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Abstract

Geodynamics simulations are characterized by rheological nonlinearity, localization,

three-dimensional effects, and separate but interacting length scales. These features

represent a challenge for computational science. We discuss how a leading software

framework for advanced scientific computing (the Portable Extensible Toolkit for

Scientific Computation, PETSc) can facilitate the development of geodynamics sim-

ulations. To illustrate our use of PETSc, we describe simulations of (i) steady-state,

non-Newtonian passive flow and thermal structure beneath a mid-ocean ridge, (ii)

magmatic solitary waves in the mantle, and (iii) the formation of localized bands
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of high porosity in a two-phase medium being deformed under simple shear. We

highlight two supplementary features of PETSc, structured storage of application

parameters and self-documenting output, that are especially useful for geodynamics

simulations.

Key words: scientific computation, parallel computation, geodynamics, mid-ocean

ridge, PETSc

PACS: 91.40.Jk, 91.40.St, 91.45.-c, 91.45.Fj, 47.11.Df, 02.60.Cb

1 Introduction

Two major challenges in solid-Earth geodynamics are the derivation of theo-

retical descriptions of geodynamic phenomena in terms of partial differential

equations (PDEs) and the determination of solutions to these equations for

appropriate boundary and initial conditions. Even minimally complex geody-

namic models often contain important three-dimensional effects, sharp gra-

dients in model variables, strong nonlinearities in material properties such

as viscosity, and localization processes that lead to separated but interacting

length scales. These features usually preclude analytical solution of the gov-

erning equations and enforce a reliance on numerical simulations. However,

the same features also contribute to the difficulty of efficiently generating nu-

merical solutions. The development of effective simulations can be facilitated

by advanced numerical software libraries, of which the Portable, Extensible

Toolkit for Scientific computation (PETSc) [Balay et al., 2001, 2004] is a

∗ Corresponding author.
Email address: rfk22@cam.ac.uk (R. F. Katz).
URL: www.damtp.cam.ac.uk/user/rfk22 (R. F. Katz).
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leading example. The purpose of this paper is to demonstrate how PETSc has

facilitated the development of large-scale computational simulations of a clas-

sic geodynamic theory for the coupled flow of solid and molten mantle rock

[McKenzie, 1984].

Section 2 gives a general description of the PETSc package and greater detail

on the parts of the package that we have employed for geodynamics simu-

lations. Section 3 considers two example geodynamic simulations, the first

of single-phase Stokes flow and the second of two-phase Darcy-Stokes flow.

Section 4 describes special features of PETSc that are particularly useful for

developing geodynamics simulations. Section 5 discusses both the future de-

velopments in PETSc and the challenges of future geoscience simulations.

1.1 Governing equations for mantle dynamics

Many of the expressions of mantle dynamics observable on the surface of the

Earth are related to volcanoes. Major elements, trace elements and the isotopic

chemistry of lavas, for example, are partially controlled by the spatial distri-

bution of melting and the paths of melt transport. The position of volcanoes

relative to plate boundaries as well as to other volcanoes is also a consequence

of the coupled dynamics of magma and mantle rock. Theoretical models are

required to interpret these observations in terms of fluid mechanical processes

occurring at depth. A theory for the dynamics of the mantle should therefore

describe both a solid, crystalline phase, which makes up the vast bulk of the

mantle, and a liquid phase (magma or fluid), which is present in the man-

tle beneath volcanically active hotspots and tectonic plate-boundaries. In the

limit of zero fluid fraction, this theory should reduce to the standard equations
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used to describe mantle convection. In the limit of a rigid crystalline mantle,

the theory should reduce to Darcy’s law for flow in a permeable medium.

One derivation of such a theory is provided by McKenzie [1984], which con-

siders the macroscopic conservation of mass, momentum, and energy for two

interpenetrating continua consisting of a low-viscosity fluid in a high-viscosity

deformable and permeable matrix. The equations for conservation of mass and

momentum for both phases can be written as follows:

∂ρfφ

∂t
+ ∇· [ρfφv] = Γ, (1)

∂ρs(1− φ)

∂t
+ ∇· [ρs(1− φ)V] = −Γ, (2)

φ(v−V) = −K

µ
[∇P − ρfg, ] (3)

∇P = ∇·
(
η

[
∇V + ∇VT

])
+ ∇

[(
ζ − 2

3
η
)

∇·V
]

+ ρ̄g. (4)

Here φ is porosity, ρf , ρs are the fluid and solid densities, v,V are the fluid

and solid velocity fields, Γ is the rate of mass transfer from solid to liquid (i.e.

melting/crystallization rate), K is the permeability, µ is the melt viscosity, P

is the fluid pressure, ρ̄ = φρf + (1 − φ)ρs is the phase-averaged density, g is

the acceleration due to gravity, and η, ζ are the shear and bulk viscosities of

the solid [see Spiegelman, 1993a,b, for further discussion].

Equations (1) and (2) conserve mass for the fluid and solid individually and al-

low mass-transfer between the phases through Γ. Equation (3) is an extended

form of Darcy’s law governing the separation of melt from solid. This sep-

aration flux is proportional to the permeability and fluid-pressure gradients

in excess of hydrostatic. Equation (4) governs momentum conservation of the

solid phase which is modeled as a compressible, inertia-free viscous fluid.
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An important feature of equations (1)–(4) is that they consistently couple

solid stresses and fluid pressure. The fluid pressure responds to solid deforma-

tion and gravity which drives fluid flow and changes the porosity. Variations

in porosity and stress can then feed-back through the constitutive relations

for the permeability and viscosity. Such feedbacks lead to a wide range of be-

havior including non-linear porosity waves [e.g., Scott and Stevenson, 1984,

1986, Barcilon and Richter, 1986, Barcilon and Lovera, 1989] and spontaneous

flow localization [e.g., Stevenson, 1989, Katz et al., 2006]. In most cases so-

lution of these equations require numerical methods because nonlinearities in

the governing equations preclude analytical treatment. To find numerical so-

lutions, we require software that is capable of solving large systems of coupled,

non-linear algebraic equations; PETSc is a leading example of such software.

