Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Abstract : We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows. Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes. Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is ${\rm inf}$-${\rm sup}$ stable; in addition, we prove that a stabilization involving pressure jumps only across the internal edges of the clusters yields a stable scheme with the usual collocated discretization (i.e., in particular, with control-volume-wide constant pressures), for the Stokes and the Navier-Stokes problems. An analysis of this stabilized scheme yields the existence of the discrete solution (and uniqueness for the Stokes problem). The convergence of the approximate solution toward the solution to the continuous problem as the mesh size tends to zero is proven, provided, in particular, that the approximation of the mass balance flux is second-order accurate; this condition imposes some geometrical conditions on the mesh. Under the same assumption, an error analysis is provided for the Stokes problem: it yields first-order estimates in energy norms. Numerical experiments confirm the theory and show, in addition, a second-order convergence for the velocity in a discrete $L^2$ norm.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (5), pp.889-927. 〈10.1051/m2an/2009031〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00530814
Contributeur : Raphaele Herbin <>
Soumis le : vendredi 29 octobre 2010 - 22:27:03
Dernière modification le : jeudi 18 janvier 2018 - 01:21:24
Document(s) archivé(s) le : dimanche 30 janvier 2011 - 03:10:21

Fichier

cluster.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Robert Eymard, Raphaele Herbin, Jean-Claude Latché, Bruno Piar. Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2009, 43 (5), pp.889-927. 〈10.1051/m2an/2009031〉. 〈hal-00530814〉

Partager

Métriques

Consultations de la notice

511

Téléchargements de fichiers

96