
HAL Id: hal-00530816
https://hal.science/hal-00530816

Submitted on 29 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A second order model for 3D-texture extraction
Maïtine Bergounioux, Minh Phuong Tran

To cite this version:
Maïtine Bergounioux, Minh Phuong Tran. A second order model for 3D-texture extraction.
Bergounioux. Mathematical Image Processing, Springer, pp.41-57, 2011, Springer Proceedings in
Mathematics, Vol. 5. �hal-00530816�

https://hal.science/hal-00530816
https://hal.archives-ouvertes.fr

A second order model for 3D-texture
extraction

Mäıtine Bergounioux and Minh Phuong Tran

Abstract In this paper we present the 3D-implementation of a second-order
model for texture extraction that has been fully described in [3]. Numerical
experimentation has been performed for 2D-images. We generalize the dis-
crete model to the 3D case. In particular we describe the whole discretization
process. In addition, we add an algorithmic modification that improves tex-
ture extraction using a modified Hessian matrix. We end with numerical
examples arising in biomedical imaging

1 Introduction

In this paper we present the 3D- implementation of a second-order model for
texture extraction that has been fully described in [3]. Numerical experimen-
tation was performed for 2D-images. We generalize the discrete model to the
3D case. In particular we describe the complete discretization scheme. In ad-
dition, we add an algorithmic modification that improves texture extraction
significantly using a modified Hessian matrix. This is also a generalization
of the 2D-case (see Piffet [10, 11]). First, we recall the main definitions and
present the generic second order variational model. Section 2 is devoted to
the 3D-discretization and implementation. Then we present an “anisotropic”
improvement of the algorithm which takes into account the (local) contours
to compute the second-order derivative. We end with numerical examples
arising in biomedical imaging, namely angiography MRI images.

Université d’Orléans, Laboratoire MAPMO - UMR 6628, Fédération Denis-Poisson, BP
6759, F-45067 Orléans Cedex 2, France e-mail: maitine.bergounioux@univ-orleans.fr

1

2 Mäıtine Bergounioux and Minh Phuong Tran

1.1 Bounded Variation Spaces of first and second
order

Let Ω ⊂ R
n (n ≥ 2) be an open bounded set. The space of functions of

bounded variation, BV (Ω) is well known. We refer to [1, 2, 3] for example.
We denote by TV (u) the total variation of u ∈ BV (Ω) :

TV (u) = sup

{∫

Ω

u divϕdx : ϕ ∈ C1
0(Ω), ‖ϕ‖∞ ≤ 1

}

(1)

Following Demengel [7] and Piffet [10] we may define the space of functions
of bounded second-order variation (or hessian bounded) as

BV 2(Ω) := {u ∈ W 1,1(Ω) | TV 2(u) < +∞ } .

Here the second-order total variation is defined as

TV 2(u) := sup

{∫

Ω

〈∇u, div(ϕ)〉
Rn |ϕ ∈ C2

c (Ω,Rn×n), ‖ϕ‖∞ ≤ 1

}

(2)

where
div(ϕ) = (div(ϕ1), div(ϕ2), · · · , div(ϕn)),

with

∀i, ϕi = (ϕ1
i , ϕ

2
i , . . . , ϕ

n
i) ∈ R

n and div(ϕi) =

n
∑

k=1

∂ϕk
i

∂xk

.

The space BV 2(Ω) endowed with the norm

‖u‖BV 2(Ω) = ‖u‖W 1,1(Ω) + TV 2(Ω)

is a Banach space. Moreover, it has been proved in [10] that

BV 2(Ω) =

{

u ∈ W 1,1(Ω) | ∀i ∈ {1, 2, · · · , n} :
∂u

∂xi

∈ BV (Ω)

}

.

1.2 The abstract second-order model

We recall the variational model described in [3]. We refer to this paper for
a precise motivation of this second-order model. Let Ω ⊂ R

n be an open
bounded set (smooth enough, for example with Lipschitz boundary). We
consider the following functional:

F : BV 2(Ω) → R
+

(v) 7→ F (v)

Second order model 3

F (v) =
1

2
‖ud − v‖

2
L2(Ω) + λTV 2(v) + δ ‖v‖W 1,1(Ω)

where ud ∈ L2(Ω) and λ, δ ≥ 0 and we are looking for a solution to the
optimization problem:

inf
v∈BV 2(Ω)

F (v) (3)

It has been proved in [3] that problem (3) has a unique solution for λ > 0
and δ > 0. However, this result is still true for the discretized problem even
with δ = 0. Moreover, in [4] we prove that the existence result still holds true

for the infinite dimensional problem if the function v satisfies
∂v

∂n |∂Ω
= 0 and

Ω =

n
∏

i=1

]ai, bi[is a square subset of Rn. In what follows, we investigate the

finite-dimensional problem, so we assume that δ = 0.

