flanagan and Belytschko, 1981; Liu et al., 384

1998; Bonet et al., 2001; Reese, 2003; Puso and Solberg, 2006). In certain problems, such as385

the Rayleigh-Taylor instability with large abrupt viscosity variations (see Fig. 4), none of 386

stabilization technique we tested was able to prevent the hourglass modes. We have inferred 387

that the critical factor is the relatively high confining pressure compared to deviatoric stress in 388

the low viscosity domain.389

390

[Figure 4]391

392

The magnitude of the confining pressure can be reduced by replacing the material density 393

with the differential density ref     . Here ref  denotes the arbitrary chosen constant 394

reference density. With the differential density approach, the numerical solution produces the 395

dynamic pressure p . To evaluate the constitutive equations properly, it becomes necessary 396

to augment the dynamic pressure with a lithostatic component ( )ref freeg z z  . Here z  and 397

freez  denote the vertical coordinates of the integration point and the free surface, respectively. 398

The density of the external material must also be set to the differential value399

ext ext ref     . Similarly, the Winkler condition must be applied at the Lagrangian free 400

surface with the differential density equal to negative reference density i.e. air ref    . 401

402

According to our experience, this simple rearrangement of the computational scheme is 403

sufficient to remove the hourglass modes even in the Rayleigh-Taylor instability problem 404

mentioned above. Figs. 4a and 4b show the mesh distortion during a typical time step for the 405

total and differential density formulations, respectively. The total density formulation exhibits 406

uncontrollable oscillation while differential density formulation behaves stably. 407

408

We note, however, that despite the fact that the differential density technique can extend 409

stability margins in certain problems, there is no guarantee that it will work in other problems. 410

Therefore, we suggest that this technique should be used only in conjunction with careful 411

monitoring of the stress and displacements fields. Additionally, one can use spatial averaging 412

over the neighboring nodes (e.g. Fullsack, 1995; Braun et al., this issue) to enhance the 413

stability.414

415
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As an alternative to finite elements with bilinear interpolation for velocities and constant 416

pressure, fully staggered finite difference discretization can be used (Harlow and Welsh, 417

1965), which appear to be non-oscillatory (for discussion, see Shih et al., 1989). Successful 418

application of this discretization in geodynamic problems is presented in Gerya and Yuen 419

(2007). However this approach, despite stability, is restricted to pure Eulerian formulations. In 420

lithospheric scale modeling, we consider this restriction as unfavorable because it complicates 421

tracking of the free surface.422

423

424

3.3 Time discretization and primary variables425

426

We use the backward Euler method as the primary time discretization algorithm for both the 427

momentum and energy balance equations. This approach is referred to as implicit and first 428

order accurate. The first order accuracy brings advantageous stability, which is missed by the 429

second order accurate trapezoidal rule (Ortiz and Popov, 1985). In the adopted context, 430

integration of all quantities becomes particularly simple, e.g. for velocities we can write:       431

i iu v t   , (29)432

where iu  is incremental displacement vector and 1n nt t t    is the time step. Here the left 433

superscript indicates the time step index. In the remainder of this paper we omit the index of 434

the current time step for notational clarity, e.g. we simply write: nt t t   .  435

436

The simplicity of the integration scheme allows us to choose either velocities or incremental437

displacements as primary kinematical variables, irrespective of the employed rheology or 438

kinematical formulation. Indeed, it is clear from the integration formula (29) that both 439

approaches are essentially equivalent. For convenience we prefer incremental displacements. 440

Note that all results presented below are readily extendable to the velocity formulation merely 441

by simple scaling. 442

443

We do not separate pressure as an independent variable, since we use a compressible 444

formulation. However, in typical problems the near-incompressible behavior is recovered in 445

the asthenosphere domain. We treat this additional difficulty during the linear solution stage 446

by appropriate damping of the stiffness parameters (see section 3.8 for more details). For the 447

heat balance equation we use temperature as the primary variable.448
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449

450

3.4 Kinematical formulation and solution scheme451

452

We employ the Arbitrary Lagrangian-Eulerian kinematical formulation (Hirt et al., 1974) to 453

account for material advection. A typical calculation step is subdivided into three major 454

stages:455

(i) In the first stage, we solve the discretized residual equations (23) and (24) by the Newton 456

Raphson iterative method (e.g. Belytschko et al., 2000). During iterations we 457

conveniently treat advection terms implicitly by means of the Updated Lagrangian 458

formulation (Bathe et al., 1975). The advantage is that Lagrangian treatment does not 459

limit the time step by the amount of rigid body motion, in contrast with the Eulerian 460

approach. In the Lagrangian context, only the amount of material straining poses an 461

actual kinematic limit for the time step. 462

(ii) In the second stage, we perform mesh adaptation (regridding) such that the new mesh fits 463

the free surface, the moving (stretching) calculation window and simple material 464

interfaces without overturns or self-intersections. The flexibility of the approach is that 465

regridding can be done either in each step or after a certain number of steps, which is466

favorable in the case that advection is not the dominant type of nonlinearity in the system 467

(e.g. the onset of plastic localization). Regridding is also the easiest way to implement 468

boundary material fluxes (erosion, sedimentation, etc.). 469

(iii) In the third and final stage, we perform consistent remapping of all solution variables 470

onto the updated mesh. Our algorithm is based on the particle-in-cell approach which was 471

initially developed by Harlow and Welsh (1965) and subsequently has been widely used 472

in geodynamic applications (Moresi et al., 2003; Tackley and Xie, 2003; O’Neil et al., 473

2006; Gerya and Yuen, 2007). 474

We explain each calculation stage in more detail in the following sections. The overall 475

computational flowchart is summarized in Table 2.  476

477

[Table 2]478

479

3.5 Hughes-Winget scheme480

481
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A constitutive model of advection dominated flow that includes memory effects (e.g. 482

Fullsack, 1995) should be objective, i.e. it should ensure conservation of tensor quantities 483

(e.g. Muhlhaus and Regenauer-Lieb, 2005). This can be formally achieved by using time-484

continuous (infinitesimal) objective stress rates (e.g. Bonet and Wood, 1997). However, since 485

our practical interest is implicit large-step integration of the flow, we use the Hughes-Winget 486

scheme (Hughes-Winget 1980) to ensure objectivity in an incremental, rather than an 487

infinitesimal, sense. 488

489

The central point of the scheme is the following second order accurate approximation for an 490

incremental displacement gradient:491

1/ 2 1
21/ 2

, 



   


n ni
ij j j jn

j

u
h x x u

x
, (30)492

where 1/ 2n
jx  is the mid-point material configuration. In each element, we compute ijh  using493

the mid-point element-average derivatives of shape functions (see Eq. 28) as follows:494

1/ 2  n
ij iI jIh u b . (31)495

We note that the mid-point scheme in Eq. (30) effectively eliminates the influence of rigid 496

body motion on the strain components (Hughes and Winget, 1980). This property contrasts 497

with pure Eulerian formulation, which is restricted to differentiation only with respect to the 498

current configuration. 499

500

Deviatoric and volumetric strain increments to be used in constitutive equations are 501

computed, respectively, as follows:502

1 1
2 3( ) ,   ij ij ji kk ij iih h h h   . (32)503

Correspondent rate quantities are approximated by:504

, 
 

ij
ij t t

   . (33)505

According to the Hughes-Winget scheme, rotation of stress from the previous time step is 506

governed by the following orthogonal tensor (for more details see Hughes and Winget, 1980):507

     11 1 1
2 2 2, ij jiij ik ik kj kj ij h hR          .  (34)508

The approximations (30) – (34), despite their simplicity, produce stable and accurate results 509

even for large strain and rotation increments (e.g. Rashid, 1993).510

511

512
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3.6 Incremental constitutive equations 513

514

Incremental expansion of the continuity equation (6) gives the following updated pressure, if 515

the reactional (phase transformation) volume changes are neglected:516

 n np p K K T T     . (35)517

518

To update the deviatoric stress, we use a two-step predictor-corrector procedure (e.g. Simo 519

and Hughes, 2000). In the first step, the plastic multiplier in equation (8) is assumed to be 520

zero and the correspondent trial visco-elastic stress is evaluated. In the second step, the Mohr-521

Coulomb yield surface is checked (Eq.14), and if violated, the trial stress is modified to 522

remain on the yield surface. This gives rise to a nonzero plastic multiplier and corresponding523

plastic strain increment.524

525

Combining the Hughes-Winget scheme with the analytical integration of equation (8) over the 526

time step we obtain the following expression for trial deviatoric stress:527

2tr n
ij CR ij CR ik kl jlR R      , (36)528

where n
kl is the Cauchy stress deviator from previous time step, ijR  is the incremental 529

rotation tensor (see Eq. 34), and  CR  and CR  are the effective viscosity and relaxation ratio 530

of visco-elastic creep, respectively, given by:531

 1 , exp , eff
CR eff CR CR M

M

t
t

t G


          

