
HAL Id: hal-00531036
https://hal.science/hal-00531036

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orchestration Evolution Following Dataflow Concepts:
Introducing Unanticipated Loops Inside a Legacy

Workflow
Sébastien Mosser, Mireille Blay-Fornarino, Johan Montagnat

To cite this version:
Sébastien Mosser, Mireille Blay-Fornarino, Johan Montagnat. Orchestration Evolution Following
Dataflow Concepts: Introducing Unanticipated Loops Inside a Legacy Workflow. International Con-
ference on Internet and Web Applications and Services (ICIW), May 2009, Venice, Italy. pp.1-6.
�hal-00531036�

https://hal.science/hal-00531036
https://hal.archives-ouvertes.fr


Orchestration Evolution Following Dataflow Concepts:

Introducing Unanticipated Loops Inside a Legacy Workflow

Sébastien Mosser⋆,†, Mireille Blay–Fornarino⋆,†, Johan Montagnat†

⋆ University of Nice – Sophia Antipolis,

† CNRS, I3S Laboratory, MODALIS team,

Sophia Antipolis, France

{mosser,blay,johan}@i3s.unice.fr

Abstract

Web Services Oriented Architecture (WSOA) supports

development of high quality applications based on a

control–flow between services. The introduction of a loop

to deal with a dataset inside an orchestration is a typical

evolution use case inside a WSOA, but there is no tool sup-

port to perform such refactoring operation. In this paper

we propose a new method to refactor an orchestration deal-

ing with a variable v so that it iterates over a dataset v⋆

automatically. This algorithm is then validated on a run-

ning software used as a validation platform by the French

research project called FAROS.

1. Introduction

Web Services Oriented Architectures provide a way to

implement scalable Services Oriented Architectures (SOA,

[4]) using web services as elementary services, and orches-

trations [11] as composition mechanisms. The W3C defines

orchestrations as “the pattern of interactions that a Web Ser-

vice agent must follow in order to achieve its goal” [13].

Specialized (i.e. elementary) code is written inside web ser-

vices, and each business process is described as an orches-

tration of those web services, defining a workflow using the

BPEL language for example.

Evolution techniques like code refactoring [2] handle

the redesign of a legacy application, following some well-

known code rewriting techniques (interface extraction, in-

heritance, . . . ). These techniques are inspired by object–

oriented concepts and typical object–oriented evolution use

cases. Inside WSOA workflows, a typical evolution is to

transform a data into a dataset and iterate computations over

this dataset, e.g. for benchmarking purposes [8]. To the

best of our knowledge, no existing refactoring technique

is able to automatically transform an orchestration work-

ing on a single data v into an orchestration able to handle a

dataset v⋆ ≡ {v1, . . . , vn} (we use the ⋆ notation to denote

a dataset).

The contribution of this paper is to define an algorithm

able to automatically refactor an existing BPEL orchestra-

tion in this case. We identify in section 2 a typical example

of loop introduction inside a legacy WSOA system named

SEDUITE. In section 3, we enhance an evolution dedicated

metamodel (ADORE) to handle this kind of evolution. Sec-

tion 4 describes the evolution algorithm applied to a run-

ning example, and section 5 validates the algorithm inside

a legacy platform. Section 6 presents relevant work in this

field, and section 7 concludes this paper by showing some

perspectives of this work.

2. Motivations: SEDUITE System & Data Sets

SEDUITE is an information system designed to fit aca-

demic institution needs. This system is used as a valida-

tion platform by the FAROS project1. SEDUITE is deployed

inside an engineering school (POLYTECH’SOPHIA) and a

specialized school for impaired children (IES CLÉMENT

ADER). SEDUITE supports information broadcasting from

academic partners (e.g. transport network, school restau-

rant) to several devices (e.g. user’s smart-phone, PDA,

desktop, public screen).

The system is built upon a WSOA. Sources of informa-

tion such as timetables, bus schedules or weather forecasts

are implemented as web services. Complex business pro-

cesses used to combine theses data sources are defined as

orchestrations, using the BPEL industrial standard [9]. Such

an implementation follows WSOA methodological guide-

lines [10], positioning experimentations as a typical usage

of a WSOA. More information about the system can be

found on the project website2.

1http://www.lifl.fr/faros
2http://anubis.polytech.unice.fr/jSeduite



A SEDUITE business process called InfoProvider

defining an information retrieval process is described in FIG

1. A box represents an activity inside the process, and an ar-

row between two boxes means that the targeted box of the

arrow is allowed to start at the end of the source one.