1.3 Discretization of the 3D - problem

In [3] the problem has been discretized in the case of 2D images and numerical
tests have been performed. Here we generalize this work to the 3D-case and
extend the anisotropic correction of the algorithm of [11] . In the sequel,
n = 3 and the image size is N1 × N2 × N3 . The generic component of u is
ui,j,k and we denote similarly the continuous function (previous section) and
the corresponding (discretized) tensor.
We denote X = R

N1×N2×N3 endowed with inner product and norm

〈u, v〉X =
∑

1≤i≤N1

1≤j≤N2

1≤k≤N3

ui,j,kvi,j,k and ‖u‖X =

√

√

√

√

√

∑

1≤i≤N1

1≤j≤N2

1≤k≤N3

u2
i,j,k

and set Y = X ×X ×X .

(a) We first compute the discrete gradient ∇u ∈ Y of the image u ∈ X :

(∇ui,j,k) = (∇u1
i,j,k,∇u2

i,j,k,∇u3
i,j,k)

where

∇u1
i,j,k =

{

ui+1,j,k − ui,j,k i < N1

0 i = N1

∇u2
i,j,k =

{

ui,j+1,k − ui,j,k j < N2

0 j = N2

∇u3
i,j,k =

{

ui,j,k+1 − ui,j,k k < N3

0 k = N3

4 Mäıtine Bergounioux and Minh Phuong Tran

(b) Discretization of the term TV 2(v).
We have

〈∇u, divφ〉 = −
〈

φ,∇2u
〉

.

Then,

TV 2(v) ≃
∑

1≤i≤N1

1≤j≤N2

1≤k≤N3

‖(Hv)i,j,k‖R9

where

(Hv)i,j,k =(Hv11i,j,k, Hv12i,j,k, Hv13i,j,k, Hv21,i,j,k

Hv22i,j,k, Hv23i,j,k, Hv31i,j,k, Hv32i,j,k, Hv33i,j,k).

For every i = 1, ..., N1, j = 1, ..., N2 and k = 1, ..., N3, the computation of
Hv gives

(Hv)11i,j,k =







vi+1,j,k − vi,j,k + vi−1,j,k 1 < i < N1

vi+1,j,k − vi,j,k i = 1
vi,j,k − vi−1,j,k i = N1

(Hv)12i,j,k =















vi,j+1,k − vi,j,k − vi−1,j+1,k + vi−1,j,k 1 < i ≤ N1

1 ≤ j < N2

0 j = N2

0 i = 1

(Hv)13i,j,k =















vi,j,k+1 − vi,j,k − vi−1,j,k+1 + vi−1,j,k 1 < i ≤ N1

1 ≤ k < N3

0 i = 1
0 k = N3

(Hv)21i,j,k =















vi+1,j,k − vi,j,k − vi+1,j−1,k + vi,j−1,k 1 ≤ i < N1

1 < k ≤ N3

0 i = N1

0 k = 1

(Hv)22i,j,k =







vi,j+1,k − vi,j,k + vi,j−1,k 1 < j < N2

vi,j+1,k − vi,j,k j = 1
vi,j,k − vi,j−1,k j = N2

(Hv)23i,j,k =















vi,j,k+1 − vi,j,k − vi,j−1,k+1 + vi,j−1,k 1 < j ≤ N
1 ≤ k < N3

0 j = 1
0 k = N3

Second order model 5

(Hv)31i,j,k =















vi+1,j,k − vi,j,k − vi+1,j,k−1 + vi,j,k−1 1 < k ≤ N3

1 ≤ i < N1

0 k = 1
0 i = N1

(Hv)32i,j,k =















vi,j+1,k − vi,j,k − vi+,j+1,k−1 + vi,j,k−1 1 ≤ j < N
1 < k ≤ N3

0 j = N2

0 k = 1

(Hv)33i,j,k =







vi,j,k+1 − vi,j,k + vi,j,k−1 1 < k < N3

vi,j,k+1 − vi,j,k k = 1
vi,j,k − vi,j,k−1 k = N3

1.4 Numerical computation of the solution of (3)

Let us considerH∗ : X9 → X defined as follows (H∗ is the adjoint of operator
H): for every p = (p11, p12, p13, p21, p22, p23, p31, p32, p33) ∈ X9,