1.2 Methods for Solving Nonlinear PDEs

Discretization of nonlinear partial differential equations onto a mesh leads to

a system of nonlinear algebraic equations. Such a system can be represented

as

F (ũ) = 0 (5)

where ũ ∈ Rn is a vector containing the exact solution of the problem and F is

a nonlinear function of ũ that maps RN → RN . In practice, for large systems

of equations, it is difficult to find a vector ũ such that F (ũ) is exactly equal

to the zero vector. More typically, one is satisfied with an approximation to

the exact solution that satisfies the inequality

||F (u)|| < tol, (6)

5
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where tol is some specified tolerance and the vector norm || · || is chosen

according to the context. The key to finding a good approximation to equation

(5) is to employ an iterative method that reduces ||F (u)|| on each iteration. In

describing iterative methods, un is used to represent the approximate solution

after n iterations of the solution method.

The most straightforward iteration solution strategy is a fixed-point iteration

for the equation u = u + F (u). An initial guess for the solution u0 is used to

determine a residual F (u0), which is then applied as an update to the guess,

u1 = u0 + F (u0). If successive iterates converge, they will converge to the

solution of F (u) = 0.

A more robust method, referred to as Picard iteration in the groundwater lit-

erature [e.g., Paniconi and Putti, 1994, Mehl, 2006], can be used to linearize

a nonlinear system of equations, making it amenable to solution by a read-

ily available linear solver. This conversion is accomplished by substitution of

best current guesses for field variables into nonlinear terms of the governing

equations. We employ this method below to split a set of coupled PDEs into

two parts, which are solved separately (see section 3.9). Paniconi and Putti

[1994] and Mehl [2006] have quantitatively compared this successive substitu-

tion method with Newton’s method.

Newton’s method, which is described in more detail below, can converge faster

than Picard for nonlinear systems derived from PDEs if the initial guess u0 is

close to the solution. To be practical, however, Newton’s method requires ready

evaluation of the Jacobian as well as some control feature such as line-search

or trust-region techniques [Steihaug, 1983] to make it more robust. PETSc

provides these features. In the next section we give a general description of

6
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PETSc and highlight its capabilities relevant for solving problems resulting

from systems of nonlinear PDEs.

2 PETSc basics

The Portable Extensible Toolkit for Scientific Computation is designed to

assist the development of “full physics” simulations. Its goal is to eliminate

implementation as the bottleneck in developing and running complex, multi-

physics simulations at a scale that allows the rapid advancement in science

through simulation. PETSc’s focus is on the numerical solution of the algebraic

systems arising when using implicit methods based on conventional finite-

difference, finite-element, and finite-volume techniques for PDEs. Moreover,

the modular design fosters reuse of scientific components, such as a Navier-

Stokes solver, among different simulations. PETSc also supports a limited

but growing set of tools for managing the data distribution and discretization

techniques needed to construct the algebraic systems.

Several excellent general-purpose software environments for numerical com-

putation exist; perhaps the best known of these is Matlab. In addition, easy-

to-use “scripting” languages such as Python allow the rapid prototyping of

numerical simulations. However, many scientific simulations in geodynamics

require (and will require even more in the future) resolution at a scale in

both time and space leading to a system size that is unavailable in these

environments. Only parallel (multiprocessor) computing systems can tackle

these large problems. In fact, many realistic simulations will require computer

systems with thousands of processors. Thus, simulations developed in these

general-purpose environments must often be completely redeveloped by using

7
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hand-coded parallel computational numerics, using the foregoing system only

for visualization and post processing for statistics.

2.1 Background and Philosophy

A wide variety of “parallelization” techniques have been proposed over the

years to achieve both efficient use of parallel machines and ease of program-

ming for scientists. They have all been, essentially, failures. The result is that

the message-passing-model is the standard parallelization approach for engi-

neering and scientific simulation. One fortunate result of research and develop-

ment in parallel computing is the development the Message Passing Interface

(MPI), which provides a powerful common interface on all hardware systems

[Message Passing Interface Forum, 1994, 1998].

Message-passing parallel programming has sometimes been called the assem-

bly language of parallel computing. The programmer must manage every detail

of the parallelism and data movement between processes. With this come great

power and flexibility—in fact, an overwhelming amount of flexibility. One goal

of PETSc is to eliminate the direct use of MPI programming from numerical

simulations involving the solution of PDEs. Specifically, the PETSc libraries

are used to manage the details of the communication and the user is left to

orchestrate the overall flow of the communication and computation, plus the

detailed physics modules.

2.2 Distributed Arrays and Parallelism

[Fig. 1 about here.]
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PETSc is predicated on mesh decomposition, also called domain decomposi-

tion, in order to partition data and computational work among the processes.

Each process is typically assigned a contiguous portion of the mesh, as in

Fig. 1. The physical data for this portion of the mesh is stored in local process

memory, and computations on that portion of the mesh are performed by this

process. Of course, these local calculations will require data from neighboring

partitions, which are termed ghost points, shown in Fig. 2.

[Fig. 2 about here.]

Managing the data movement and coordination between processes is the bulk

of the difficulty with parallel computing. This effort is vastly simplified by us-

ing the local physics/global algebraic solver paradigm in PETSc. The fields are

restricted to a local representation, including the ghost points; local physics

computations are performed; and the result is used to update the global rep-

resentation. The conversion between local and global data layouts, as well

as communication, is handled automatically by PETSc. Thus the algebraic

solvers (Newton’s method, linear iterative solvers, etc.) see only a global al-

gebraic representation of the problem, while the physics modules see only the

data on a local portion of the mesh. The beauty is that at this abstract level,

the data management is independent of the particular physical model, be it

fluid dynamics, structural mechanics, MHD, or the like.

The DA construct in PETSc is the special case of this paradigm for compu-

tation on structured tensor product grids. It combines specification of the

topology, geometry, and process interconnection. The user supplies only a

routine to evaluate the nonlinear residual and optionally the Jacobian over a

given local piece of the mesh. The local fields are presented to the user code,

9
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not as abstract objects, but as the more familiar multidimensional array in

both C and Fortran, giving expressions that conform to stencil indexing (i.e.,

u(i, j, k)) instead of vector (i.e., u(I)) indexing. If the Jacobian is also user

provided, PETSc provides additional support for index translation with the

MatSetValuesStencil() method. It automatically translates (i,j,k) mesh

coordinates to global matrix indices needed for the algebraic solver. This ap-

proach works equally well for tensor product finite-element, finite-volume, or

finite-difference formulations. The key point again is that the physics modules

need only know about the local mesh representation, never the global algebraic

solver representation.

In addition, there is support for geometric multigrid with automatic or custom

interpolation and coarse-grid operators. Since the user has provided an evalu-

ation routine for a general grid patch, coarse representations of the operator

can be obtained directly. They may also be obtained automatically by PETSc

via the algebraic Galerkin process.