Figure 1. InfoProvider orchestration

When the InfoProvider orchestration receives an

invocation message (a1), it retrieves schedule information

(a20) and filters such schedule taking into account the login

of the current user (a21). Concurrently, it asks for an au-

thentication ticket (a30) and performs a validity test on the

ticket (a31). If the validity cannot be confirmed, the pro-

cess throws an exception (a321). In case of confirmation, it

retrieves weather forecast information (a320). A synchro-

nization point appears when the orchestration concatenates

filtered schedule and weather forecast information (a4) be-

fore replying this list of information (a5). This example

is a simplified version of an existing orchestration which

includes different sources and exception handling mecha-

nisms.

The SEDUITE infrastructure is a perpetually evolving

system, as new information sources are constantly devel-

oped and published. A typical kind of evolution is based on

dataflow concepts. Originally, the InfoProvider pro-

cess was defined to handle a single lectureGroup input pa-

rameter. But when new educational programs are proposed

inside the school building, the orchestration has to be refac-

tored to handle such a dataset containing all the existing

programs. It results in a huge and deep modification of the

original process, introducing a loop over the impacted activ-

ities, adding some new activities to read the current program

from the set, and then appending the result to others, . . .

To perform such a modification, the administrator has to

clearly identify impacted activities, introduce a loop activ-

ity around them, define new variables and new assignments.

This kind of situation is a typical evolution inside SEDUITE

orchestrations (handling a set of lecture groups, a set of bus

lines, a set of classes . . . ). But there is no support from

existing tools to automate the computation of the resulting

orchestration. Consequently the administrator always per-

forms the modification process by hand. Such a method is

error prone and time consuming.

3. Adding Datasets Concerns Inside ADORE

The ADORE metamodel reifies orchestrations be-

haviours. It is designed to focus on orchestrations evolution,

proposing an algorithm to automatically support behavioral

evolution of orchestrations through a formal merge process.

The metamodel and the proposed behavioral merge process

are fully described in [6]. We propose to enhance ADORE to

introduce dataflow changes inside its evolution capabilities.

As a running example, we define a simple adder orches-

tration illustrated in FIG. 2. This orchestration receives

an invocation message containing two input string param-

eters x and y (a1). It retrieves from a memory web ser-

vice (a20, a21) the integer value associated to x in a vari-

able xint (resp. yint) and returns (a4) a result r (computed

as xint + yint in a3).

Figure 2. adder orchestration

Our goal is to produce through our algorithm an or-

chestration adder(x∗) able to handle a set of values x⋆ ≡
{x1, . . . , xn} instead of x. As the original process com-

putes its result r from xint and yint, we wants to compute

a set of result r⋆ ≡ {r1, . . . , rn}, where ri = xinti
+ yint.

Such an evolution implies (i) a modification of the orches-

tration business process itself (its behaviour) to handle the

dataset and (ii) a modification of the orchestration external

interface (its WSDL contract). In this paper we focus our

contribution on the behaviour modification.

adder : String × String → Integer

x × y 7→ xint + yint

adder(x⋆) : String⋆ × String → Integer⋆

{x1, . . .} × y 7→ {xint1 + yint, . . .}



3.1. ADORE: An Activity Meta–model

Conforming to the ADORE metamodel, an orchestration

is defined as a set of activities A⋆ and a partial order ≺⋆

between those activities. An activity a is defined as a tu-

ple identified by a unique Id. Each activity is characterized

by its kind, and uses a list of variables as inputs. An ac-

tivity can use a variable as its output. Activity kinds are de-

fined as a subset of BPEL specifications. The different kinds

defined inside the metamodel handle (i) web service in-

vocation (invoke), (ii) variable manipulation (assign),

(iii) fault report (throw), (iv) boolean predicate evalua-

tion (test), (v) message reception (receive) and (vi) re-

sponse sending (reply).