 
. (37)532

Here Mt  stands for Maxwell time. 533

534

Equation (36) shows that the magnitude of Maxwell time does not pose the upper limit for the 535

time step (see also Bailey, 2006). Indeed, in typical calculations we choose time steps equal to536

tens of thousands years. In the asthenosphere, where temperature is high enough to 537

sufficiently decrease the viscosity, the following purely viscous limit is recovered:   538

0
1, lim 2

CR

tr
ij eff ij

M

t

t 
  




   . (38)539

In the upper crustal domain, on the other hand, the relatively low temperatures make the 540

viscosity so large that Equation (36) degenerates into the corresponding elastic end-member:541

1
1, lim 2

CR

tr n
ij ij ik kl jl

M

t
G R R

t 
  




   . (39)542
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However, due to the presence of the Mohr-Coulomb stress limiter, most of deformation in the 543

upper crustal domain manifests itself in the form of plastic localization. 544

545

Apart from temperature dependence, the effective viscosity depends also on stress, and this 546

introduces nonlinearity into the equation (36). This issue can be resolved, in principle, with 547

good stress estimation from the previous time step. However, we have concluded from our 548

experiments that this explicit approach severely restricts stable calculation steps due to stress 549

oscillations. The alternative is, therefore, implicit treatment of nonlinearity by solving the 550

nonlinear equation (36) for a trial deviatoric stress. 551

552

The simplest fixed point iteration cannot be used to this end, since in our case it may produce 553

infinite loops without convergence. Hence, we have adopted the simple and reliable root-554

solving algorithm FZERO (Shampine and Watts, 1970), which is based on a combination of555

the bisection and secant methods. 556

557

Prior to solution we rewrite the tensorial equation (36) in scalar residual form by taking the 558

difference between norms of its left- and right hand sides. The solution is achieved when the 559

residual is reduced to a sufficiently small relative tolerance. Typically, very few iterations 560

(around 5-7) are required by FZERO to converge. 561

562

For numerical stability reasons, we remove stress dependence in the effective viscosity at 563

differential stress levels higher than 3(10 )O  MPa, which is far higher than expected in typical 564

problems. Finally, in the numerical simulations we truncate effective viscosity to the 565

reasonable range 18 2710 10 Pas. 566

567

After the visco-elastic stress predictor step, we check the yield surface to determine whether a 568

plastic stress correction is required. In the following, we introduce basic elements of the 569

procedure, whereas more details are outlined in Appendix A. 570

571

Plastic stress correction starts with spectral decomposition of the trial deviatoric stress tensor 572

by the optimized 3D Jacobi eigenvalue algorithm (Press et al., 2002):573

3
( )

1

tr tr A
ij A ij

A

m  . (40)574
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Here tr
A  denotes the trial principal deviatoric stresses, ( )A

ijm are the correspondent spectral 575

directions. 576

577

In the next stage, we evaluate the trial yield surface (see Appendix A):   578

   1 1
2 2max min max min

sin sin cos    tr tr tr tr trF p c      . (41)579

For simplicity, the friction angle in the above equation is computed using the magnitude of 580

accumulated plastic stain from previous time step, i.e. 0 ( ) nD   . 581

582

As soon as the trial deviatoric stress departs from the yield surface ( 0trF  condition is met), 583

we undertake the following correction:584

 tr
ij PL ij   , (42) 585

where 0 1 PL  is the plastic scaling ratio, which is given by:586

max min

2( sin cos )

(1 sin ) (1 sin )




  PL tr tr

p c 
   

. (43)587

For simplicity, we assume that both the effective viscosity of visco-elastic creep and the trial 588

stress remain unaltered during plastic stress correction.589

590

The magnitude of plastic strain rate is readily computed as follows:  591

 1
1

2
  tr

IIPL
CR

 


 . (44)592

Integrating the above expression by the Backward Euler algorithm we obtain the following 593

relation for the plastic strain increment:594

 1
2


   tr

IIPL
CR

t 


, (45)595

which produces asymptotically exact results for both viscous and elastic cases. Corresponding596

limit expressions are given by:597

0 1

1
lim , lim

2 2 2 2 

  
 

CR CRCR eff CR

t t t

G   
. (46)598

Accumulated plastic strain for the next time step is updated by:599

  n   . (47)600

601
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For the Updated Lagrangian kinematical formulation, the material and partial time derivatives 602

are coincident. We can therefore approximate the rate of internal energy in each integration 603

point by the following first order difference:604






n
I I I I

p

T N T NDU
C

Dt t
. (48)605

606

For consistency with the Hughes-Winget scheme, we evaluate the spatial temperature gradient 607

with respect to the mid-point material configuration (see Eq. 30). Thus, the finite element 608

approximation for the heat flux vector can be written as (see Eq. 28):   609

1/ 2  n
i I iIq T b . (49)610

611

Heat source due to dissipation of mechanical energy can be re-expressed as:612

 
2

 
    

 

vs pl II
ij ij ij II

eff

    


   . (50)613

The basic steps of the stress update procedure are summarized in Table 3. We note that this 614

sequence is repeated every iteration of every time step in each integration point.615

616

[Table 3]617

618

3.7 Nonlinear solver619

620

At each time step, we solve the coupled system of discretized residual equations (23) and (24) 621

by the full Newton-Raphson iterative method (Belytschko et al., 2000). We neglect coupling 622

terms in the Jacobian matrix. Therefore, at each iteration we solve the following two systems 623

of linear equations:624

1
( ) ( ) ( 1) ( ),

   k k k kδu K f Δu Δu δu , (51)625

1
( ) ( ) ( 1) ( ),

   k k k kδT E w T T δT . (52)626

Here, the right subscript ( )k  denotes iteration index, f is the out-of-balance nodal force vector 627

(Eq. 23), w is the out-of-balance nodal power vector (Eq. 24), Δu is the incremental 628

displacement (total velocity) vector, T is the nodal temperature vector, / K f Δu is the 629

mechanical tangent matrix, /  E w T is the thermal tangent matrix, and δu and δT  are 630

iterative correction vectors for incremental displacement and temperature, respectively.631

632
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At each iteration, we update nodal coordinates similarly to incremental displacements633

( 1) ( )  k kx x δu , while all the element integrals are evaluated over the latest updated 634

coordinates (Updated Lagrangian formulation). 635

636

We achieve a coupled thermo-mechanical solution by: 637

(i) Calculating effective viscosity and density using the latest updated temperature,638

(ii)  Calculating mechanical dissipation using the latest available stress and strain rate,639

(iii)  Simultaneously solving the force balance and energy balance equations.640

641

In the context of the Newton-Raphson method, it is necessary to carefully select the initial 642

guess, since it can significantly reduce computation time. At the first time step we take zero 643

displacements and an initial temperature distribution. For each subsequent time step we use 644

the previous converged solution. 645

646

Constrained degrees of freedom are removed from the tangent matrices. To facilitate 647

convergence only at the first iteration of the first time step, we add corrections related to 648

removed degrees of freedom to the right hand side vectors.  649

650

We employ the so-called line search procedure (see e.g. Press et al., 2002; Crisfield, 1983) to 651

stabilize iterative solution of the mechanical equation. The displacement update formula with 652

line search is modified to the following form:653

( 1) ( )  k k Δu Δu δu . (53)654

Here 0 1   is the damping parameter, which is chosen to satisfy the following condition:  655

( 1) ( )|| || || || . k kf f (54)656

We bisect the time step and restart the overall equilibrium iteration in case the above criterion 657

cannot be fulfilled. This technique forms the core of our adaptive time-stepping algorithm. 658

Initially we specify the uniform time step; the algorithm then performs bisections whenever 659

convergence problems are experienced. When iteration becomes stable again, the algorithm 660

tries to increase the time step. However it keeps in memory the last converged solution, to 661

restore stable iteration in the case of unsuccessful time step increases. To further enhance 662

convergence in the strain localization problems, more sophisticated time-stepping methods 663

may be used such as the method of subplane control functions (Geers, 1999). 664

665



Page 22 of 73

Acc
ep

te
d 

M
an

us
cr

ip
t

22

We terminate the Newton-Raphson iteration as soon as the following criteria are satisfied:  666