2.3 Solvers

The PETSc algebraic solvers always work with the global algebraic represen-

tation of the fields. This allows the solver software to be used in virtually any

application, independent of the particular physics, discretization, or even local

representation of the fields.

PETSc uses (truncated, approximate) Newton’s method to solve the nonlinear

algebraic equations. That is,

un+1 = un + δun, (7)
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where δun is obtained by approximately solving

J(un)δun = −F (un), (8)

where F (un) is the global residual at iteration n and J is the (approximate)

Jacobian. The computation of F (un) is done as described above in the local

mesh representation. The DA PETSc infrastructure automatically manages

the translation of the results of the local physics modules into the global

representation used by algebraic solvers.

For non-matrix-free Newton’s method, PETSc computes the Jacobian matrix

using finite differences via J∗j(u
n) = ∇uj

F (un) ≈ (F (un + hej) − F (un))/h,

where h is computed dynamically to provide the best approximation (unless

the Jacobian is provided by a subroutine in the application code). Naively,

one would need N computations of the residual to compute all the columns

of J ; again N is the total number of unknowns. Fortunately, because of the

sparsity of J , all the columns of the J that do not share a common row can be

computed by using the same discrete residual evaluations. This computation

reduces the number of discrete residual calculations to the number of colors

of a particular graph of the matrix J that is bounded and independent of

N , the size of the problem. In addition, since the perturbations needed in

the differencing are local, one can perform all of these function evaluations

without parallel communications, dramatically decreasing the cost.

To specify the problem to PETSc, the user defines a solution tolerance and

provides call-back functions that generate an initial guess of the solution and

calculate each component of the residual vector rn = F (un) given a vector

of field variables un. All of the physics of the problem resides in the latter

11
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of these two call-back functions. We have found that incomplete LU precon-

ditioned GMRES [Demmel, 1997] gives robust and scalable performance on

these particular problems, and we have used it in generating the simulation

results described below.

PETSc provides a range of linear solvers (see www.mcs.anl.gov/petsc/petsc-as/

documentation/linearsolvertable.html for the current comprehensive list).

The solvers are generally a combination of a fixed-point solver (called a pre-

conditioner) such as Gauss-Seidel or multigrid, plus a Krylov method that

accelerates the convergence of the preconditioner, such as the conjugate gra-

dient method or GMRES. Since the use of these solvers is independent of the

particular physics, they may all be selected at runtime. This approach allows

the optimal solver for a particular application to be determined rapidly via a

series of runs, without requiring recompiles between the changes in the solvers.

3 Simulations of One and Two-phase Mantle Dynamics

3.1 Single Phase Limit

In the limit that porosity, φ, and melting rate, Γ, are both zero, equations (1)–

(4) reduce to Stokes flow for an incompressible fluid. Coupled with an equation

for the conservation of energy, this system can be solved for the thermal and

flow structure of a convecting fluid. Many authors have used these equations

to study the kinematically driven flow of mantle rock in mid-ocean ridge and

subduction zone settings [e.g., van Keken et al., 2002, Kelemen et al., 2002,

Gerya and Yuen, 2003]. The challenge in performing such calculations arises

from nonlinearities of the constitutive equation that describes the viscosity

12
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of mantle rock. Over geologic timescales, the mantle behaves as a fluid with

a non-Newtonian, temperature-dependent viscosity [Karato and Wu, 1993,

Kelemen et al., 1997a]:

η = A0 exp
(

E∗ + PV ∗

RT
− αφ

)
ε̇

1−n
n

II , (9)

where A0 is a constant of proportionality, E∗ and V ∗ are the activation en-

ergy and activation volume, R is the gas constant, α ≈ 27 is an empirically

determined constant [Hirth and Kohlstedt, 1995a,b, Mei et al., 2002], φ is the

porosity in volume fraction, ε̇II is the second invariant of the strain rate ten-

sor, and n is a constant describing the strain-rate dependence of viscosity. For

dislocation creep n ≈ 3.5, while for diffusion creep n = 1.

Neglecting the temperature and strain-rate dependencies (i.e., assuming a con-

stant viscosity) with certain kinematically prescribed boundary conditions al-

lows for analytic solution of incompressible Stokes for the “corner flow” so-

lution [Batchelor, 1967]. This solution has been used extensively to model

the mantle at tectonic plate boundaries [e.g. McKenzie, 1969, Spiegelman and

McKenzie, 1987]. Kelemen et al. [2002], however, showed that isoviscous mod-

els cannot meet constraints derived from petrologic and heat-flow data at

subduction zones. Variable viscosity models of mantle flow can meet these

constraints, but such models generally preclude analytic solution because the

rheology introduces nonlinearity into the governing equations. We have em-

ployed PETSc to generate numerical solutions for variable-viscosity flow and

thermal structure in ridge [Katz et al., 2004] and arc [Knepley et al., 2006]

settings.
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Next we detail the discretization and solution strategy that we have employed

to model the three-dimensional, incompressible, single-phase flow and thermal

structure of the mantle beneath mid-ocean ridges. We discuss parallel perfor-

mance of this code and briefly explore an example of the solutions that we

obtain.

3.2 Discretization

We use a finite volume discretization of the governing equations on a staggered

mesh, shown in Fig. 3, to avoid spurious grid-scale oscillations of pressure

[Patankar, 1980]. Calculating fluid velocities on the control volume bound-

aries leads to simple discrete representations of the governing equations. For

example, the continuity equation ∇·V = 0 is integrated over a control volume

giving

uijk − ui−1jk

∆x
+

vijk − vij−1k

∆y
+

wijk − wijk−1

∆z
= P r

ijk, (10)

where u, v, w is the velocity in the x, y, and z-directions and the cell dimensions

are given by ∆x, ∆y, ∆z. P r
ijk is the residual of the continuity equations in cell

Ωijk and corresponds to the pressure variable in our approach, even though

equation (10) does not contain the pressure. Pressure in cell Ωijk is constrained

by the momentum equations for u, v, w in Ωijk and its immediate neighbors.

The residuals for the discrete momentum equations are assigned to ur
ijk, vr

ijk,

and wr
ijk. These equations are presented in detail in Albers [2000].

[Fig. 3 about here.]
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Temperature is governed by the conservation of enthalpy equation

ρcPV ·∇T = ∇· k∇T, (11)

which requires that, in steady state, advection of heat be balanced by diffusion

of heat. Here T is the mantle potential temperature, and k, ρ, and cP are

the thermal conductivity, density and specific heat of the solid mantle. This

equation is discretized (see Albers [2000]) to give an expression for the residual

T r
ijk. Following Trompert and Hansen [1996] we use a Fromm upwind advection

scheme.