O ≡ (A⋆,≺⋆)

∀a ∈ A⋆, a = (Id,Kind, Inputs, Output)

(a1 ≺ a2) ∈≺
⋆ ≡ start(a2) ⇒ end(a1)

The ADORE metamodel is designed to support orches-

tration evolutions. To fill the gap between ADORE and the

industrial description as BPEL code, we develop a set of

model transformations between the BPEL language and the

ADORE metamodel. An orchestration defined as BPEL code

can be transformed into its representation conforming to

the ADORE metamodel. The reciprocal transformation gen-

erates BPEL entities from an ADORE representation. The

adder orchestration described in FIG 2 corresponds to the

following model, conform to ADORE metamodel.

adder ≡ ({a1, a20, a21, a3, a4},

{a1 ≺ a20, a1 ≺ a21, a20 ≺ a3, . . .})

a1 ≡ (a1, receive, {x, y}, ∅)

a20 ≡ (a20, invoke(memory, get), {x}, {xint})

a21 ≡ (a21, invoke(memory, get), {y}, {yint})

a3 ≡ (a3, assign(intAdd), {xint, yint}, {r})

a4 ≡ (a4, reply, {r}, ∅)

3.2. Dataflow Concepts Inside ADORE

As ADORE is a control–flow driven evolution meta-

model, we need to enhance the metamodel with new func-

tions to handle datasets driven evolutions such as loops in-

troduction.

DataFlow (DF ): Following the W3C definition, an or-

chestration represents a control–flow. Identifying data flows

inside an orchestration allows us to extract activities inside

the control flow which derive from the usage of a given vari-

able. We define DF as a transitive closure of all activities

impacted by the evolution of a variable v into a dataset v⋆:

∀ai ∈ DF , ai either uses v as input variable or ai use

as input variable a variable transitively computed from v.

As an example, the data flow extracted from the variable x

inside the adder orchestration is defined as the following:

DF ({a1, a20, a21, a3, a4}, x) = {a1, a20, a3, a4}.

Firsts (F) & Lasts (L): We define two auxiliary func-

tions to deal with set of activities, named Firsts and Lasts.

We called Firsts (resp Lasts) of a set of activities all ac-

tivities that have no predecessors (resp. successors) inside

this set of activities.

For example, F(≺⋆,DF ({a1, a20, a21, a3, a4}, x)) =
{a1} and L(≺⋆,DF ({a1, a20, a21, a3, a4}, x)) = {a4}.

Interface Activities: We call interface activities of a vari-

able v inside a set of activities {a1, . . . , an} all activities

{ai, . . . , aj} that exchange (ie receive or send) v with ex-

ternal entities. These activities can be (i) a receive or a

reply, (ii) a throw or (iii) an invoke using variable v.

For example, interface activities of variables x in-

side adder activities are defined as the following:

Interface({a1, a20, a21, a3, a4}, x) = {a1}

Core (C): We define the core C(o, v) of a dataset evolu-

tion as a set of activities built upon a dataflow, without in-

terface activities of (i) input variables of Firsts activities

and (ii) output variables of Lasts activities. It represents

the set of activities {ai, . . . , aj} defined in an orchestration

o that need to be included in a loop to support the v 7→ v⋆

evolution.

As an example, the core activities set C(adder, x) con-

sists in all activities inside DF (Activities(adder), x) (ie

{a1, a20, a3, a4}), without its firsts (respectively lasts)

interface activities a1 (resp. a4). As a result, C(adder, x) =
{a20, a3}

4. Set–Evolution Algorithm: v 7→ v
⋆

The set–evolution algorithm runs over the previously de-

fined core activities and computes from a given input vari-

able v inside an orchestration o the set of “actions” to ex-

ecute in order to enhance o to handle v⋆. Atomic actions

available following the ADORE metamodel are entities cre-

ation or deletion (addOrder, addActivity, delOrder, . . . ) or

symbolic variable substitution σ as defined by Stickel in

[12]. After executing these actions, o behaviour is able to

handle a dataset v⋆ instead of the legacy v.

We illustrate the algorithm using the previously defined

adder orchestration. Each step of the algorithm is de-

scribed and then applied to the running example, i.e. au-

tomatically produce an orchestration adder(x⋆) which han-

dles a dataset x⋆ ≡ {x1, . . . , xn} instead of x.



4.1. Generic Algorithm: SetEnhance(o, v)

The algorithm results in the introduction of a loop ac-

tivity in the BPEL orchestration to iterate over all values in

v⋆. It is a four step process: firstly, it extracts the evolu-

tion core C(o, v), which represent the body of the computed

loop; secondly a variable substitution v 7→ v⋆ is performed

outside the core activities; thirdly the algorithm introduces

special activities inside the core to interface the loop with

the rest of the orchestration; and finally the order relation

inside the orchestration is rearranged to take care of the loop

introduction. FIG 3 illustrates the resulting workflow in the

adder example case.