( 1)|| || || || kδu Δu  and ( 1)|| || || || kδT T , (55)667

where  is a small tolerance, typically 310 .668

669

670

3.8 Linearization and linear solver671

672

We assume the following simplified approximations for the tangent matrices (Appendix B):   673

 ˆ ˆ
 


  

  JI
ikIJ ijkl I ext z i k J

j l

NN
K C d N g n z z N d

x x
 , (56)674

 


   

   p JI
IJ I J

i i

C NN
E N N d d

t x x


 . (57)675

Here, ijklC  is the material tangent operator (Simo and Taylor, 1985), zn  is the vertical 676

component of outward normal vector, and ˆiz  are the components of the unit vector of the 677

vertical axis (downward positive). The first term in Eq. (56) corresponds to linearization of 678

the internal stress term, while the second term is caused by the Winkler boundary condition. 679

680

Depending on type of the flow (visco-elastic or elasto-visco-plastic), the material tangent 681

operator takes the following simple form:682

2 if 0

2 if 0

D tr
CR ijkl

ijkl ij kl D tr tr
PL ijkl ij kl

G I F
C K

G I g F
 


     

 . (58)683

Here  1 1
2 3  D

ijkl ik jl il jk ij klI        is the fourth order unit deviatoric tensor, /CR CRG t   is 684

the effective visco-elastic shear modulus, and PL PL CRG G  is the effective elasto-visco-685

plastic shear modulus. The non-dimensional tensor klg


 is given in Appendix B. 686

687

We infer from our numerical experiments that anisotropic stress terms in the tangent operator 688

(Eq. 58) have little influence on the convergence rate of the Newton-Raphson iteration. 689

Therefore, we suggest that they can be omitted whenever necessary. With this assumption, the 690

effective elasto-visco-plastic shear modulus ( PLG ) becomes essentially equivalent to the 691

effective viscosity (see e.g. Eq. 37 of Moresi et al., 2003 or Fig. 4 of Fullsack, 1995). 692

693
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Both these papers employ the fixed point method or direct (Picard) iteration (Zienkiewicz and 694

Taylor, 2000) as a nonlinear solver. Even omitting differences in the tangent operator, there 695

are two substantial differences between the Newton-Raphson and Picard methods:696

(i) The Picard method has only external forces and stresses from the previous time step in 697

the right-hand-side, while the Newton-Raphson method has complete out-of-balance 698

forces. 699

(ii) The Picard method operates on total velocity (incremental displacement), while the 700

Newton-Raphson method operates on iterative corrections.701

We have tried both Picard and Newton-Raphson methods. Fig. 5 shows a comparison between 702

the two solvers for the shear band initiation benchmark problem, discussed in the next section. 703

We calculated an identical setup by both methods with a gradually increasing number of 704

increments in which we applied a constant amount of extension. Fig. 5 shows the severe 705

sensitivity of the Picard method to increment size. At the same time, the Newton-Raphson 706

method produces accurate results even for comparatively large increments. Other authors (e.g. 707

Muhlhaus and Regenauer-Lieb, 2005) have also pointed out superiority of the Newton-708

Raphson method over the Picard method.709

710

[Figure 5]711

712

At the current development stage, we use the Preconditioned Conjugate Gradient (PCG) 713

iterative method (Hestenes, Stiefel, 1952) for both the mechanical and thermal linear systems714

(Eq. 51 & Eq.52). For the mechanical system we adopt a symmetric version of the Incomplete 715

LU factorization with Threshold (ILUT) preconditioner (Saad, 1994), equipped with near-716

optimal nested dissection ordering (George, 1973). The thermal system is preconditioned by 717

the inverse of diagonal of thermal tangent matrix. 718

719

The above algorithm, in general, is not numerically scalable (Farhat et al., 2000), i.e. the 720

number of iterations grows nonlinearly with increasing size of the linear system. At present 721

the algorithm can only run in sequential mode. However, it works well with the roughly 510722

grid nodes in typical 3D regional-scale models on ordinary PCs with 2 GB RAM. 723

724

Note that the linear solver may fail in the low-viscosity domains (e.g. asthenosphere), where 725

effective the visco-elastic modulus becomes many orders of magnitude lower than the bulk 726

modulus. We treat this issue by supplementing the mechanical linear solver with the fictitious 727
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compressibility technique (Zienkiewicz and Taylor, 2000). The fictitious bulk modulus is 728

made at maximum two orders of magnitude larger than the shear modulus in the integration 729

point. The algorithm then iteratively removes spurious volumetric strains until the original 730

continuity equation is satisfied. 731

732

733

3.9 Regridding and Remapping734

735

After the Newton Raphson step, we resolve the advection terms of the flow. This step is 736

implemented by means of regridding and remapping. The computational sequence of adopted 737

procedure is summarized in the second part of Table 2.738

739

We employ a specific type of the Arbitrary Lagrangian Eulerian kinematical formulation (Hirt 740

et al., 1997). It is characterized by using a structured Cartesian grid whose nodes are only 741

allowed to move in the vertical direction. With this flexibility, we track the free surface or 742

certain material interfaces inside the model domain. Using the same mechanism we 743

implement erosion and sedimentation processes on the free surface. The bottom surface of the 744

grid is equipped with the Winkler boundary condition.745

746

Lateral boundaries of the grid may by either fixed in space or move parallel to the coordinate 747

axis with constant or variable velocity. This is a particularly useful feature, since it creates a748

flexible computation window which can track some portion of space, or even stretch or 749

contract laterally. When the length of the mesh in a certain direction changes by the size of 750

the original element, we add (or remove) an entire vertical slice of the elements. Our solvers 751

are designed to treat a variable number of elements during computation.               752

753

To track material properties and solution history we use the Particle-in-Cell method (Harlow 754

and Welsh, 1965). Each marker has an individual history, including coordinates, material 755

number, pressure, deviatoric stress tensor, accumulated plastic strain, total displacements, and 756

temperature. During the Newton-Raphson step, the history accumulates in cell centers. When 757

markers are advected by mesh, all markers that belong to the cell obtain the same increment758

of history. When markers are mapped back to the mesh, both material properties and history 759

are averaged among all markers in the updated cell. This incremental approach minimizes 760

spurious numerical diffusion. 761
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762

We advect markers in the displacement field by consistent interpolation from the mesh. Since 763

the mesh remains rectangular in horizontal plain, the mapping of markers to updated cell 764

positions becomes particularly simple. Certain difficulties exist in regions where a population 765

of markers becomes too dense or too sparse (Moresi et al., 2003). We treat this issue by 766

inserting or deleting markers in cells where the total number of markers falls beyond the 767

limits. We treat material fluxes on the boundaries with the same methodology. When a marker 768

leaves the domain, we simply delete it. When a marker is generated in the boundary cell it 769

acquires material properties and solution history from the closest neighbors. We suggest, 770

therefore, that material extends beyond all boundaries of the domain except the free surface. 771

772

We note that the remapping procedure inevitably produces perturbations in the global force 773

balance. We treat these perturbations as initial residuals to be removed on the next time step.774

This explicit approach to a certain extent reduces the accuracy of the numerical solution 775

(stresses, displacements). Nevertheless, it is common in geodynamics to use similar 776

techniques with the argument that the time step can be reduced if higher accuracy in the time 777

integration is required (e.g. Moresi et al. 2003). In section 4.2 we demonstrate that the778

remapping procedure does not significantly affect the accuracy of the velocity field, which is 779

estimated analytically, even in the benchmark with hundreds of remapping cycles.   780

781

782

4. Benchmarks and examples783

784

In this section, we present five simplified problems to verify computer implementation and 785

applicability of the adopted physical models and numerical techniques. The following 786

problems are included:787

(i)  Bending of an elastic plate788

(ii)  Sinking of a rigid cylinder in a viscous fluid789

(iii) Initiation of shear bands in the brittle crust790

(iv) Triaxial compression test791

(v) Lithospheric transpressional deformation792

793

The first two problems are designed to test the code’s ability to separately handle elastic and 794

viscous rheological mechanisms in 2D. In the first problem, the 2D formulation (plane strain) 795
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is chosen to facilitate comparison with the analytical solution, while in the second problem, 796

the choice is based on the resolution issue. With the sequential solver and without mesh 797

adaptation, the solution of the free-falling Stokes sphere problem with the same resolution 798

would require too much computation time. The next two problems demonstrate quasi-brittle 799

elasto-plastic strain localization in 2D and 3D, respectively. The final problem deals with the 800

complete elasto-visco-plastic rheology in a typical 3D lithospheric-scale setup. Since the plain 801

strain formulation is not currently available in SLIM3D, we discretize entire 2D setups by a 802

single layer of hexahedral elements with zero velocity in the out-of-plane direction. Wherever 803

necessary we introduce and track markers in the mid-surfaces of the elements.804

805

806

4.1 Bending of an elastic plate807

808

We consider bending of an elastic plate which has infinite length in one of the lateral 809

dimensions. The setup of the problem is depicted in Fig. 6, and the geometry, loading and 810

elastic constants of the plate are summarized in Table 4. Similar to a cantilever beam, the 811

plate has one end fixed and the other end free. It has slightly negative buoyancy relative to 812

surrounding material, which allows it to sink and bend. Since we are interested in modeling813

elastic deformation of the plate, we exclude the surrounding viscous material. Calculations are 814

done in the Lagrangian mode without remeshing. 815

816

[Table 4]817

818

In this benchmark, we compare the maximum vertical deflection of the plate and the 819

maximum bending stress with the analytical solution of the Euler-Bernoulli beam equation 820