To completely specify the discrete problem, we must specify boundary condi-

tions. The grid of control volumes is constructed so that the domain boundaries

fall on the edges of cells and there are a sufficient number of buffer cells out-

side the domain boundary to accommodate the boundary stencil. The vertical

velocity, w, has a mesh position that coincides with the domain boundary

when a cell is adjacent to a horizontal boundary. Thus, to impose w = 0

on the top boundary of the domain, we must specify that wr
ij0 = wij0. We

use linear interpolation to enforce Dirichlet boundary conditions on variables

that, because of staggering of the mesh, do not fall on the domain boundaries.

For example, the residual for temperature on the top boundary is given by

T r
ij0 = Tij0 + Tij1. When T r

ij0 = 0, we have successfully imposed T (x, y, 0) = 0

(T represents the non-dimensional temperature in this case). The complete

set of boundary conditions for the domain is given in Table 1.

[Table 1 about here.]

Each control volume Ωijk has five degrees of freedom {u, v, w, P, T} and their

corresponding residuals. The total set of degrees of freedom and residuals
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can be assembled into two vectors, u and r, of length N = 5Nc, where Nc

is the total number of grid cells. The approximate solution to the discrete

nonlinear system F (ũ) = 0 is then given by an unknown vector u such that

||F (u)|| = ||r|| ≤ tol, where tol is a tolerance specified by the user and is

typically chosen to be 1× 10−5 or less.

3.3 Solution Strategy: Continuation

In general, the convergence of Newton’s method requires a good initial guess.

We have certainly found this situation to be true in the case of variable vis-

cosity flow beneath a mid-ocean ridge. While the 2D analytic corner flow

solution for constant viscosity is a good starting guess for 2D simulations, it is

clearly not good for 3D flow beneath a ridge with transform offsets. We there-

fore adopt a continuation method, forcing the variation in viscosity to go from

zero to the full predicted variance over a set of iterations of the nonlinear solve

[Knepley et al., 2006]. To smoothly control the variation of viscosity, we set an

upper limit on viscosity and use this limit to normalize it to a range between

zero and one. The viscosity field η∗m used in iteration m of the continuation

loop is then given by

η∗m = ηαm , αm ∈ [0, 1], (12)

where m = 1, 2, ...,M . In the first iteration α1 = 0, giving the solution to the

isoviscous case. This solution is then used as a guess for the next solve with

α2 > α1. The iteration loop ends with the solution at αM = 1, which has full

variation in viscosity. For diffusion creep viscosity (Newtonian, temperature-

dependent), between 5 and 10 continuation steps are required, where dislo-
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cation creep (non-Newtonian, temperature-dependent) typically requires be-

tween 10 and 30 iterations. For iterations with m < M , a relaxed nonlinear

tolerance may be used (e.g., tol = 10−3) to reduce the number of Newton steps

that are necessary and hence to speed the continuation method.

3.4 Parallel Scaling

Although most 2D simulations can be run in serial on a single processor, 3D

simulations with reasonable spatial resolution typically cannot. The simula-

tions discussed above, which require a grid resolution of 1–5 km in a domain

of order 300 km in each direction, must be run in parallel. Using PETSc fa-

cilitates the transition from a serial platform to a parallel supercomputer in

terms of code development: in most cases, application code contains no ex-

plicit interprocess communications. A properly written application code that

uses PETSc-provided data structures and methods is inherently parallel. This

parallelization, however, does not guarantee perfect scaling. How the perfor-

mance of the application code scales to large numbers of processors depends

on the chosen solvers and on the structure of the application code itself.

Figure 4 shows scaling results for the 3D ridge simulation code compared with

ideal scaling for a fixed problem size. The application uses an additive Schwartz

method for domain decomposition with a ILU preconditioner on each block

[Cai et al., 1997].

[Fig. 4 about here.]
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3.5 3D Ridge Results

Many authors have developed 3D numerical models of mantle flow beneath

mid-ocean ridges with transform faults. Early examples used constant viscosity

[Phipps Morgan and Forsyth, 1988], layered viscosity [M. Rabinowicz and

Rosemberg, 1993], and temperature and pressure dependent viscosity [Shen

and Forsyth, 1992]. Sparks and Parmentier [1993] considered 3D convection

beneath a mid-ocean ridge. Georgen and Lin [2002] investigated 3D isoviscous

flow beneath a ridge triple junction. The model described here differs from

earlier work in that it incorporates the effects of non-Newtonian dislocation

creep viscosity on the flow and thermal structure beneath a mid-ocean ridge.

While a thorough investigation of the behavior of the 3D ridge model is beyond

the scope of this paper, a representative result is shown in Fig. 5. In this case,

we have chosen the ridge geometry and spreading rate to mimic the region

around the Clipperton and Siqueiros transform faults of the Eastern Pacific

Rise at about 9◦ north latitude. This is a fast-spreading ridge with a robust

melt supply [Crawford and Webb, 2002].

[Fig. 5 about here.]

Grid resolution for this simulation is 4 kilometers in each direction. The com-

putation, performed on 512 nodes of the Blue Gene/L at Argonne National

Laboratory, solved for 2.8 million degrees of freedom (however this simulation

was not used for the scaling test, shown above). The deformation rheology

used in the simulation combines diffusion and dislocation creep and predicts

mantle viscosities as low as 5× 1018 Pa-s in the region beneath the spreading

center.
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Figure 5a shows isosurfaces of upwelling velocity. These surfaces suggest that

upwelling beneath a fast-spreading ridge is uniform beneath most of a ridge

segment. Near the ends of segments bounded by large transform offsets, up-

welling rates are diminished, and mantle is drawn into the spreading zone

laterally from across the transform fault. Vertically integrated melt produc-

tion, shown in Fig. 5b, reflects this variation in upwelling, with lower melt

production rates beneath segment ends than beneath segments centers. Note,

however, that a small offset in the ridge has little effect on upwelling or melt

production. The low predicted viscosity could permit buoyant convection be-

neath the ridge, driven by horizontal gradients in porosity [Buck and Su, 1989].

This would lead to a time-dependent solution and should be explored in the

context of two-phase models.

For this 3D model, melting is calculated by using the lherzolite solidus of

Katz et al. [2003] and an adiabatic productivity of 0.4% per kilometer of

upwelling, chosen to give a reasonable crustal thickness [Katz et al., 2004].