1. Core extraction: Using previously defined functions

and properties, the core C(o, v) is computed. It represents

the body of the computed loop we are going to build. In our

example, C(adder, x) = {a20, a3}. These two activities

correspond to the body of the loop that processes the set of

input data {x1, . . . , xn}.

2. Variable substitution: In a generic way, the algorithm

builds a loop able to handle a dataset as input, and return a

dataset as output. Outside the core, these variables must be

renamed (using a substitution σ(v → v⋆)) to match with the

new name.

In the adder example, we have to perform two substi-

tutions: the input parameter x must be renamed as x⋆, and

the output variable r must be renamed as r⋆, as it will cor-

respond to a set of results {r1, . . . , rn}. Those substitutions

σ(x → x⋆) and σ(r → r⋆) must be applied on activities

defined outside of the core (message reception as a1 and

response sending as a4).

3. Loop Creation & Adaptation: A loop is defined as

a composite activity, embedding a set of activities and an

order relation between these activities. Contrarily to simple

activities, an activity expressed inside a loop can be exe-

cuted several times (one time per iteration, possibly con-

currently). The computed loop is defined as a new activity

inside the orchestration, which contains the core activity set

and the existing order relation between these activities. In-

side the loop, two special assignment activities (feeder and

sweller) are defined to handle the data–set semantic. The

feeder reads the current element of the dataset v⋆ and as-

signs it into v. The reciprocal activity sweller adds the cur-

rent result to the results set. The order relation is enriched

to set up the feeder as the first activity inside the loop, and

the sweller as the last one.

In the adder example, the feeder is defined as an

assignment from x⋆ into x using the feed assignment

function. In a reciprocal way, the sweller is defined

as an assignment from r into r⋆ using the swell func-

tion (which basically concatenate the current result with

the previously computed results set). The loop is de-

fined as a new activity l1, which contains the activity set

{l1 feeder, a20, a3, l1 sweller}. The process defines two

new orders entity inside the order relation to ensure the

feeder is the first activity and the sweller is the last one:

l1 feeder ≺ a20 and a3 ≺ l1 sweller.

4. External Activities Reordering: The order rela-

tion ≺⋆ defined inside o is inconsistent for now. An order

ext ≺ body (respectively body ≺ ext) between an activ-

ity ext defined outside the loop and body defined inside the

loop does not make any sense in front of BPEL engines ca-

pabilities that do not handle such links. Those orders enti-

ties must be detected and then reordered to target the loop

instead of the body activity. The same kind of reciprocal er-

roneous orders entities (an activity inside the loop targeting

an activity outside the loop) are reordered to start after the

sweller. Patterns like b1 ≺ ext ≺ b2 which produce dead-

lock order relations after substitution (the loop containing

b1 and b2 can start at the end of ext, but ext needs to start

after the end of the loop . . . ) are detected using graph–

pattern recognition techniques and highlighted for the user.

She can decide to introduce est inside the loop, or choose

to execute it before or after the loop.

In our running example, three order entities between the

outside and the body of the loop exist inside the adder

example: a1 ≺ a20, a21 ≺ a3 and a3 ≺ a4. These entities

must be deleted and replaced by proper entities where each

activity inside the loop is replaced by the loop identifier.

The correct order entities for this special example is defined

as the following: a1 ≺ l1, a21 ≺ l1, l1 ≺ a4. The resulting

orchestration adder⋆ is described in Fig 3.

Figure 3. adder(x⋆) ≡ setEnhance(adder, x)

4.2. Specialization Using Loop “Make–Up”

The algorithm defined in the previous section is a generic

algorithm which automatically formats the output of the



loop as a list corresponding to a concatenation of the re-

sults dataset. In some cases, this generation is too basic

and it does not reflect the expected semantics of the set–

evolution. For instance when working on numeric data, a

common need is to compute a global statistical result such

as the average of a set of results rather than handling indi-

vidual values.

To handle this diversity of possible algorithm specializa-

tion, we define a set of “cosmetic” activities, like flattening

a list or computing an average. These activities are defined

in an evolution toolbox and come with a set of well-known

properties like associativity or commutativity to encourage

further composition. As we identify during the loop cre-

ation special key points (feeder, sweller, . . . ), the user can

manually insert a cosmetic activity to a key point to perform

final optimization. ADORE conflicts detections rules set can

detect inconsistencies introduced by the make–up step (e.g.

using a dataset as input parameter instead of a scalar), but it

is under user’s responsibility to solve those conflicts using

her knowledge of the application.