(see Appendix C). Application of this equation requires displacements and thickness to be 821

small compared with length of the plate. We fulfill this requirement by appropriately selecting 822

parameters of the setup. Assuming validity of the Euler-Bernoulli approximation, the 823

maximum deflection of plate can be expressed in terms of parameters in Table 4 as:824

4

2

3
2

gl
w

Eh
 . (59)825

For comparison with the numerical solution, we calculate analytical bending stresses using the 826

following relation (see Appendix C):   827
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 2

2

3
b

gl h h
h

    , (60)828

where h  is the element size along the height of the beam.      829

830

We apply and remove the gravity load multiple times in this model. Each time, when the load 831

is removed, we allow the plate to restore its original shape and simultaneously release stored 832

elastic stresses. During the solution, we monitor spurious residual stresses, which tend to 833

accumulate during multiple load cycles. This deficiency is related to the rate formulation of 834

elasticity adopted in SLIM3D (see Eq. 8). Unlike exact large strain elasticity models (Bonet 835

and Wood, 1997), this formulation produces nonzero dissipation of elastic energy along the 836

closed deformation path (Belytschko et al., 2000). The applicability of the model to rocks is 837

based on the fact that elastic strains remain small, while elastic stresses constantly dissipate 838

either by plastic or viscous rheological mechanisms. In this benchmark, we numerically assess 839

spurious dissipation of elastic energy.840

841

[Figure 6]842

843

Fig. 6 shows the shape of the deformed plate (exaggerated by factor of 10) along with a 844

contour plot of normal bending stresses. Key results of the benchmark are presented in Table 845

4. We investigate influence of discretization on the accuracy of the solution using different 846

numbers of elements along the plate thickness starting with just two elements (since we have 847

a single integration point per element). In all cases, the1: 2  (thickness vs. length) element 848

aspect ratio is maintained within the vertical plane. Fig. 7 shows the relative error in the 849

approximation of stresses and displacements versus number of elements along the plate 850

thickness. Note that discretization converges relatively fast, providing acceptable accuracy 851

(around 5.0% error) with just 4-5 elements across the plate. The results in Table 4 correspond 852

to discretization by 7 elements across the plate. Further increasing the number of elements did 853

not yield a substantial increase in the accuracy in neither the vertical deflection (2.6% error) 854

nor in the bending stresses (0.8% error). We attribute this fact partially to inaccuracies of the 855

approximate analytical solution and partially to the presence of shear locking (e.g. Belytschko 856

et al., 2000) of the employed elements.  After 10 cycles of cyclic loading, the residual stress 857

remains about 0.1% of peak bending stress (0.3 MPa vs. 300.0 MPa). Thus, we conclude that 858

the stress integration algorithm has sufficient accuracy for practical applications.859

860
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[Figure 7]861

862

863

4.2 Sinking of a rigid cylinder in a viscous fluid864

865

The purpose of this benchmark is twofold: (i) we test the ability to simulate purely viscous 866

flow with large abrupt changes of the viscosity; (ii) we simultaneously assess the quality of 867

the remeshing algorithm (treatment of markers and numerical diffusion issue). Setup of the 868

problem includes one half of a rectangular domain which is 800 km wide and 700 km deep 869

(see Fig. 8) occupied by viscous fluid. We impose sticking between the domain walls and the 870

fluid. On the left side of the domain we impose a symmetry condition. An infinite cylinder 871

with 25 km radius is initially placed at 250 km depth. Due to negative buoyancy the cylinder 872

sinks into the fluid. We maintain relative rigidity of the cylinder by a 4 orders of magnitude 873

viscosity contrast with the surrounding fluid. Parameters of the setup are summarized in Table 874

5. Numerical solution is obtained with a time step 410  years.875

876

[Table 5]877

878

In this benchmark, we compare analytical and numerical estimation of the cylinder velocity. 879

The analytical solution for resisting force due to motion of the cylinder in a reservoir of finite 880

size can be found in Slezkin (1955). By equating resistance force with Archimedes force one 881

can obtain the following expression for the velocity of the cylinder (see Appendix D):   882

22

2

1 1ln ,
4 1c

f

r gk bv k k
rk



     

, (61)883

where  f  is fluid viscosity, r  is the radius of cylinder and b is the characteristic distance 884

between the cylinder and rigid wall of the domain. In our setup this distance is equal to 375 885

km. 886

887

[Figure 8]888

889

We plot the distribution of vertical velocity together with positions of cylinder markers at two 890

different times in Fig.8 (see also Animation 1 in the online version of the paper). Note that 891

through the multiple remeshing steps, cylinder shape shows completely no sign of numerical 892

diffusion. The cylinder remains perfectly circular and undisturbed through the course of 893
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computation. We therefore conclude an acceptable quality of adopted remeshing algorithm. 894

The average velocity of the cylinder constitutes around 8.5 cm per year. The maximum 895

relative difference between the analytical and numerical estimations is less than 1.7% (see 896

Table 5). Error in the numerical solution for the velocity field remains relatively low, despite 897

hundreds of remapping cycles and a large time step ( 410  years). Increase of viscosity contrast 898

up to 7 orders of magnitude did not result in any substantial changes in the numerical solution. 899

We conclude that the adopted numerical formulation allows handling of purely viscous flow 900

with large abrupt variations of the viscosity.901

902

903

4.3 Initiation of shear bands in the brittle crust904

905

Formation of zones of localized shear (shear bands) during planar deformation has been the 906

subject of extensive research (see e.g. Arthur et al., 1977; Muhlhaus and Vardoulakis, 1987; 907

Vermeer, 1990; Borja and Aydin, 2004; Buiter et al., 2006; Kaus and Podladchikov, 2006). 908

One of the most important questions concerns preferred orientation of the shear bands. Three 909

basic models are generally discussed (Coulomb, 1773; Roscoe, 1970; and Arthur et al., 1977).910

For a pressure-sensitive material with friction angle   and dilatation angle , these models 911

predict the following angles between the shear band and direction of minor principal stress:  912

45 / 2 (Coulomb),

45 / 2 (Roscoe) ,

45 ( ) / 4 (Arthur).

 
 
  

 
 
  

(62)913

The theoretical analysis for the onset of shear banding presented by Vermeer (1990) also 914

yields the Roscoe and Coulomb angles as limits for possible shear-band orientation. However, 915

due to elastic unloading the shear band can, in principle, assume any orientation within this 916

range.      917

918

In this benchmark, we tested the capability to model initiation of shear bands and compare 919

inclination angles of modeled shear bands with analytical estimations and numerical solutions 920

obtained by other codes. Since only the onset of shear bands is considered, calculations are 921

done in the small strain regime. The large strain plastic localization in 3D is additionally 922

demonstrated in the next subsection.923

924
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The model setup includes a crustal domain which is 40 km wide and 7 km thick (see Fig. 9). 925

On the top boundary we impose a free surface, while the bottom boundary has zero normal 926

velocity and tangential free-slip. We consider two loading cases. On the lateral boundaries, 927

we prescribe 1 cm per year normal velocity such that it causes either shortening or extension 928

of the domain. We assume an elasto-plastic rheology typical of mafic crust (see Table 6). 929

Since we employ the purely deviatoric Prandtl-Reuss flow rule, the dilatation angle is zero in 930

our formulation.931

932

[Table 6]933

934

We measure inclination angles of the shear bands from the horizontal axis. In the case of 935

compression the orientation of the minor principal stress is vertical. Therefore the angle with 936

respect to horizontal axis should be computed with a minus sign; for example, the Coulomb 937

angle should be 45 / 2   . In the case of extension, the minor principal stress is 938

horizontal; therefore sign should be plus i.e. 45 / 2   .939

940

[Figure 9]941

942

Fig. 9 shows the contour plot of effective strain rate for both extension (a, b) and compression 943