Melt focusing to the ridge is parameterized as a process of melt percolation

up a sloping solidus [e.g., Sparks and Parmentier, 1991, Magde and Sparks,

1997]. The maximum melt focusing distance is arbitrarily set to 80 km in

Fig. 5. Changing this distance affects the predicted crustal production rate. For

the simulation shown in Fig. 5, changing the maximum melt focusing distance

from 80 km to 30 km reduces the predicted crustal thickness from about 7.5 to

4.9 km. Changes in melt focusing may also affect crustal thickness asymmetry

across transform faults on migrating ridges [Carbotte et al., 2004, Katz et al.,

2004]. Simple parameterization of melt transport are useful for gaining insight

into mid-ocean ridge processes, but more quantitative models will depend on

solutions to the equations governing two-phase mantle/magmatic flow.
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3.6 Two Phase Flow

The 3D ridge models provide the large-scale framework for understanding

the solid flow field and thermal structure beneath mid-ocean ridges. A more

complete description of these regions, however, includes the production and

migration of partially molten rock. Fortunately, equations (1)–(4) provide a

consistent and tractable extension of solid-state mantle convection to include

magma dynamics. These equations can be rewritten in a form that is amenable

to numerical solution as a coupling of compressible Stokes with Darcy’s law.

The surprising feature of this coupled system is that it has considerably richer

behavior than either of the two subproblems alone. In particular, these equa-

tions are unstable to the spontaneous formation of time-dependent, small-scale

coherent structures such as solitary waves or “melt bands” (see below).

The key to the new formulation is to partition the total pressure P into three

components,

P = Pl + P + P ∗, (13)

where Pl = ρ0
sgz is the reference background “lithostatic” pressure, P = (ζ −

2η/3)∇·V is the “compaction” pressure due to expansion or compaction of

the solid, and P ∗ includes all remaining contributions to the fluid pressure

(particularly the dynamic pressure due to viscous shear of the matrix).

With these definitions and a bit of algebra, we can eliminate the melt velocity

v from the equations using the same basic manipulations as in Spiegelman

[1993a] [see also Spiegelman et al., 2001, Spiegelman and Kelemen, 2003]. If

we approximate ρf , ρs to be constant (but not equal), we can rewrite the
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equations as

Dφ

Dt
= (1− φ)

P
ξ

+ Γ/ρs (14)

−∇· K

µ
∇P +

P
ξ

= ∇· K

µ
[∇P ∗ + ∆ρg] + Γ

∆ρ

ρfρs

(15)

∇·V =
P
ξ

, (16)

∇P ∗ = ∇· η
(
∇V + ∇VT

)
− φ∆ρg (17)

where Dφ/Dt = ∂φ/∂t + V ·∇φ is the material derivative of porosity in the

frame of the solid, ξ = (ζ − 2η/3) and ∆ρ = ρs − ρf .

Equation (14) is an evolution equation for porosity in a frame following the

solid flow. In this frame, porosity changes are driven by the balance of physical

volume changes (P/ξ ≡ ∇ · V) and melting. Equation (15) is a modified

Helmholtz equation for the compaction pressure P , which reduces to Darcy

flow in rigid porous media in the limit ξ → ∞. This equation is responsible

for much of the novel behavior in this system and has been discussed in detail

in Spiegelman [1993a,b]. Equation (16) relates the divergence of the solid flow

field to the compaction pressure, and Eq. (17) is Stoke’s equation for the solid

velocity and P ∗ with porosity-driven buoyancy. Given φ,P , P ∗ and V, the

melt flux is reconstructed as

φv = φV− K(φ)

µ
[∇(P ∗ + P) + ∆ρg] . (18)

All of these equations are in forms readily amenable to analytic and numer-

ical techniques. Equations (14)–(17) form a coupled hyperbolic-elliptic set of

equations for porosity, pressure and solid flow. To solve these problems re-

quires initial conditions and inflow conditions for the porosity and boundary
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conditions on pressure, solid velocity or stress. Most natural boundary condi-

tions for the compaction pressure can be written in terms of the melt flux and

tend to be Neumann conditions on P .

3.7 Magmatic Solitary Waves

The novel features of these equations arise from equations (14)–(15). In the

limit of small porosity φ << 1, constant viscosities and neglecting melting or

large-scale solid shear, Equations (14)–(15) can be written in dimensionless

form as

Dφ

Dt
= P (19)

−∇· φn∇P + P = ∇· φnĝ (20)

These equations have been shown to produce nonlinear solitary waves of poros-

ity in 1, 2, and 3 dimensions that propagate over a uniform porosity back-

ground with fixed form and constant speed [e.g., Scott and Stevenson, 1984,

Scott et al., 1986, Scott and Stevenson, 1986, Richter and McKenzie, 1984,

Barcilon and Richter, 1986, Barcilon and Lovera, 1989, Wiggins and Spiegel-

man, 1995].

These waves are a natural consequence of the ability of the matrix to dilate

or compact in response to variations in melt flux. Perhaps more importantly,

they provide an excellent benchmark test for computational methods. Given

a single solitary wave of the appropriate dimension, it should propagate with

unchanging form and constant phase velocity. Any other behavior is an artifact

of the numerical method. We have developed several PETSc-based examples
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for 2D solitary waves that incorporate a highly accurate spectral solution for

individual solitary waves in all dimensions (G. Simpson, pers. comm. 2006).

The PETSc codes are solved on a regular mesh that takes advantage of the

DA abstraction as well as geometric multi-grid preconditioners and a semi-

Lagrangian method of characteristics solver extension to PETSc to accurately

solve the hyperbolic advection components.

3.8 Localization and the Formation of Melt Bands

The solitary wave solutions represent excellent verification tests for simula-

tions. However, a more difficult problem arises in solving the full system of

two-phase equations where shear deformation of the solid couples with vol-

umetric deformation and the evolution of porosity. Such problems are moti-

vated by experiments described by Zimmerman et al. [1999] and Holtzman

et al. [2003a] that demonstrate spontaneous melt localization in a deforming,

partially molten two-phase aggregate. The pattern of melt bands observed in

these experiments may have important implications for melt transport and

seismic anisotropy in the mantle [Holtzman et al., 2003b]. These experiments

provide both direct validation of the equations of magma dynamics and a

considerable computational challenge for solving coupled non-linear PDEs.

