M. Arrascue and J. Van-niekerk, Biooxidation of arsenopyrite concentrate using BIOX?? process: Industrial experience in Tamboraque, Peru, Hydrometallurgy, vol.83, issue.1-4, pp.90-96, 2006.
DOI : 10.1016/j.hydromet.2006.03.050

F. Battaglia and D. Morin, Dissolution of cobaltiferous pyrite by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: factors influencing bacterial leaching efficiency, Journal of Biotechnology, vol.32, issue.1, pp.11-16
DOI : 10.1016/0168-1656(94)90115-5

F. Battaglia-brunet, P. Hugues, T. Cabral, P. Cezac, J. Garcia et al., The mutual effect of mixed thiobacilli and leptospirilli populations on pyrite bioleaching, Minerals Engineering, vol.11, issue.2, pp.195-205, 1998.
DOI : 10.1016/S0892-6875(97)00151-9

C. Brierley, Bacterial succession in bioheap leaching, Hydrometallurgy, vol.59, issue.2-3, pp.249-255, 2001.
DOI : 10.1016/S0304-386X(00)00171-7

J. Brierley and C. Brierley, Present and future commercial applications of biohydrometallurgy, Hydrometallurgy, vol.59, issue.2-3, pp.233-239, 2001.
DOI : 10.1016/S0304-386X(00)00162-6

L. Cancho, M. Blázquez, A. Ballester, F. González, and J. Muñoz, Bioleaching of a chalcopyrite concentrate with moderate thermophilic microorganisms in a continuous reactor system, Hydrometallurgy, vol.87, issue.3-4, 2007.
DOI : 10.1016/j.hydromet.2007.02.007

E. Córdoba, J. Muñoz, M. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, vol.93, issue.3-4, pp.81-87, 2008.
DOI : 10.1016/j.hydromet.2008.04.015

P. Hugues, P. Cezac, T. Cabral, F. Battaglia, X. Truong-meyer et al., Bioleaching of a cobaltiferous pyrite: A continuous laboratory-scale study at high solids concentration, Minerals Engineering, vol.10, issue.5, pp.507-527, 1997.
DOI : 10.1016/S0892-6875(97)00029-0

S. Groudev and . Bioshale-consortium, Bioshale FP6 European project: exploiting black shale ores using biotechnologies?, Miner Eng, vol.21, pp.111-120, 2008.

P. Hugues, C. Joulian, P. Spolaore, C. Michel, F. Garrido et al., Continuous bioleaching of a pyrite concentrate in stirred reactors: Population dynamics and exopolysaccharide production vs. bioleaching performance, Hydrometallurgy, vol.94, issue.1-4, pp.34-41, 2008.
DOI : 10.1016/j.hydromet.2008.05.045

URL : https://hal.archives-ouvertes.fr/hal-00641714

C. Demergasso, P. Galleguillos, L. Escudero, V. Zepeda, D. Castillo et al., Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap, Hydrometallurgy, vol.80, issue.4, pp.241-253, 2005.
DOI : 10.1016/j.hydromet.2005.07.013

D. Dixon, Analysis of heat conservation during copper sulphide heap leaching, Hydrometallurgy, vol.58, issue.1, 2000.
DOI : 10.1016/S0304-386X(00)00119-5

M. Dopson and E. Lindström, Potential role of Thiobacillus caldus in arsenopyrite bioleaching, 1999.

S. Foucher, F. Battaglia-brunet, P. Hugues, M. Clarens, J. Godon et al., Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor, Hydrometallurgy, vol.71, issue.1-2, pp.5-12, 2003.
DOI : 10.1016/S0304-386X(03)00142-7

M. Gericke and A. Pinches, Bioleaching of copper sulphide concentrate using extreme thermophilic bacteria, Minerals Engineering, vol.12, issue.8, pp.893-904, 1999.
DOI : 10.1016/S0892-6875(99)00076-X

J. Gouin, Mode de genèse et valorisation des minerais de type black shales : cas du Kupferschiefer (Pologne) et des schistes noirs de Talvivaara (Finlande), 2008.

A. Halinen, N. Rahunen, A. Kaksonen, and A. Puhakka, Heap bioleaching of a complex sulfide ore. Part I: Effect of pH on metal extraction and microbial composition in pH controlled columns, 2009.

S. Helle and U. Kelm, Experimental leaching of atacamite, chrysocolla and malachite: Relationship between copper retention and cation exchange capacity, Hydrometallurgy, vol.78, issue.3-4, pp.180-186, 2005.
DOI : 10.1016/j.hydromet.2005.03.005

D. Johnson and K. Hallberg, Techniques for Detecting and Identifying Acidophilic Mineral-Oxidizing Microorganisms, pp.237-261, 2007.
DOI : 10.1007/978-3-540-34911-2_12

D. Johnson, C. Joulian, P. Hugues, and K. Hallberg, Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations, Extremophiles, vol.93, issue.21, 2008.
DOI : 10.1007/s00792-008-0184-4

URL : https://hal.archives-ouvertes.fr/hal-00643276

C. Klauber, A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution, International Journal of Mineral Processing, vol.86, issue.1-4, pp.1-17, 2008.
DOI : 10.1016/j.minpro.2007.09.003

M. Leahy, M. Davidson, and M. Schwarz, A model for heap bioleaching of chalcocite with heat balance: Mesophiles and moderate thermophiles, Hydrometallurgy, vol.85, issue.1, pp.24-41, 2007.
DOI : 10.1016/j.hydromet.2006.07.004

A. López-juárez, R. Rivera-santillán, and S. Harrison, Bioleaching of a cananea copper concentrate in laboratory-scale continuous stirred reactors, Proceedings of the 16th International Biohydrometallurgy Symposium, Cape Town, pp.283-289, 2005.