(c, d) cases at different stages of the process (see also Animation 2 in the online version of the 944

paper). The shear bands start to propagate from the surface where strength is minimal. We 945

note that it takes significantly less extension than shortening for shear bands to cut the entire 946

domain. The initial pattern of shear bands is highly chaotic. Some of them have inclination 947

angles close to Coulomb angles (30 , 60  ) at this stage. At later stages, only a few shear 948

bands survive. They begin to accommodate entire deformation caused by shortening / 949

extension such that other shear bands become completely inactive. The mature post-failure 950

shear bands precisely match the Arthur angles (38 , 53  ). In both cases (compression or 951

tension), shear bands at the Roscoe angles ( 45 ) did not occur in the model. 952

953

Our results are in good agreement with results of the other codes. For example, Poliakov and 954

Herrmann (1994) solved a similar problem using a non-associative Mohr-Coulomb rheology 955

and explicit FLAC technique. In their solution, the shear bands formed spontaneously and 956

assumed various inclination angles ranging between the Roscoe and Coulomb limits. The 957

results obtained with I2ELVIS (Gerya and Yuen, 2007) for the numerical sandbox experiment 958
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(Buiter et al., 2006) revealed that the majority of shear bands in the numerical solution tend to 959

assume the Arthur angle. We conclude that our code is able to effectively simulate origination 960

and propagation of localized shear zones.  961

962

963

4.4 Triaxial compression test964

965

Elasto-plastic strain localization in the large strain regime is further demonstrated by 966

numerical simulation of the triaxial compression test. We consider a laterally unconfined 967

parallelepiped specimen of size 1 1 3  km discretized into 20 20 60   hexahedral elements, 968

subjected to kinematical axial compressional loading (Fig. 10a and Fig. 11a). Material 969

parameters are assumed from the previous benchmark (see Table 6). We specify two different 970

types of heterogeneity: either small random seeds uniformly distributed over the specimen 971

(Fig. 10a) or an oblique gash located near the edge as shown in Fig. 11a. In both cases,972

localization is induced by relatively low cohesion of the seeds with respect to surrounding 973

material (down to 20% of nominal). 974

975

[Figure 10]976

977

The type of heterogeneity significantly impacts the pattern of deformation observed in the 978

model. Thus, the random seeding induces formation of multiple shear bands as shown in Figs.979

10b – 10d (see also Animation 3 in the online version of the paper). Despite that the specimen 980

exhibits fragmentation into small pieces, one can easily distinguish major failure plane, which 981

gradually evolves though the course of loading. In contrast, the gash-type seeding 982

immediately produces a complex curvilinear failure plane, which separates the entire 983

specimen into two parts (Figs. 11b – 11d). The majority of the shear band inclination angles 984

also coincide with the Arthur angles. Results of the triaxial compression test support the 985

conclusions of previous benchmark for the 3D case and the large strain regime.986

987

[Figure 11]988

989

990

4.5 Lithospheric transpressional deformation991

992
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In this example, we present a typical 3D lithospheric-scale setup which includes effects of 993

elasto-visco-plastic rheology with a temperature controlled brittle-ductile transition. The 994

model consists of a lithospheric domain which has lateral dimensions 200 by 600 km and 995

depth 80 km, as shown in Fig. 12a. The domain is discretized into 36 108 16   hexahedral 996

elements (68561 grid points). Compositional heterogeneity includes equally thick (15 km) 997

felsic upper crust and mafic lower crust and a 50 km thick peridotite mantle. Rheological and 998

thermal parameters used in the modeling are presented in Table 7. At elongated vertical 999

boundaries we impose zero normal velocities as well as 3.5 cm/year of right-lateral strike-slip 1000

velocity. The upper and lower boundaries are the free surface and the Winkler support 1001

boundary, respectively. At the short vertical boundaries we impose lithostatic pressure along 1002

with a free-slip condition.1003

1004

[Table 7]1005

1006

The initial temperature distribution is shown in Fig.12b. We use different temperature 1007

gradients in the upper crust, and the lower crust with lithospheric mantle to account for 1008

radiogenic heat. In the asthenosphere, we assume a temperature of1300C.  The lithosphere-1009

asthenosphere boundary is initially placed at 70 km depth. To initiate the state of 1010

transpression in the model, we use a zone of slightly thinned lithosphere (10 km of thinning), 1011

which is oriented obliquely to the strike-slip direction. 1012

1013

[Figure 12]1014

1015

Fig.12c shows a contour plot of the effective strain rate on the free surface and in a typical 1016

cross-section after 3 Myr of evolution and 105 km of strike-slip (see also Animation 4 in the 1017

online version of the paper). The far-field strike-slip deformation tends to localize in a narrow 1018

zone located above the initially thinned lithosphere where strength is minimal. This 1019

mechanism leads to the self-consistent formation of the boundary between two lithospheric 1020

plates. The structure of the plate boundary changes with depth from a very narrow shear zone 1021

in the brittle upper crust to progressively more diffuse and wide shear zone in the ductile 1022

lower crust and upper mantle. The brittle upper crust tends to form regular secondary 1023

structures (en-echelon faults). Fig. 12d shows a contour plot of material phases and isolines of 1024

vertical displacements. The transpressional character of strike-slip deformation leads to 1025
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surface uplift on pressure ridges related to en-echelon structures as well as corresponding1026

crustal thickening along the entire plate boundary. 1027

1028

Fig. 12e shows the influence of temperature and stress on the effective viscosity distribution. 1029

The overall viscosity variation in this model is about 7 orders of magnitude, with most of this 1030

variation caused by gradual temperature increase with depth and compositional 1031

heterogeneities. Among the local effects, we note the effects of shear heating and nonlinear 1032

creep which come into play across the entire plate boundary. Relative stress peaks associated 1033

with both the upper-lower crust boundary and the Moho, commonly referred to as “christmas-1034

trees” (e.g. Brace and Kohlstedt 1980), can be recognized in Fig. 12f.  Note that due to strain 1035

softening, the strength of major faults becomes low, which is also visible from the stress 1036

distribution on the surface (Fig. 12f). 1037

1038

Fig. 13 show a 6 Myr evolution of the Lagrangian mesh embedded in the material (see also 1039

Animation 5 in the online version of the paper). We note that material fluxes on the boundary 1040

of computational box are nonzero. Incoming material acquires the properties and solution 1041

history from the closest material inside the box. The magnitude of the strike-slip displacement 1042

is large (210 km) and comparable to the characteristic size of the model. The transpressional 1043

plate boundary accumulates significant shear strains during the evolution. Summarizing these 1044

results we suggest that our code, in principle, can be applied for 3D modeling of geological 1045

scale evolution of lithospheric plate boundaries.1046

1047

[Figure 13]1048

1049

1050

5. Summary and discussion   1051

1052

1053

5.1 What is next?1054

1055

Currently, the code SLIM3D already includes many techniques necessary for modeling 1056

deformation processes on lithospheric and geologic scales. Namely, we have implemented 1057

coupled thermo-mechanical solutions, realistic elasto-visco-plastic rheology, and a kinematic 1058

framework that is able to handle large deformations. However, in this section we discuss the 1059
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techniques which are still missing in the code. We also point out the directions we plan to 1060

develop our code to satisfy the growing needs of the new modeling section in GFZ-Potsdam.  1061

1062

The major disadvantage is that code is still severely restricted in problem size. This fact is 1063

explained mostly by the following: (i) the code is still sequential (ii) the code utilizes a linear 1064

solver which is not numerically scalable (Farhat et al., 2000). To remove these disadvantages,1065

we plan to extend our code in the following mainstream directions of linear solver 1066

technology:1067

(i)  Direct parallel multifrontal solvers (Gupta et al., 1997; Amestoy et al., 2000)1068

(ii)  Multigrid methods with adaptation for plasticity (Adams, 2000; Ekevid et al., 2004)1069

(iii)  Dual-primal domain decomposition methods  (Farhat et al., 2000)1070

At the same time, we are planning to parallelize the entire finite element routines using the 1071

MPI package.      1072

1073

Deformation processes in the lithosphere occur on highly variable spatial scales. To 1074

sufficiently resolve the material length scale in lithospheric models, the element size should 1075

be of the order of hundreds of meters (Regenauer-Lieb and Yuen, 2003). Therefore, a 1076

successful code for lithospheric-scale modeling should allow variable spatial resolution. In 1077

SLIM3D we are presently restricted to a structured non-adaptive grid. A possible way to 1078

introduce adaptivity is to switch to unstructured tetrahedral mesh generators (Rassineux, 1079