Katz et al. [2006] describes PETSc-based computational models of the exper-

iments that are solutions of the equations of magma dynamics assuming no

melting or buoyancy. These simulations require a matrix viscosity that de-

pends on both porosity and strain-rate (equation (9) above) to reproduce the

observed pattern of melt bands at low angles (∼ 20◦) to the shear plane. Lin-

earized stability analysis that assume only porosity dependent viscosity [e.g.
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Stevenson, 1989, Spiegelman, 2003]) predict melt bands oriented at 45◦ to

the shear plane. Katz et al. [2006] extended this analysis to non-Newtonian

viscosity and provided full non-linear solutions that demonstrated how the

strain-rate dependence of viscosity controls the angle at which melt bands

emerge.

The simulations were developed by using a discretization of equations (14)–

(17) on a 2D staggered mesh similar to that shown in Fig. 3. In this mesh,

horizontal and vertical velocities reside on cell boundaries, while the porosity

and pressures (P and P ∗) reside on the cell centers. The mesh is periodic in

the x-direction. The discrete equations are derived with finite-difference or

finite-volume approximations that conform to the mesh layout. For example,

the discrete form of continuity, equation (10), becomes

Uij − Ui−1j

∆x
+

Vij − Vij−1

∆y
− Pij

ξij

= P ∗r
ij . (21)

Note that as in equation (10), the residual in equation (21) corresponds to a

pressure variable that does not appear in the equation. P ∗ is in fact constrained

by the momentum balance equation (17) and the compaction rate equation

(15).

The time-dependence in the melt band simulation is derived from the advection-

compaction equation for porosity, (14), which is hyperbolic, while the other

governing equations are elliptic. We employ a semi-implicit time discretiza-

tion of (14) and, as above for the ridge simulation, a Fromm scheme for ad-

vection. Because of the time-dependence, our strategy for solving the discrete

equations derived from (14)–(17) differs from our approach in the 3D ridge

simulation, where we bundled all the discrete equations into one system of
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algebraic equations and solved them simultaneously. Here we split the dis-

crete advection-compaction equation from the others and solve it separately,

iterating at each timestep between solution of the hyperbolic equation and

the elliptic equations. The advantages and disadvantages of this approach are

discussed in Section 3.9.

While a complete description of the physics of this model of shear band forma-

tion is beyond the scope of the paper, a short summary follows. As described

by Katz et al. [2006], the angle of melt bands in a deforming two-phase ag-

gregate results from a balance between two modes of rheological weakening.

When n = 1 in equation (9), the viscosity does not depend on strain rate.

In this case, simulations show that melt bands weakened by the porosity de-

pendence of viscosity emerge at 45◦ to the plane of shear. These bands grow

fastest because they are perpendicular to the direction of maximum exten-

sion in simple shear. For a strain-rate-dependent viscosity (n > 1), however,

concentrated shear deformation further weakens the bands, allowing them to

more easily decompact under extension. Enhanced shear strain is largest for

porosity bands oriented at zero and 90◦ and goes to zero for 45◦ bands (see

Katz et al. [2006]). Thus two competing processes affect the preferred angle

of melt bands. Linear analysis by Katz et al. [2006] suggests that the balance

between favorable orientation for extension (45◦) and favorable orientation for

concentrating shear (0 and 90◦) is controlled by the factor (1− n)/n.

In simulations, the contrast in porosity between melt bands and the compacted

regions between them grows with time. Concurrent with this localization of

porosity is a localization of shear strain. For n > 1, strain becomes localized in

bands that are roughly coincident with porosity bands in space. The combina-

tion of high porosity and enhanced shear over narrow regions produces sharp
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gradients in viscosity. Figure 6 shows the evolution of the maximum viscosity

gradient for simulations with different values of n and different initial porosity

conditions. The increase of viscosity gradients within the domain is associated

with a breakdown in convergence of the Newton solver and is sometimes ac-

companied by an increase in the condition number of the Jacobian matrix of

the discretized elliptic equations. As shown by the terminal values along lines

in Fig. 6, when the maximum dimensionless viscosity gradient reaches O(103),

the Newton solver fails to converge for the set of elliptic equations (15)–(17),

although the linear solve for the correction δu typically continues to converge.

At this point the simulation cannot be integrated further. No clear relation-

ship exists between the maximum viscosity gradient and the condition number

of the Jacobian matrix.

[Fig. 6 about here.]

3.9 Elliptic-Hyperbolic Solver Iteration

The set of coupled equations that describe magma/mantle interaction con-

tains one hyperbolic, time-dependent equation (14). The other three equa-

tions, (15)–(17), represent instantaneous balances. One approach to handling

the discrete versions of these equations is to combine them into a single sys-

tem of nonlinear equations that can (ideally) be solved with a single call to

PETSc’s nonlinear solver. A more flexible and efficient method is to split the

equations into smaller systems. In the time-dependent simulations described

above, we have separated the hyperbolic equation from the others.

In practice, two issues arise with the single-solve approach. First, PETSc treats
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all variables as unconstrained. This practice can lead to problems when solving

for porosity, which is physically constrained to lie between zero and one. Even

for constitutive equations that, in theory, prevent porosity from becoming

negative, practice shows that a discrete version of the equations over a fi-

nite time-step can produce porosities slightly below zero. In this case, floating

point exceptions caused by negative porosity can cause a simulation to fail. A

second problem concerns simulation efficiency. The simplest magma-dynamics

system has one evolution equation for porosity, but more complex systems may

contain several (e.g., temperature, concentrations of various chemical species).

These variables are governed by advection-diffusion-reaction equations that,

when discretized, result in diagonally dominant Jacobian matrices. Such ma-

trices are associated with linear systems that can be solved with about three

iterations of GMRES, as opposed to the Jacobian of elliptic equations that

requires many more. Combining parabolic and elliptic variables in a single sys-

tem of equations leads to a Jacobian matrix in which some rows are diagonally

dominant. Furthermore, because the computational work of GMRES scales as

O(N2) where N is the number of unknowns, dividing the problem into parts

can produce significant speedup.

Splitting the system of equations has costs, however. Of these, the most sig-

nificant is the need to iterate between the solves at each timestep. Typically

we iterate twice, although a more rigorous approach would be to check the

residual of the combined system of equations after each iteration. There is

also a cost in code complexity and in the number of communications between

processors in parallel computations. The latter has an insignificant effect on

overall code performance for fast cluster interconnection networks.