(H∗p)i,j,k = σ11
i,j,k + σ12

i,j,k + σ13
i,j,k + σ21

i,j,k + σ22
i,j,k

+ σ23
i,j,k + σ31

i,j,k + σ32
i,j,k + σ33

i,j,k

where

σ11
i,j,k =















p11i+1,j,k − 2p11i,j,k + p11i−1,j,k 1 < i < N1

p11i+1,j,k − p11i,j,k i = 1

p11i−1,j,k − p11i,j,k i = N1

σ22
i,j,k =















p22i,j+1,k − 2p22i,j,k + p22i,j−1,k 1 < j < N2

p22i,j+1,k − p22i,j,k j = 1

p22i,j−1,k − p22i,j,k j = N2

σ33
i,j,k =















p33i,j,k+1 − 2p33i,j,k + p33i,j,k−1 1 < k < N3

p33i,j,k+1 − p33i,j,k k = 1

p33i,j,k−1 − p33i,j,k k = N3

6 Mäıtine Bergounioux and Minh Phuong Tran

σ12
i,j,k =



















































































p12i+1,j,k i = 1, j = 1

−p12i+1,j−1,k i = 1, j = N2

p12i+1,j,k − p12i+1,j−1,k i = 1, 1 < j < N2

−p12i,j,k i = N1, j = 1

p12i,j−1,k i = N1, j = N2

p12i,j−1,k − p12i,j,k i = N1, 1 < j < N2

p12i+1,j,k − p12i,j,k 1 < i < N1, j = 1

p12i,j−1,k − p12i+1,j−1,k 1 < i < N1, j = N2

p12i,j−1,k − p12i,j,k − p12i+1,j−1,k + p12i+1,j,k 1 < i < N1, 1 < j < N2

σ13
i,j,k =



















































































p13i+1,j,k i = 1, k = 1

−p13i+1,j,k−1 i = 1, k = N3

p13i+1,j,k − p13i+1,j,k−1 i = 1, 1 < j < N3

−p13i,j,k i = N1, k = 1

p13i,j,k−1 i = N1, k = N3

p13i,j,k−1 − p13i,j,k i = N1, 1 < k < N3

p13i+1,j,k − p13i,j,k 1 < i < N1, k = 1

p13i,j,k−1 − p13i+1,j,k−1 1 < i < N1, k = N3

p13i,j,k−1 − p13i,j,k − p13i+1,j,k−1 + p13i+1,j,k 1 < i < N1, 1 < k < N3

σ21
i,j,k =



















































































p21i,j+1,k j = 1, i = 1

−p21i−1,j+1,k j = 1, i = N1

p21i,j+1,k − p21i−1,j+1,k j = 1, 1 < i < N1

−p21i,j,k j = N2, i = 1

p21i−1,j,k j = N2, i = N1

p21i−1,j,k − p21i,j,k j = N2, 1 < i < N1

p21i,j+1,k − p21i,j,k 1 < j < N2, i = 1

p21i−1,j,k − p21i−1,j+1,k 1 < j < N2, i = N1

p21i−1,j,k − p21i,j,k − p21i−1,j+1,k + p21i,j+1,k 1 < j < N2, 1 < i < N1

Second order model 7

σ23
i,j,k =



















































































p23i,j+1,k j = 1, k = 1

−p23i,j+1,k−1 j = 1, k = N3

p23i,j+1,k − p23i,j+1,k−1 j = 1, 1 < k < N3

−p23i,j,k j = N2, k = 1

p23i,j,k−1 j = N2, k = N3

p23i,j,k−1 − p23i,j,k j = N2, 1 < k < N3

p23i,j+1,k − p23i,j,k 1 < j < N2, k = 1

p23i,j,k−1 − p23i,j+1,k−1 1 < j < N2, k = N3

p23i,j,k−1 − p23i,j,k − p23i,j+1,k−1 + p23i,j+1,k 1 < j < N2, 1 < k < N3

σ31
i,j,k =



















































































p31i,j,k+1 k = 1, i = 1

−p31i−1,j,k+1 k = 1, i = N1

p31i,j,k+1 − p31i−1,j,k+1 k = 1, 1 < i < N1

−p31i,j,k k = N3, i = 1

p31i−1,j,k k = N3, i = N1

p31i−1,j,k − p31i,j,k k = N3, 1 < i < N1

p31i,j,k+1 − p31i,j,k 1 < k < N3, i = 1

p31i−1,j,k − p31i−1,j,k+1 1 < k < N3, i = N1

p31i−1,j,k − p31i,j,k − p31i−1,j,k+1 + p31i,j,k+1 1 < k < N3, 1 < i < N1

σ32
i,j,k =



















































