1998) or octree-based methods (Shephard et al., 1991; Braun et al., this issue). These will be 1080

investigated in the future.1081

1082

Apart from advancements in numerical methods, we are planning to further develop physical 1083

models of rocks introducing advanced damage rheological models and incorporating 1084

metamorphic reactions and melting as well as coupled porous flow. Furthermore, we plan to 1085

introduce coupling between deformation processes at regional and global spatial scales as 1086

well as at seismic-cycle and geological time scales. 1087

1088

1089

5.2 Summary remarks1090

1091

This paper presents a new tool (SLIM3D) for three-dimensional lithospheric-scale modeling. 1092

The code includes a coupled thermo-mechanical treatment of deformation process and allows 1093
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complicated elasto-visco-plastic rheology with diffusion, dislocation and Peierls creep and 1094

Mohr-Coulomb plasticity. The code incorporates an Arbitrary Lagrangian Eulerian 1095

formulation with free surface and Winkler boundary conditions.   1096

1097

We have developed practical implementation of elasto-visco-plastic rheology and shown that 1098

Maxwell time does not pose an upper limit for the integration time step in the numerical 1099

scheme. 1100

1101

We have applied the full Newton-Raphson method for solution of discrete balance equations 1102

and demonstrated its superiority over the Picard method, which is widely used in 1103

geodynamics.1104

1105

For plasticity model we have obtained simplified expressions for the tangent operator. 1106

Anisotropic stress terms in tangent operator have little influence on the convergence rate of 1107

the Newton-Raphson iteration. Therefore they can be omitted whenever necessary. With this 1108

assumption, the difference between effective viscosity and tangent operator concepts 1109

vanishes. 1110

1111

With linear sequential solvers, which are not numerically scalable, we are able to treat 1112

problems with up to hundred thousand of grid points on ordinary PCs. It is expected that 1113

capabilities of the method can be drastically expanded by implementing numerically scalable 1114

parallel solvers (e.g. multigrid) as well as an adaptive mesh.1115

1116
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We recall the spectral decomposition of Cauchy stress tensor (e.g. Borja et al. 2003):1128

3
( ) ( ) ( ) ( )

1

,


  A A A A
ij A ij ij i j

A

m m n n   
, (A1)1129

where A  denotes principal stresses (negative in compression), ( )A
ijm are the correspondent 1130

spectral direction tensors, and ( )A
in


are the principal direction vectors. 1131

1132

Deviatoric-volumetric stress decomposition holds in principal stress space as well, therefore 1133

we can write:1134

 A A p  , (A2)1135

where A  are the principal deviatoric stresses.1136

1137

The Mohr-Coulomb yield surface can be rewritten using (A2) as follows:1138

   1 1
max min max min2 2 sin sin cos 0      F p c       . (A3)1139

1140

The plastic stress correction according to the Prandtl-Reuss flow rule reduces to the simple 1141

radial stress return (e.g. Wilkins, 1964). Practical implementation consists of the following 1142

proportional scaling of trial principal deviatoric stresses:1143

 tr
A PL A   , (A4)1144

where 0 1 PL  is the plastic scaling ratio, which can be directly determined by substituting 1145

(A4) into the yield surface expression (A3) and enforcing the condition 0F . The result is:1146

max min

2( sin cos )

(1 sin ) (1 sin )




  PL tr tr

p c 
   

. (A5)1147

1148

According to the Prandtl-Reuss flow rule, the updated stress deviator remains co-axial with1149

the trial stress deviator, therefore we can update directly (omitting spectral decomposition) as:1150

 tr
ij PL ij   . (A6)1151

1152

Using the identities:  1153

, 2  tr tr
II PL II II II CR       , (A7) 1154

we can readily solve for the magnitude of plastic strain rate:1155

 1
1

2
  tr

IIPL
CR

 


 . (A8)1156
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1157

1158

Appendix B. Linearization 1159

1160

To complete formulation of the Newton-Raphson method, it is necessary to obtain an 1161

expression for the tangent matrices / f u  and / w T . Unfortunately, in general, it poses a 1162

difficult algebraic task. The resulting expressions are always non-symmetric except for trivial 1163

cases (Simo and Hughes, 2000). Moreover, in geodynamical modeling it is necessary to 1164

simulate nonlinear effects like erosion, sedimentation or melt emplacement, which often 1165

cannot be linearized analytically. Numerical differentiation may overcome this difficulty (see 1166

e.g. Perez-Foguet et al., 2000). In this paper, however, we admit certain assumptions to obtain 1167

approximate linearization, which still possesses acceptable convergence properties. 1168

1169

First, we assume that the integrals in the discrete balance equations Eq. (23) & Eq. (24) are 1170

configuration-independent. This assumption substantially simplifies linearization and avoids 1171

additional non-symmetry in the tangent matrices. In this case, the linearization of the energy 1172

equation becomes trivial. The result reads:1173

p JI I
IJ I J

J i i

C Nw N
E N N d d

T t x x




 

 
    
     . (B1)1174

We note that during Newton-Raphson iteration, all integrals in the above equation are 1175

evaluated over latest available coordinates. 1176

1177

Linearization of internal stress term yields:1178

           
JI I

ij ijkl ijkl
kJ j j l

NN N
C L

u x x x
 . (B2)1179

The term /ijkl ij klC       is referred to as the (material) tangent operator (Simo & Taylor 1180

1985). The term /  ijkl ij klL    can be called the rotation tangent operator. Here kl  denotes 1181

the total strain increment in contrast with the deviatoric strain increment kl , which appears in 1182

Eq. (32). Recalling the expression for trial deviatoric stress (Eq. 36), the rotation operator can 1183

be expanded as follows:1184

 ij pqn
ijkl CR im mn jn

kl pq kl

R
L R R

R


 

 
 

 
  

. (B3)1185
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After straightforward, but quite cumbersome algebra, which we omit here 1186

(http://matrixcookbook.com), one obtains the following expression for the rotation tangent 1187

operator:1188

 1
4ijkl CR ik jl il jk il jk ik jlL W Q Q W W Q Q W    , (B4)1189

where the auxiliary tensors are given by:  1190

   11
2 ,ij ij ij ij ik kl jl jlW Q R R   

    . (B5)1191

Expression (B4) lacks major symmetry i.e. ijkl klijL L . Moreover, we note that it becomes 1192

identically zero in the viscous case since 0CR  . 1193

1194

We note that a similar approach was presented e.g. by Fish and Shek (1999). They rigorously 1195

linearized all geometrical nonlinearities related to the Hughes-Winget scheme together with 1196

configuration dependence. From their results, we conclude that potential advantages from 1197

completely consistent linearization are still marginal, taking into account additional burdens1198

related to the solution of non-symmetric systems. Therefore, we suggest omitting the rotation 1199

operator from the tangent matrix approximation. In the case that a non-symmetric solver is 1200

available, one can use the unmodified expression (B4). Alternatively, some kind of 1201

symmetrization can be employed, for example:   1202

 sym 1
2ijkl ijkl klijL L L  . (B6)1203

1204

The material tangent operator /ijkl ij klC      forms two cases depending on type of the 1205

flow, either visco-elastic or elasto-visco-plastic. It is convenient to decompose the material 1206

tangent operator into volumetric and deviatoric parts. Applying the chain rule we can write:1207

ij ij mn
ijkl ij

kl mn kl kl

p
C

   
    
      
       . (B7) 1208

First, we consider a nonlinear visco-elastic deformation process. In this case, we use 1209

expressions for updated pressure (Eq. 35) and trial deviatoric stress (Eq. 36). Motivated by the 1210

moderate stress dependence of the effective creep viscosity, we assume / 0CR ij     to 1211

avoid cumbersome differentiation of the expressions (9) – (12) together with expressions (37). 1212

The resultant material tangent operator related to nonlinear visco-elastic deformation reads:  1213

2 D
ijkl ij kl CR ijklC K G I   . (B8)1214

Here, D
ijklI  is the fourth order unit deviatoric tensor:1215
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 1 1
2 3  D

ijkl ik jl il jk ij klI       , (B9)1216

and CRG  is the effective shear modulus of visco-elastic creep:1217

/CR CRG t  . (B10)1218

We note that CRG  has appropriate viscous and elastic limits given by:1219

0 1
lim / , lim
CR CR

CR eff CRG t G G
 


 