PETSc provides a set of tools for splitting the fields of unknowns with the
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Fieldsplit preconditioner. This allows one to apply different linear solvers

to different sets of fields. For example, consider a three component problem

where the first two components are coupled elliptic equations. One can spec-

ify, on the command line when invoking the executable, -pc type fieldsplit

-pc fieldsplit 0 fields 0-1 -pc fieldsplit 1 fields 2 -fieldsplit 0 pc type

boomeramg -fieldsplit 1 pc type jacobi. The first two fields are pre-conditioned

as coupled system using the Hypre BoomAMG algebraic multigrid pre-conditioner

(see www.llnl.gov/CASC/linear solvers), while the third field is pre-conditioned

with a simple Jacobi step. A slightly more powerful tool is the PCComposite

preconditioner; this allows one to easily string together several precondition-

ers, where each is selected to handle particular parts of the solution space.

4 PETSc Special Features

4.1 Parameter Handling Using PetscBag

One characteristic common to many geodynamics models is the large number

of physical parameters that must be included. These parameters are associ-

ated with material properties such as rheology, buoyancy, and phase change;

boundary conditions; and control of the numerical solution. PETSc provides

a convenient set of data structures and methods that facilitate management

of these large sets of program parameters for code usability

Specifically the PetscBag object manages user parameters such that the ac-

tual data structure is opaque to the user. The user must declare a variable of

type PetscBag and may then use functions to put parameters of any standard

type (integer, real, Boolean, character strings, etc.) “into the bag”. Example
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code demonstrating this interface is shown in section 4.3. For each parame-

ter the user calls PetscBagRegisterXXX(), replacing XXX with a suffix cor-

responding to the variable type. The purpose of registering a parameter is

to simultaneously (i) set a default value, (ii) provide an identifier string to

precede and identify the parameter when it is set upon program execution,

and (iii) provide a descriptive “help” string that is printed with the variable’s

command-line identifier and default value when requested. This help string is

useful to remind the user of the meaning of a parameter, including its units

and type.

The PetscBag object may be written to a binary file with other PETSc objects

for both output and the documentation of simulation input. When writing the

PetscBag to a file, the application code need not specify the size or contents

of the bag; as an application code evolves and new parameters are added, the

input/output modules are unchanged.

4.2 Self-Documenting Output

As the code of a simulation evolves to incorporate new physical models, new

constitutive equations, or new solution strategies, the output files generated by

that code may also evolve in their structure and content. With each change,

new scripts to load, post process, and visualize the output files would be

needed, making it difficult to load old output files from earlier versions of a

code. Self-documenting output is a way to avoid this difficulty. A common

solution to this problem is provided by XML, which has a self-documenting

structure. However, it is ill-suited to the large, structured data sets produced

by PETSc simulations and is difficult to integrate into existing analysis or
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visualization environments such as Matlab.

PETSc includes an output mode that combines the creation of a binary data

file, which contains the Vec, Mat, and PetscBag data output by the user, with

the generation of an ASCII descriptor file, which contains a script for reading

the binary file into Matlab. This script, when executed in Matlab, creates

a struct with fields containing the data from the associated binary file. The

field names of this structure are specified in the simulation source code. These

field names allow the user who loads the simulation output to understand the

nature of the data, even if this user has no knowledge of the simulation source

code. Code that demonstrates the use of self-documenting PETSc output is

shown in Section 4.3.

The pair of files comprising of the binary output file and its plain text descrip-

tor file is independent of any changes to the simulation code; hence there is

no ambiguity about the content or structure of the binary file and no issue of

backward compatibility. This integration of binary output with a descriptor

file provides a self-contained method for quickly and easily reading simulation

data.

4.3 Example Code

The following program, written in C, demonstrates the use of self-documenting

output and the PetscBag object, as discussed in the preceding subsections.

A struct, Parameter, is defined to contain the needed data. Then the bag

is allocated and data registered, including default values, identifiers, and help

strings. Once the simulation is completed, a viewer of type PetscViewerBinaryMatlab
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is used to generate both the binary data file and descriptor file. These files

can later be read into Matlab, using a script provided with the PETSc dis-

tribution, PetscReadBinaryMatlab.m. For function documentation and more

specific usage information, see Balay et al. [2001].

static char help[ ] = "Demonstrates use of PetscBag and PetscViewerBinaryMatlab\n\n";

#include "petscbag.h"

#include "petscda.h"

/* Define a C struct that will contain a bag’s parameters. */

typedef struct {

char filename[PETSC MAX PATH LEN];

PetscReal rho;

PetscInt nx, ny;

} Parameter;

/* Example program */

int main(int argc,char **argv)

{

DA da;

Vec vec;

PetscBag bag;

Parameter *params;

PetscViewer viewer;

/* Initialize PETSc */

PetscInitialize(&argc, &argv, (char *)0, help);
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/* Create a bag and register variables */

PetscBagCreate(PETSC COMM WORLD, sizeof(Parameter), &bag);

PetscBagGetData(bag, (void **) &params);

PetscBagSetName(bag, "ParameterBag", "demonstration");

PetscBagRegisterString(bag, &params−>filename, PETSC MAX PATH LEN,

"output", "filename", "Name of output file");

PetscBagRegisterReal(bag, &params−>rho, 3.0, "rho", "Density, kg/m^3");

PetscBagRegisterInt(bag, &params−>nx, 17, "nx", "number of points in x");

PetscBagRegisterInt(bag, &params−>ny, 9, "ny", "number of points in y");

/* Create a DA and a global vector. Note that naming the field(s) is required! */

DACreate2d(PETSC COMM WORLD, DA NONPERIODIC, DA STENCIL STAR,

−params−>nx, −params−>ny, PETSC DECIDE, PETSC DECIDE,

1, 1, 0, 0, &da);

DASetFieldName(da, 0, "rho");

DACreateGlobalVector(da, &vec);

VecSet(vec, params−>rho);

/*

Create the viewer, output a bag and vector to viewer, and close it.

The resulting file can be read into Matlab using the provided script,

PetscReadBinaryMatlab.m

*/

PetscViewerBinaryMatlabOpen(PETSC COMM WORLD, params−>filename, &viewer);

PetscViewerBinaryMatlabOutputBag(viewer, "parameters", bag);

PetscViewerBinaryMatlabOutputVecDA(viewer, "fields", vec, da);

/* Clean up and exit */
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PetscViewerBinaryMatlabDestroy(viewer);

PetscBagDestroy(bag);

VecDestroy(vec);

PetscFinalize();

return 0;

}

5 Conclusions

5.1 Future of PETSc

The key concepts that organize PETSc’s DA interface may be generalized to a

treatment of unstructured meshes in arbitrary dimension. In this more general

setting, however, one must clearly separate the various concerns. The PETSc

Mesh object is based on the Sieve topology interface presented by Knepley and

Karpeev [2005]. Under Sieve, geometry is described as merely another field

over the mesh. Local discretization information can be provided by the FIAT

system [Kirby, 2004], which is used to generate quadrature information for

arbitrary finite elements. The local physics computations are still segregated

from the global communication and numbering.