p32i,j,k+1 k = 1, 1 = 1

−p32i,j−1,k+1 k = 1, j = N2

p32i,j,k+1 − p32i,j−1,k+1 k = 1, 1 < j < N2

−p32i,j,k k = N3, j = 1

p32i,j−1,k k = N3, j = N2

p32i,j−1,k − p32i,j,k k = N3, 1 < j < N2

p32i,j,k+1 − p32i,j,k 1 < k < N3, j = 1

p32i,j−1,k − p32i,j−1,k+1 1 < k < N3, j = N2

p32i,j−1,k − p32i,j,k − p32i,j−1,k+1 + p32i,j,k+1 1 < k < N3, 1 < j < N2

It is straightforward to prove that

8 Mäıtine Bergounioux and Minh Phuong Tran

Theorem 1. The solution to problem (3) verifies:

v = ud− PλK(ud)

where PλK is the orthogonal projector operator on λK and

K := {H∗p | p ∈ X9, ‖pi,j,k‖R9 ≤ 1, 1 ≤ i ≤ N1, 1 ≤ j ≤ N, 1 ≤ k ≤ N3}.

Proof. It is quite similar to the 2D-case proof. We refer to [3].

To compute PλK(ud) we have to solve the following problem:















min ‖λH∗p− ud‖
2
X

p ∈ X9

‖pi,j,k‖
2
R9 ≤ 1, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

Following [6] and [3] we use the following algorithm to compute PλK(ud)

Algorithm

Choose τ > 0

1. Let p0 = 0, n = 0.
2. Suppose pn is known, we compute pn+1 as follows:

pni,j,k = pn+1
i,j,k + τ

[

(H
[

H∗p−
ud

λ

]

)i,j,k +
∥

∥

∥(H
[

H∗pn −
ud

λ

]

)i,j,k

∥

∥

∥

R9

pn+1
i,j,k

]

which implies:

pn+1
i,j,k =

pni,j,k − τ(H
[

H∗pn −
ud

λ

]

)i,j,k

1 + τ
∥

∥

∥(H
[

H∗pn −
ud

λ

]

)i,j,k

∥

∥

∥

R9

Theorem 2. Let τ ≤ 1/83, then λ(H∗pn)n converges to PλK2
(ud) as n → ∞.

Proof. Once again the proof is quite technical but similar to the 2D-case
proof ([3]).

2 Introducing anisotropy

L. Piffet [10, 8, 11] has observed (in the 2D-case) that cancelling one or more
coefficients of the Hessian matrix permits to get rid of the contours along the
corresponding direction.

Second order model 9

(a) Original image (Barbara)

(b) Texture part without anisotropic strat-
egy

(c) Texture part without horizontal and
vertical contours

Fig. 1 Effects of anisotropic improvement strategy

We give a 2D-example in Figure 1 : here the coefficients (Hv)1,1 and
(Hv)2,2 = 0 have been globally set to 0. We can see that horizontal and
vertical contours are not involved in the texture part any longer. This method
has been improved since there were two major inconveniences :

- First, the same transform is performed at every pixel, so that the image
is globally treated. All the vertical and horizontal are removed;

- Second, the transform is depended on the chosen (fixed) cartesian axis
and it is not possible to remove contours that are not horizontal, vertical
or diagonal.

10 Mäıtine Bergounioux and Minh Phuong Tran

Therefore, the Hessian matrix is now locally computed at every pixel. First ,
a rotation is performed so that the gradient direction is the new y-axis (or x-
axis). The corresponding Hessian matrix is computed and suitable coefficients
are canceled. Then the inverse rotation is performed. For more details on can
refer to [10, 11].