   . (B11)1220

1221

Next, we consider the elasto-visco-plastic deformation process. Recalling the plastic stress 1222

correction formula (Eq. 42) and applying the chain rule, we expand the deviatoric term in the 1223

following form:1224


2


 


ij D tr

PL ijkl ij kl
kl anisotropicisotropic

G I g









, (B12)1225

where PLG  is the effective elasto-visco-plastic shear modulus (similar to the corresponding 1226

effective viscosity; see e.g. Moresi et al., 2003; Fullsack, 1995)1227

PL PL CRG G , (B13)1228

and klg


 is non-dimensional second order tensor which is given by:1229





DPL
kl mnkl

mn

g I



 . (B14)1230

We note that the elasto-visco-plastic tangent operator has both isotropic and anisotropic 1231

components. The latter destroys major symmetry similar to the rotation operator, so that the 1232

non-symmetric linear solver is again required. From our numerical experiments we infer that 1233

symmetric isotropic approximation (the first term in Eq. B12) possesses acceptable 1234

convergence properties together with the full Newton-Raphson method. Therefore, we 1235

suggest that the anisotropic term can be either dropped out or symmetrized in a standard way 1236

(see Eq. B6). 1237

1238

For completeness, we derive the anisotropic stiffness terms in this Appendix. Recalling the 1239

expression for plastic scaling ratio (Eq. 43) and invoking the chain rule once again, we 1240

perform the following expansion:1241

maxmin

min max

2
    

       

trtr
PL PL PL

CR tr tr tr tr
mn mn mn

G
   

    
. (B15)1242
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Entire derivatives in the above equation are readily available. For convenience, we denote:1243

 
2

max min

sin cos

(1 sin ) (1 sin )



    

tr tr

p c
D

 

   
, (B16)1244

then derivatives of plastic scaling ratio can be expressed as:1245

min
min

2(sin 1)


   


PL
tr

D
 


, (B17a)1246

max
max

2(sin 1)


   


PL
tr

D
 


. (B17b)1247

The orthogonality of principle directions yields the following expressions for derivatives of 1248

principal stresses:1249

(min) (max)maxmin ,


 
 

trtr

mn mntr tr
mn mn

m m


 
, (B18)1250

where (min)
mnm  and (max)

mnm are the spectral direction tensors (see Appendix A) associated with 1251

minimum and maximum principal stresses, respectively. Combining the above results and 1252

applying deviatoric projection (see Eq. B14), we obtain the final expression for non-1253

dimensional tensor:  1254

   (min) (max) 2
min max min max32   kl CR kl kl CR klg G m m G    

. (B19)1255

Here, we have used the fact that trace of the spectral direction tensor is equal to unity.1256

1257

Linearization of the Winkler boundary condition yields:1258

 
 

 
ij

I ij j I j
kJ kJ

N n N n
u u


 . (B20)1259

Here we have assumed that the outward normal vector does not vary with displacements. 1260

Rewriting the expression for boundary stress tensor (Eq. 22) in incremental form we have:1261

  n
ij ij ext z ijg u    , (B21)1262

where  zu  is the vertical component of the displacement increment vector (downward 1263

positive). We can write, upon linearization of (B21), the following:1264

ˆ


 


ij
ext J k ij

kJ

g N z
u


  . (B22)1265

We note that ˆkz  denote components of unit vector of vertical axis. Substituting (B22) into 1266

(B20) and reducing to symmetrical form, we can build the following approximation for the 1267

Winkler stiffness term:1268
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   ˆ ˆ  
 I ij j I ext z i k J

kJ

N n N g n z z N
u

  . (B23)1269

Here, zn  denotes vertical component of outward normal vector.1270

1271

Finally, the approximate mechanical tangent matrix takes the following form:1272

 ˆ ˆ
 


  

  JI
ikIJ ijkl I ext z i k J

j l

NN
K C d N g n z z N d

x x
 . (B24)1273

1274

1275

Appendix C. Cantilever beam 1276

1277

We consider a cantilever beam of length l  with rectangular cross-section of width b  and 1278

thickness h . Normal stress related to bending in the cross-section is generally computed using 1279

the following formula (see e.g. Blake, 1985):1280

b

M
z

I
 . (C1)1281

Here, M  is the bending moment, z  is the distance between the point where we want to 1282

calculate stress and center of the cross-section, and I  is the second moment of inertia of the 1283

cross-section, which for rectangular shapes is given by:1284

31
12I bh . (C2)1285

Maximum compressive and tensile stresses occur on the top and bottom faces of beam where1286

1
2 z h . In the benchmark problem, however, we calculate analytical stresses in slightly 1287

different locations. The points offset from the top and bottom face by half the size of the 1288

element to match location of integration points in the numerical scheme. Thus, we 1289

use  1
2   z h h , where h  is the element size along the height of beam. 1290

1291

In a cantilever beam loaded by gravity, the maximum bending moment on the fixed end is 1292

computed as follows:  1293

2

2
ql

M  , (C3)1294

where q  is the weight of unit length of the beam, which is given by:1295

q bh g  , (C4)  1296

where   is the differential density of the beam relative to surrounding material. Combining 1297

equations (C1) – (C4) we obtain an analytical estimation for the bending stress:1298
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 2

2

3
b

gl h h
h

    . (C5)1299

1300

Maximum vertical deflection of the free end of the beam is given by (see e.g. Blake, 1985):1301

4

8
ql

w
EI

 , (C6)     1302

where E  is Young’s modulus of the material. In the case that elastic properties are specified 1303

in terms of bulk and shear moduli, the Poisson’s ratio and Young’s modulus can be expressed, 1304

respectively, as follows:  1305

3 2 , 2 (1 )
6 2

K G E G
K G

   


. (C7)  1306

In the benchmark problem, we use typical values for mafic crust: 630 kbarK , 1307

400 kbarG , which roughly gives us the value of Young’s modulus 990 kbarE . 1308

Substituting equations (C2) and (C4) into (C6), we obtain analytical estimation for maximum 1309

vertical deflection of the beam:1310

4

2

3
2

gl
w

Eh
 . (C8)  1311

1312

1313

Appendix D. Rigid cylinder1314

1315

We consider penetration of a rigid cylinder with radius r  into a viscous fluid with viscosity1316

f . An analytical solution for the infinite fluid reservoir does not exist, which is clearly stated 1317

in the well-known Stokes paradox (see e.g. Slezkin, 1955). If we assume, however, that the 1318

reservoir has a finite characteristic dimension, the analytical solution can be obtained. 1319

Resistance force per unit length can be estimated using the following expression (Slezkin, 1320

1955):1321

2

2

4 ,
1ln
1

f c
bR v k
rkk

k

  



, (D1)1322

where cv  is the velocity of the cylinder, and b  is the distance between cylinder and rigid wall 1323

of the reservoir. We note that a sticking boundary condition must be enforced on the reservoir 1324

walls.   1325

1326
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The steady-state velocity of the cylinder can be estimated by equating resistance force with 1327

negative buoyancy force, which is given by:1328

2F r g   , (D2)1329

where  is the differential density of cylinder relative to surrounding fluid. The resulting 1330

expression reads:1331

22

2

1 1ln
4 1

    
c

f

r gkv k
k




. (D3)1332

1333
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Figure captions1610

1611

Figure 1. Logarithm of effective viscosity for dry olivine calculated using parameters from 1612

Kameyama et al. (1999). Temperature-stress domains in which each particular creep 1613

mechanism produces the largest strain rate are labeled. Black solid lines separate the domains. 1614

Viscosity is truncated to a reasonable range 18 2710 10 [Pa s]  .1615

1616

Figure 2. Schematic representation of the yield surface in principal stress space. In the tensile 1617

domain we use Tresca criterion.1618

1619

Figure 3. Finite element discretization of volume (hexahedrons) and surface (quadrilaterals). 1620

Shown are the local coordinate systems and local numbers of the nodes.   1621

1622

Figure 4. Grid distortion for a single time step of the Rayleigh-Taylor instability problem 1623

with large (3 orders of magnitude) abrupt viscosity variation. (a) total density formulation, (b) 1624

differential density formulation. Gradient curve indicates boundary between the layers. 1625

Shown are the viscosity and density of upper and lower layers.  1626
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1627

Figure 5. Contour plots of accumulated plastic strain for the shear band initiation problem 1628

(see section 4); (a) calculated by Newton-Raphson solver in 20 increments, (b) calculated by 1629

Picard solver in 360 increments, (c) calculated by Picard solver in 120 increments. The same 1630

amount of extension is applied in all models. In case (a) the shear band has minimum possible 1631

width constrained by the cell size. In cases (b) and (c) the shear band is significantly wider 1632

and more diffuse slowly decreasing its width with increasing number of time increments.1633