Moreover, under this model the local physics/global solver paradigm can be

greatly extended. Finite elements themselves fit this model, as local approxi-

mations for restricted fields are then used to update a global field. Multigrid

also obeys this model, with restriction and updating operating between grid

resolutions. Structuring the algorithms and interface in this way allows global
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data management and its attendant hardships (numbering, indexing, commu-

nication, etc.) to be divorced from the specificities of local computation (di-

mension, element shape, finite element order, etc.). Future versions of PETSc

will incorporate such developments and hence facilitate the development of

finite element simulations on domains with complex geometry.

5.2 Future of Geodynamics Simulations

Geochemical and petrological analyses of volcanically derived rocks provide a

powerful constraint on the dynamics of magmatic systems. A wealth of such

analyses exist and have been used to develop hypotheses about the distri-

bution and style of melting beneath plate boundaries [e.g., Kelemen et al.,

1997b, Langmuir et al., 2004, Kelley et al., 2006]. Tectonic-scale simulations

of magma/mantle interaction can provide quantitative tests of these hypothe-

ses and can generate insight into melt transport processes. In order to produce

predictions testable by comparison to geochemical and petrologic data, sim-

ulations must generate self-consistent solutions for mantle flow, melting, and

magmatic transport of mass, energy, and chemistry. The development of such

models represents a major computational challenge.

Past simulations used to generate predictions of lava chemistry have typically

simplified either the melt transport or the mantle flow field. van Keken et al.

[2001] used parameterized melt transport to calculate helium degassing of

the mantle in a global model of mantle convection with spherical geometry.

Spiegelman and Kelemen [2003] calculated trace element signatures of reactive

melt channels using detailed models of magma/mantle interaction that neglect

large-scale deformation of the host rock. Spiegelman and Reynolds [1999] made
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predictions of the spatial distribution of lava chemistry at mid-ocean ridges by

solving for both solid mantle deformation and magmatic flow; however, this

work neglected reactive melting, melt-lithosphere interaction, and the variable-

viscosity of mantle rock. Choblet and Parmentier [2001] simulated 3D, variable

viscosity mantle flow, melting, and melt transport beneath a mid-ocean ridge

but did not calculate geochemical signatures of the flow. A simulation that

self-consistently combines a current understanding of magma dynamics and

large-scale mantle flow to make geochemical predictions is still lacking.

Some of the challenges of developing such a model stem from the difficulties

associated with simulations such as those described in section 1.1. These sim-

ulations seek to isolate one part of the system, for example, solid mantle flow

or two-phase flow but in a simple geometry with no melting. In both cases,

non-Newtonian viscosity results in strong nonlinearity, sharp viscosity con-

trasts, and, ultimately, near-singular systems of linear equations that are not

easily solved. In models of magma dynamics that include shear [Katz et al.,

2006] and reactive flow [Aharonov et al., 1997, Spiegelman et al., 2001], local-

ization of porosity into small-scale features contributes to the difficulty of the

problem.

Additional complexities arise when mantle flow simulation is combined with

magma dynamics. Localization leads to a hierarchy of length scales from the

tectonic scale of ∼100 km to smaller than the compaction scale (the relevant

length scale for magma localization) of ∼1 km. Resolving the compaction scale

in a domain that is hundreds of kilometers on each side requires significant

computational power. Rheological and thermal interaction between the liquid

and solid phases in such simulations means that the two flow fields cannot

be decoupled and solved separately. A self-consistent set of fluid dynamical
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equations such as those given in Section 1.1, plus a set of equations governing

the evolution of chemistry [Aharonov et al., 1997] and temperature in the two-

phase region, is required. These equations should handle both partially melted

(φ > 0) and melt-free (φ = 0) zones. Together these requirements represent a

significant challenge to computational scientists and geodynamicists.

These challenges are being addressed by the Computational Infrastructure for

Geodynamics (www.geodynamics.org). CIG is an NSF-sponsored partnership

between computational scientists and solid-earth scientists to develop the next

generation of modeling software for the geodynamics community for investi-

gating a wide range of geodynamics problems, including magma migration,

mantle convection, short and long-term lithospheric deformation, computa-

tional seismology, and the geodynamo. The long-term goal for CIG is to de-

velop an interoperable software suite for investigating a range of multiphysics

problems in geodynamics. An important design criterion for all new software,

however is to leverage as much as possible from existing high-quality computa-

tional software projects. In particular PETSc and the affiliation with Argonne

is a fundamental component for solver technologies in both the new earth-

quake physics codes PyLith and a Lithospheric Deformation code GALE and

will continue to be the principal development platform for magma-dynamics

problems.

We have demonstrated how PETSc, a leading example of an advanced scien-

tific computation library, can be used to facilitate simulation of complex non-

linear systems with localization instabilities and large memory requirements.

Advanced scientific computation libraries will become increasingly important

to the success of magma-dynamics simulation as researchers tackle problems

that connect fluid-dynamical processes occurring at depth in the mantle with
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geochemical and petrologic observations made at the surface. Such models will

provide powerful tools for interpreting chemical data and for developing an

understanding of volcanic source regions.
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List of Tables

1 Boundary conditions for the 3-D ridge simulation. The domain
is size x ∈ [0, L], y ∈ [0, W ], z ∈ [0, D]. The spreading ridge is
parallel to the y-axis, transform faults, and the spreading rate
vector parallel to the x-axis. 55
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Boundary Variable Boundary Condition

z = 0 u u(x, y, 0) = U(x, y) where U is the imposed plate motion.

v v = 0 on top boundary

w w = 0 on top boundary

P This BC is irrelevant for the interior of domain

T dimensionless T = 0 on top boundary

z = D u u = 0 on bottom boundary.

v v = 0 on bottom boundary

w dw/dz = 0 on bottom boundary

P P = 0 on bottom boundary

T dimensionless T equals the (dimensionless) mantle potential temperature

x = 0, L u u satisfies equation (10).

v σxy = 0

w σxz = 0

P This BC is irrelevant for the interior of the domain

T dT/dx = 0

y = 0,W all von Neumann (reflection) condition
Table 1
Boundary conditions for the 3-D ridge simulation. The domain is size x ∈ [0, L], y ∈
[0,W ], z ∈ [0, D]. The spreading ridge is parallel to the y-axis, transform faults,
and the spreading rate vector parallel to the x-axis.
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