M. Márquez, J. Gaspar, K. Bessler, and G. Magela, Process mineralogy of bacterial oxidized gold ore in S??o Bento Mine (Brasil), Hydrometallurgy, vol.83, issue.1-4, pp.114-123, 2006.
DOI : 10.1016/j.hydromet.2006.03.045

D. Morin and P. Hugues, Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors: a Case Study from Laboratory Scale to Industrial Application, 2007.
DOI : 10.1007/978-3-540-34911-2_2

N. Okibe, M. Gericke, K. Hallberg, and D. Johnson, Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation, Applied and Environmental Microbiology, vol.69, issue.4, pp.1936-1943, 2003.
DOI : 10.1128/AEM.69.4.1936-1943.2003

N. Okibe and D. Jonhson, Bioleaching of pyrite by defined mixed populations of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions, 2004.

G. Olson, J. Brierley, and C. Brierley, Bioleaching review part B:, Applied Microbiology and Biotechnology, vol.63, issue.3, pp.249-257, 2003.
DOI : 10.1007/s00253-003-1404-6

C. Pani, S. Swain, R. Kar, G. Chaudhury, L. Sukla et al., Bio-dissolution of zinc sulfide concentrate in 160 l 4-stage continuous bioreactor, Minerals Engineering, vol.16, issue.10, pp.1019-1021, 2003.
DOI : 10.1016/S0892-6875(03)00264-4

D. Rawlings, Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates, Microbial Cell Factories, vol.4, issue.1, p.13, 2005.
DOI : 10.1186/1475-2859-4-13

Y. Rodriguez, A. Ballester, M. L. Blazquez, F. Gonzalez, and J. A. Munoz, New information on the pyrite bioleaching mechanism at low and high temperature, Hydrometallurgy, vol.71, issue.1-2, pp.37-46, 2003.
DOI : 10.1016/S0304-386X(03)00172-5

Z. Sadowski, E. Jazdzyk, and H. Karas, Bioleaching of copper ore flotation concentrates, Minerals Engineering, vol.16, issue.1, pp.51-53, 2003.
DOI : 10.1016/S0892-6875(02)00258-3

A. Shippers, Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantificationed) Microbial processing of metal sulfides, pp.3-34, 2007.

P. Spolaore, C. Joulian, J. Gouin, D. Morin, and P. Hugues, Bioleaching of an organic-rich polymetallic concentrate using stirred-tank technology, Hydrometallurgy, vol.99, issue.3-4, pp.137-143, 2009.
DOI : 10.1016/j.hydromet.2009.07.011

URL : https://hal.archives-ouvertes.fr/hal-00512815

A. Szubert, Z. Sadowski, I. Maliszewska, C. Gros, J. Barbe et al., Biotreatment of polish black shale ores, Proceedings of the 16th International Biohydrometallurgy Symposium, Cape Town, pp.227-236, 2005.

A. Tshilombo, J. Petersen, and D. Dixon, The influence of applied potentials and temperature on the electrochemical response of chalcopyrite during bacterial leaching, Minerals Engineering, vol.15, issue.11, pp.809-813, 2002.
DOI : 10.1016/S0892-6875(02)00122-X

P. Van-aswegen, J. Van-niekerk, and W. Olivier, The BIOX??? Process for the Treatment of Refractory Gold Concentrates, pp.1-34, 2007.
DOI : 10.1007/978-3-540-34911-2_1

K. Wakeman, H. Auvinen, and D. Johnson, Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore, Biotechnology and Bioengineering, vol.189, issue.4, pp.739-750, 2008.
DOI : 10.1002/bit.21951

H. Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides ??? A review, Hydrometallurgy, vol.84, issue.1-2, pp.81-108, 2006.
DOI : 10.1016/j.hydromet.2006.05.001

B. Whittington, R. Mcdonald, J. Johnson, and D. Muir, Pressure acid leaching of arid-region nickel laterite ore, Hydrometallurgy, vol.70, issue.1-3, pp.31-46, 2003.
DOI : 10.1016/S0304-386X(03)00043-4

B. Whittington, J. Johnson, L. Quan, R. Mcdonald, and D. Muir, Pressure acid leaching of arid-region nickel laterite ore, Hydrometallurgy, vol.70, issue.1-3, pp.47-62, 2003.
DOI : 10.1016/S0304-386X(03)00044-6

R. Zhang, M. Wei, J. H. Chen, X. Qiu, G. Zhou et al., Application of real-time PCR to monitor population dynamics of defined mixed cultures of moderate thermophiles involved in bioleaching of chalcopyrite, Applied Microbiology and Biotechnology, vol.105, issue.6, pp.1161-1168, 2009.
DOI : 10.1007/s00253-008-1792-8