1634

Figure 6. Initial (dashed line) and deformed (solid line) shape of the elastic plate. Vertical 1635

displacements are exaggerated by a factor of 10. Contour plot shows distribution of normal 1636

bending stress. Shown are calculated values for maximum bending stress and vertical 1637

displacement.1638

1639

Figure 7. Relative error in approximation of stresses (rectangles) and vertical displacements 1640

(circles) versus number of elements across the elastic plate thickness.1641

1642

Figure 8. Isolines of vertical velocity for the cylinder problem. (a) after 0.25 Myr, (b) after 1643

2.25 Myr. Black circles indicate positions of the particles which represent the cylinder. 1644

1645

Figure 9. Contour plot of effective logarithmic strain rate for the shear band initiation 1646

problem. (a) 0.05 km of extension, (b) 0.08 km of extension, (c) 0.15 km of compression (d) 1647

0.2 km of compression. Dashed lines indicate expected orientation of shear bands according 1648

to Arthur et al. (1977) (expression shown in the figure). Also shown are the values of Arthur 1649

angles between the shear bands and horizontal axis. 1650

1651

Figure 10. Setup (a) and results (b – d) of the triaxial compression numerical test with 1652

uniform random seeding (see text). Cases b – d correspond to 2.5%, 4.2%, 5.8% of axial 1653

deformation, respectively. Magnitude of accumulated plastic strain is shown in colors. 1654

1655

Figure 11. Setup (a) and results (b – d) of the triaxial compression numerical test with oblique 1656

gash seeding (see text). Cases b – d differ by amount of specimen rotation around vertical axis 1657

(0°, 90° and 180°, respectively) and all correspond to 2.7% of axial deformation. White lines 1658

on the top face show coordinate axis for rotational reference. Magnitude of accumulated 1659

plastic strain is shown in colors.1660
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1661

Figure 12. Lithospheric transpressional deformation problem. (a) setup and discretization, (b) 1662

initial thermal model, (c) distribution of effective strain rate on the surface and in the cross-1663

section after 3Myr , (d) material phases (colors) and vertical displacements (white lines), (e) 1664

distribution of effective logarithmic viscosity (f) effective stress.1665

1666

Figure 13. Evolution of the Lagrangian mesh embedded in the material for the lithospheric 1667

transpressional deformation problem. View from the top of the model. Thick dashed lines 1668

show the lateral boundaries of calculation domain depicted in Fig. 12. Note that material 1669

fluxes on the boundaries of the domain are nonzero.    1670
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Table 1
Nomenclature

Notation Meaning Dimension

ix Cartesian coordinates  m

t Time  s

iv Velocity vector 1 m s

T Temperature  K
g Gravitational acceleration 2 m s
 Density 3 kg m

K Bulk modulus  Pa

G Shear modulus  Pa

LB Diffusion creep constant 1 1 Pa s 

LH Diffusion creep activation enthalpy 1 J mol

NB Dislocation creep constant 1 Pa sn 

NH Dislocation creep activation enthalpy 1 J mol
n Dislocation creep exponent 

PB Peierls creep constant 1s

NH Peierls creep activation enthalpy 1J mol

P Peierls stress Pa

 Friction angle ( )

c Cohesion Pa

 Thermal expansivity 1K

pC Specific heat 1 1J kg K  

 Thermal conductivity 1 1W m K  

A Radiogenic heat production 1W kg

iq Heat flux vector 2W m
U Internal energy J

p Pressure Pa

 Volumetric strain 

ij Deviatoric stress tensor Pa

ij Deviatoric strain rate tensor 1s

eff Effective viscosity Pa s

Table(s)
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Table 2
Overall computational flowchart

Newton-Raphson solution
1. Update stresses & heat fluxes in the elements
2. Assemble & solve linear systems

1 1
( ) ( ) ( ) ( ),    k k k kδu K f δT E w

3. Update displacement and temperature 

( 1) ( ) ( 1) ( ),k k k k    Δu Δu δu T T δT

4. Update coordinates 

( 1) ( )k k  x x δu

5. Check convergence  

( 1) ( 1)|| || || ||, || || || ||  k k δu Δu δT T

6. go to step (1) if necessary 
Regridding and Remapping 
1. Save history increment to markers 
2. Advect markers by mesh
3. Adapt mesh to fit the free surface
4. Apply erosion boundary condition
5. Map markers onto adapted mesh
6. Count number of markers per cell
7. Insert/delete markers where necessary
8. Interpolate properties and history to mesh  
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Table 3
Stress update in integration point

1. Compute displacement gradient                           
1/ 2  n

ij iI jIh u b

2. Evaluate strain increments
1 1
2 3( ) ,   ij ij ji kk ij iih h h h  

3. Update pressure  
 n np p K K T T    

4.  Find trial deviatoric stress by FZERO  
2tr n

ij CR ij CR ik kl jlR R     

5. Decompose trial deviatoric stress 
3

( )

1

tr tr A
ij A ij

A

m 



6. Check trial yield surface  

0trF  exit
7. Compute plastic scaling ratio,  

max min

2( sin cos )

(1 sin ) (1 sin )




  PL tr tr

p c 
   

8. Update stress  
 tr

ij PL ij  
9. Update plastic strain  

 1
2


  n tr

IIPL
CR

t  

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Table 4
Plate benchmark

Variable Meaning Value Dimension

 Differential density 100 3kg m

E Young’s modulus 990 kbar

l h Size of the domain 101 km

l hn n Discretization 357 elements

theorw Theoretical deflection 0.151 km

calcw Calculated deflection 0.155 km

werr Rel. deflection error 2.6 %

theor Theoretical stress 257.2 MPa

calc Calculated stress 259.2 MPa

err Rel. stress error 0.8 %

cycl , Cyclic stress residual 0.1 %
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Table 5
Cylinder benchmark

Variable Meaning Value Dimension

 Differential density 100 3kg m

r Radius of cylinder 25 km

l h Size of the domain 400700 km

l hn n Discretization 200350 elements

f Viscosity of fluid 1020 Pa s

c Viscosity of cylinder 1024 Pa s

theorv Theoretical velocity 8.47 1cm yr

calcv Calculated velocity 8.61 1cm yr
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Table 6
Shear bands benchmark

Variable Meaning Value Dimension

 Density 3000 3kg m

K Bulk modulus 630 kbar

G Shear modulus 400 kbar
 Friction angle 30 ( )
 Dilatation angle 0 ( )

c Cohesion 20 MPa

l h Size of the domain 407 km

l hn n Discretization 20035 elements

ext Inclination angle (extension) 53 ( )

comp Inclination angle (compression) 38 ( )
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Table 7
Rheological and thermal parameters used in transpression problem

Parameter Dimension
Felsic
Upper Crust

Mafic
Lower Crust

Mantle
peridotite

 3g cm 2.7 3.0 3.3

K kbar 550 630 1220

G kbar 360 400 740

log NB 1Pa sn  -28.0 -21.05 -16.3

NH 1kJ mol 223 445 535

n  4.0 4.2 3.5

 ( ) 30 30 30

c MPa 20 20 20

 1K 2.7∙10-5 2.7∙10-5 3.0∙10-5

pC 1 1kJ kg K   1.2 1.2 1.2

 1 1W m K   2.5 2.5 3.3

A 1nW kg 1.0 0.1 0.0
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Popov & Sobolev Fig.1
(online version)

log effh

http://ees.elsevier.com/pepi/download.aspx?id=28563&guid=40d16cce-471d-461e-9f3d-e63d97ef6ec3&scheme=1
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Popov & Sobolev Fig.2



Page 63 of 73

Acc
ep

te
d 

M
an

us
cr

ip
t

Popov & Sobolev Fig.3
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[A] total density formulation [B] differential density formulation

Popov & Sobolev Fig.4
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Popov & Sobolev Fig.5
(online version)

[A]

[B]

Plastic
strain

Picard 120 steps

Newton 20 steps

Picard 360 steps

[C]
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Popov & Sobolev Fig.6
(online version)
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Popov & Sobolev Fig.7
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[A] 0.25 Myr [B] 2.25 Myr

Popov & Sobolev Fig.8
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Popov & Sobolev Fig.9
(online version)

[D] compression (0.2 km)

[C] compression (0.15 km)

[B] extension  (0.08 km)

[A] extension (0.05 km)
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Popov & Sobolev Fig.10

[A] [B] [C] [D]
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Popov & Sobolev Fig.11

[A] [B] [C] [D]
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Popov & Sobolev Fig.13

[D] 6 Myr[A] 1 Myr [B] 2 Myr [C] 3 Myr

35 km 70 km 105 km 210 km