We compute the (local) 3D- Hessian matrix at a voxel (i, j, k) using this
technique. We have to perform two rotations rα and rβ to compute an modi-
fied hessian matrixH ′. More precisely, we perform a change of variables (with
the rotations) to compute the Hessian matrix and the adjoint matrix as in the
previous section: the local axis (with the gradient vector as z-axis) are con-
sidered instead of the original fixed cartesian axis. Then, we may cancel the
Hessian matrix terms corresponding to the gradient direction (for example),
to get rid of the corresponding contour (if it is significant) in the extracted
texture. Finally we go back to the original axis with the inverse rotations.
Let us detail the process :

Fig. 2 Definition of local axis and angles α and β

The angles α and β are defined at point Xo = (xo, yo, zo) as follows : α is
the (azimuthal) angle between the gradient ∇u(xo, yo, zo) and the z-axis . β
is the angle between the orthogonal projection of

∇u(xo, yo, zo) :=





ux

uy

uz



 (xo, yo, zo)

(on the xOy plane) and the x -axis. Note that we can perform this transfor-
mation with axis Ox or Oy instead of Oz . Let us define the two rotations :

Second order model 11

rα and rβ which matrices are :

Rα =





1 0 0
0 cosα − sinα
0 sinα cosα



 and Rβ =





cosβ − sinβ 0
sinβ cosβ 0
0 0 1



 ,

with

α = atan





uz
√

u2
x + u2

y



 (Xo), β = atan

(

uy

ux

)

(Xo) .

The change of variables from the fixed basis to the local one is given par

X̃ = RβRαX, with X = (x, y, z) ∈ R
3 .

Moreover
X = (RβRα)

−1X̃ = R−1
α R−1

β X̃ = R−αR−βX̃ .

In the sequel, we set ũ(X̃) := u(X) and Rα,β

def
:= R−αR−β and we compute

the first and second order derivative of ũ :

∇ũ =

















∂ũ

∂x̃
∂ũ

∂ỹ
∂ũ

∂z̃

















and H̃ :=



















∂2ũ

∂x̃2

∂2ũ

∂x̃∂ỹ

∂2ũ

∂x̃∂z̃

∂2ũ

∂x̃∂ỹ

∂2ũ

∂ỹ2
∂2ũ

∂ỹ∂z̃

∂2ũ

∂x̃∂z̃

∂2ũ

∂ỹ∂z̃

∂2ũ

∂z̃2



















.

A short computation gives

∂ũ

∂x̃
=

∂u

∂x

∂x̃

∂x
+

∂u

∂y

∂ỹ

∂x
+

∂u

∂z

∂z̃

∂x
= ∇u ·

∂X̃

∂x
= ∇u ·R(:, 1) ,

where · denotes the R
3 scalar product and R(:, 1) is the first column of R.

Finally, we get
∇ũ = Rα,β∇u . (4)

Now we compute H̃ ; we set ṽ =
∂ũ

∂x̃
and estimate ∇ṽ as above : this will be

the first column of H̃.

∇ṽ = Rα,β∇v = Rα,β

















∂2u

∂x2

∂2u

∂y∂x

∂2u

∂z∂x

















.

12 Mäıtine Bergounioux and Minh Phuong Tran

Finally
H̃ = Rα,βH . (5)

As already mentioned, the idea is to cancel some terms of the Hessian ma-
trix to get rid of (or to keep) the contours. However, without performing the
rotations, there would be only few possible directions, for example vertical,
horizontal and diagonal in the 2D-case so that many contours are not con-
sidered. Performing the change of variables allows to identify the gradient
direction (that is the contour direction if the gradient is large enough) with
the z-axis and then cancel corresponding terms of the matrix H̃ . Of course,
we have to get back to the original situation. Let us denote by L the (linear)
transformation that assigns 0 to some coefficients of H̃ (this is a projection).
The whole process is described by

H → H̃ = R−αR−βH → L(H̃) := H̃ ′ → [Rα,β]
−1L(H̃) = RβRαL(H̃) ,

that is
H → [RβRαLR−αR−β]H . (6)

So, algorithm p.8 is modified as follows
Algorithm

Choose τ > 0, µ > 0 and compute∇u. Use a threshold process to identify the
contours (‖∇u‖ ≥ µ) . Set Iµ the set of voxels corresponding to these“significant
contours”.

1. Let p0 = 0, n = 0.
For voxels in Iµ, modify H with the following rule

H → H̃ = R−αR−βH → L(H̃) = [LR−αR−β]H := H ′

and compute (H ′)∗

2. Same as before p.8 with H ′ instead of H .

3 Numerical examples

Numerical experimentation has been done in the context of biomedical imag-
ing. We consider a stack of 50 MRI images of the vessel network of brain
mice.1 The challenge is to identify the network to get structural informations.
Using 2D segmentation and interpolation methods is not possible, since the
slices are not exploitable (see Figure 3.)