4.3. Implementation

The evolution algorithm is implemented using

the PROLOG language, as it intensively uses in-

ference rules. The algorithm is defined as a rule

setEnhance(+O,+V,-ToDo). From an orches-

tration O and a variable V , it unifies with ToDo the

resulting list of atomic actions to perform on O to handle

the set enhancement of V . These actions are defined inside

the ADORE metamodel and available from the project

website3.

5. Validation: Handling Sets Inside SEDUITE

Coming back to our first example, we use the SEDUITE

infrastructure deployed inside the FAROS French national

research project to validate the algorithm. We define orches-

trations using scalar variables and then compare the new or-

chestrations obtained using our algorithm with legacy codes

deployed on SEDUITE servers. In this paper, we focus on

the simplified InfoProvider described in section 2 for

a better understanding.

Generic usage: handling lectureGroup⋆. In this sec-

tion, we apply the algorithm to InfoProvider to han-

dle as input variable a set of groups lectureGroup⋆ in-

stead of a single one. This situation happens in the POLY-

TECH’SOPHIA system when new educational programs

were proposed inside the school. The public displays pro-

cess which broadcasts timetables must be adapted to broad-

cast the set of timetables information instead of a single one.

3http://rainbow.i3s.unice.fr/adore

To perform the action, we first load inside the

logical engine seduite (the orchestration conforming

ADORE meta–model) and enhance (the evolution al-

gorithm) source files. We apply the setEnhance

rule to informationProvider orchestration and

lectureGroup variable. The engine unifies ToDo with

a set of Adore actions, as shown in the following listing.

?- [seduite,enhance].

?- setEnhance(informationProvider,

lectureGroup,ToDo).

ToDo = [addActivity(l1,loop(

[l1_feeder,a20,a21,a4,l1_sweller]),[],

[]), delOrder(a1,a20), addOrder(a1,l1),

sigma(..., ...)|...]

The generic algorithm computes a loop l1 built around

three activities: schedule information retrieval (a20), filter-

ing (a21) and finally the concatenation of schedule informa-

tion with weather forecast information (a4). All activities

that do not interfere with lectureGroup dataflow stay intact

inside the resulting orchestration (ie {a30, a31, a321, a320}).

The interface activities (message reception a1 and response

sending a5) are not included inside the loop.

Loop “make-up”: eject & flatten. Without any

additional information, the algorithm will produce a carte-

sian product of each schedule {ftt1, . . . , fttn} with the

forecast information fcast. The result variable cross each

fttx with the forecast information, and return a list of tu-

ples {{fft1, fcast}, . . . , {fttn, fcast}}. In SEDUITE se-

mantic, this is not the expected behaviour: the administrator

wants to add all schedules into the information list instead

of producing a list of information tuples.

eject: To produce this kind of behaviour, the

administrator just has to eject the concatenation activ-

ity a4 of the loop. With this new information, the al-

gorithm stop the loop body around a20 and a21. With

this body, the sweller activity will naturally add the com-

puted list of schedule information into the results list:

{{ftt1, . . . , fttn}, fcast}.

flatten: To respect the external interface of the

InfoProvider orchestration, the administrator adds a

flatten assignment before the response sending a5.

With this new activity, the result list conforms to the

external interface and with the orchestration semantic:

{ftt1, . . . , fttn, fcast}

6. Related Work

Array programming [3] relies on efficient access and op-

eration on arrays data. This paradigm defines several op-

erators which work equally on arrays and on scalar data.



Applications are then defined as the composition of op-

erators. Current approaches try to introduce array pro-

gramming concepts inside others existing paradigms like

object–oriented languages for example [7]. Contrarily to

this method, we propose to introduce the set concept at the

model level to be able to reason on it, and then translate this

concept into existing concepts (loop) in the targeted tech-

nology.

The grid–computing research field deals with large–scale

data driven workflows. Grid workflows are data–intensive

so there is a need for grid users to handle data-set com-

position at a high level of abstraction. Data composition

operators were defined in [5] allowing composition through

iteration strategy (one to one, one to many). These operators

(⊗, ⊙) can be naturally composed. Such operator composi-

tion can help the loop introduction techniques when trying

to introduce an iteration around several variables instead of

a single one.

Mashups–driven application came from Web 2.0 move-

ment. Mashups allow “end–user programming of the Web”

[14], making web surfer able to compose data sources in

a friendly way. Mashups invade scientific field of research

like bioinformatic [1]. As mashups designers are not com-

puter sciences specialists by essence, automatic tools deal-

ing with iteration can ensure the correctness of builded

flows.

7. Conclusions & Perspectives

In this article, we address the problem of loops intro-

duction inside existing orchestrations from WSOA systems.

We motivate this work using as a running example a legacy

application called SEDUITE. This system is used as a vali-

dation platform by the FAROS French research project. We

propose to implement the loop introduction technique in-

side a formal meta–model called ADORE, as it is dedicated

to WSOA evolution. The technique is applied inside the ex-

isting SEDUITE platform deployed in an academic institu-

tion.

The algorithm presented here sketches the loop intro-

duction techniques inside ADORE. Currently, the algo-

rithm produces a BPEL orchestration that cannot be mod-

eled in ADORE and consequently cannot be reprocessed

in this framework (due to the loop activity that is not part

of ADORE’s metamodel). A perspective is to produce an

ADORE-compliant orchestration as output.

Grid computing workflows handle large datasets. Deal-

ing with a dataset at the design level is an error–prone and

time consuming process. Using techniques drifting from the

loop introduction presented here, a designer will be able to

design her flow reasoning on a single data and then enhance

the flow to automatically handle a dataset.

Acknowledgments

This project is partially funded by the French Research

Agency (ANR) through the FAROS project. The ADORE

framework is one of the platforms targeted by FAROS. The

SEDUITE software and its reference implementation is used

as a validation platform.

References

[1] F. Belleau, M.-A. A. Nolin, N. Tourigny, P. Rigault, and

J. Morissette. Bio2rdf: Towards a mashup to build bioin-

formatics knowledge systems. Journal of biomedical infor-

matics, March 2008.
[2] M. Fowler. Refactoring: improving the design of exist-

ing code. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.
[3] H. Hellerman. Experimental personalized array translator

system. Commun. ACM, 7(7):433–438, 1964.
[4] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and

R. Metz. Reference Model for Service Oriented Architecture

1.0. Technical Report wd-soa-rm-cd1, OASIS, Feb. 2006.
[5] J. Montagnat, T. Glatard, and D. Lingrand. Data composi-

tion patterns in service-based workflows. In Workshop on

Workflows in Support of Large-Scale Science (WORKS’06),

Paris, France, June 2006.
[6] S. Mosser, M. Blay-Fornarino, and M. Riveill. Web Services

Orchestration Evolution : A Merge Process For Behavioral

Evolution. In 2nd European Conference on Software Ar-

chitecture (ECSA’08), Paphos, Cyprus, Sept. 2008. Springer

LNCS.
[7] P. Mougin and S. Ducasse. Oopal: integrating array pro-

gramming in object-oriented programming. In OOPSLA

’03: Proceedings of the 18th annual ACM SIGPLAN con-

ference on Object-oriented programing, systems, languages,

and applications, pages 65–77, New York, NY, USA, 2003.

ACM Press.
[8] C. Nemo, T. Glatard, M. Blay-Fornarino, and J. Montag-

nat. Merging overlapping orchestrations: an application to

the Bronze Standard medical application. In International

Conference on Services Computing (SCC 2007) AR = 20%,

pages 364–371, Salt Lake City, Utah, USA, July 2007. IEEE

Computer Engineering.
[9] OASIS. Web services business process execution language

version 2.0. Technical report, OASIS, 2007.
[10] M. P. Papazoglou and W. J. V. D. Heuvel. Service oriented

design and development methodology. Int. J. Web Eng. Tech-

nol., 2(4):412–442, 2006.
[11] C. Peltz. Web services orchestration and choreography.

Computer, 36(10):46–52, 2003.
[12] M. E. Stickel. A unification algorithm for associative-

commutative functions. J. ACM, 28(3):423–434, 1981.
[13] W3C. Web service glossary. Technical report, 2004.
[14] J. Wong and J. I. Hong. Making mashups with marmite:

towards end-user programming for the web. In CHI ’07:

Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 1435–1444, New York, NY, USA,

2007. ACM Press.