1 We thank J.C. Belœil, S. Même and F. Szeremeta, from CBM Laboratory in Orléans,
for the use of these images, http://cbm.cnrs-orleans.fr/.

Second order model 13

Fig. 3 2D slices example (slices 10 an 25)

Therefore we have to deal with the complete 3D information. We consider
that noise and very small vessels effect is texture. Extracting texture gives
the remainder part, the so-called “cartoon” (smooth part). We expect that
the contours are kept in the cartoon part which in the cleaned image in some
sense. Then classical segmentation methods (as threshold for example) can
be used. The following results have been obtained without any anisotropic
strategy. Indeed, computational time is large and we still have to improve
the speed of algorithm. However, we present a comparison between the two
methods with and without anisotropy strategy. The results show that the
anisotropy technique is quite efficient and we have good hope to keep the
whole contour information contour in the cartoon part.

We have tested many values for λ and the maximum number of iterations.
We present some results to show the influence of λ (images have been con-
trasted). We shall speed up the method in the future using (for example)
Nesterov algorithms as in [12] .

(a) Original Image (b) Image with treshold at grey value = 210

Fig. 4 3D angiography image

14 Mäıtine Bergounioux and Minh Phuong Tran

(a) Cartoon (b) Texture

Fig. 5 No anistropy strategy : λ = 1 and 5 000 iterations - The choice of small λ allows
to denoise the image quite efficiently : here the texture is the noise and the cartoon the
denoised image

(a) Cartoon (b) Texture

Fig. 6 No anistropy strategy :λ = 10 and 5 000 iterations

(a) Cartoon (b) Texture

Fig. 7 No anistropy strategy : λ = 50 and 10 000 iterations -The contours and the vessel
network are recovered in the texture.

Second order model 15

We have tested the algorithm with and without anisotropy strategy. We
give below results for λ = 10 and 5000 iterations. As th 3D cartoon and
texture pictures are not easy to compare we give pictures of the difference as
well.

(a) Cartoon without anisotropy strategy (b) Texture without anisotropy strategy :
contours are involved in the texture

(c) Cartoon with anisotropy strategy (d) Texture with anisotropy strategy : con-
tours are not involved in the texture any
longer

Fig. 8 Comparison between the two strategies for λ = 10 and 5 000 iterations

16 Mäıtine Bergounioux and Minh Phuong Tran

(a) Difference betwwen cartoons (b) Difference betwwen textures

Fig. 9 Absolute value of the difference for λ = 10 and 5 000 iterations : it is precisely the
vessel-network which is alternatively included in the cartoon (when no anisotropy strategy
is performed) or in the texture in the other case

References

1. Ambrosio L., Fusco N. , Pallara D. (2000) Functions of bounded variation and free
discontinuity problems, Oxford mathematical monographs, Oxford University Press

2. Attouch H., Buttazzo G., Michaille G. (2006) Variational analysis in Sobolev and BV
spaces : applications to PDEs and optimization, MPS-SIAM series on optimization

3. Bergounioux M., Piffet L. (2011) A second-order model for image denoising , Set-Valued
Analysis and Variational Analysis, to appear, DOI : 10.1007/s11228-010-0156-6
http://hal.archives-ouvertes.fr/hal-00440872/fr/

4. Bergounioux M. (2010) On Poincaré-Wirtinger inequalities in spaces of functions of
bounded variation,
http://hal.archives-ouvertes.fr/hal-00515451/fr/

5. Bredies K., Kunisch K. , Pock T. (2009) Total Generalized Variation, preprint
6. Chambolle, A. (2004) An algorithm for total variation minimization and applications.

Journal of Mathematical Imaging and Vision, 20, 89–97
7. Demengel F. (1984) Fonctions à hessien borné, Annales de l’institut Fourier, 34, no 2,

155–190
8. Echegut, R., Piffet, L. (2010) A variational model for image texture identification, Re-

cent Advances in Optimization and its Applications in Engineering, Diehl, M.; Glineur,
F.; Jarlebring, E.; Michiels, W. (Eds.), Springer

9. L.C. Evans, R. Gariepy, Measure theory and fine properties of functions, CRC Press,
1992

10. L. Piffet, Modèles variationnels du second ordre pour l’extraction de textures 2D,
PhD Thesis, Orléans, 2010

11. L. Piffet, XXX, this book, 2011.
12. Weiss P., Blanc-Fraud L., Aubert, G. (2009) Efficient schemes for total variation mini-

mization under constraints in image processing. SIAM journal on Scientific Computing,
31, no 3, 2047–2080.

