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Abstract

In this paper we present a stochastic semantics for Bigraphical Reactive Systems. A reduction and a
labelled stochastic semantics for bigraphs are defined. As a sanity check, we prove that the two semantics
are consistent with each other. We illustrate the expressiveness of the framework with an example of
membrane budding in a biological system.

1 Introduction

Bigraphical reactive systems (BRSs) [13,20] are conceived as a unifying framework

for designing models of concurrent and mobile systems. These reactive systems are

construed as a set of rewriting rules together with an initial bigraph on which the

rules operate. Bigraphs are algebraic terms that may be represented as a particular

kind of graphs allowing the representation of communication among agents as well as

their spatial configuration (nodes may be nested within each other). This particular

structure of bigraphs allows one to embed a wide class of calculi which focus on

communications, such as CCS or the π-calculus [19], or on localities such as mobile

ambients [5]. Although expressive power of BRSs is rather clear, they still lack

means of “playing” with bigraphs dynamics in a quantitative way.
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BRSs may be used to define independent dynamical systems that can be directly

studied and simulated using an appropriate theory. The achievement of the paper

is twofold. First, we obtain a uniform stochastic interpretation of behaviour in bi-

graphs that can be specialised to the entire range of BRSs. Second, using a simple

but non trivial example of a biological system that requires dynamic compartmen-

talisation, we show that bigraphs are a good candidate for a formal algebraic and

graphical representation of complex bio-molecular reactions.

Defining stochastic BRSs requires a correct enumeration of all the possible and

distinct ways to apply each rule. Although enumerating such occurrences presents

no difficulty in a more rigid calculus such as the π-calculus, a single redex may have

several, though isomorphic, algebraic matches within a bigraph. In this paper, we

shall develop mainly on that enumeration issue and assume some familiarity with

traditional stochastic interpretation of algebraic processes [12,10,21] using Gille-

spie’s method [11].

The present approach is an extension of the work on stochastic κ-calculus [8,7,6]

in which great care was taken to define a stochastic semantics based on enumera-

tion of rule instances. Here, we show that this approach can be generalized to a

more powerful language where rules may have parameters, which entails that their

occurrences in a given bigraph vary according to the choice of the outer and inner

contexts. Indeed, in arbitrary bigraphs, choosing the outer context in which a rule

left-hand side is to be placed does not guarantee the unicity of the inner context.

We characterize a large fragment of bigraphs called solid where this property is

always satisfied. We argue that this should turn out to be an important property

from an efficient implementation perspective.

It is not the aim of the present paper to introduce a fully structured language

for modelling biology nor to compare formally the present approach with existing

algebraic formalisations of molecular compartments [4,23,10,18,2].

2 Bigraphical framework

In this section we define bigraphs informally, with enough detail to support both

the biological example and the calculation of rates to be presented later.

Signature and interface

Bigraphs are the arrows in a category in which the objects are (inter)faces. We

shall explain them by examples. First, each node of a bigraph is assigned a control,

which determines how many ports it has. These controls are given by a signature,

such as K = {A : 2,B : 1,C : 0}.

Nodes may be nested arbitrarily, and their ports may be linked independently

of the nesting.

Each bigraph has an inner face and an outer face; these interfaces take the form

I = 〈m,X〉 where m is a finite ordinal called a width, and X is a finite set of names

such as x, y, . . .. We write an interface 〈m, ∅〉 as m, and the trivial interface 〈0, ∅〉 as

ε. A bigraph G : 〈m,X〉→〈n, Y 〉 has m sites and n regions; it also has inner names

X and outer names Y . The identity arrow at interface I is written idI : I → I. A

bigraph with inner face ε is called ground.
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Composition

Here are two ground bigraphs, each with two regions, conforming to the above

signature:

C

A

B

B

A

G : ε→〈2, ∅〉

y

A
A

B

x

F : ε→〈2, {xy}〉

A

F has three links; one closed, and the other two open—i.e. named by an outer name.

Dashed rectangles represent regions. All the links of G are closed. Informally you

may see that F occurs in G. This is confirmed by the following non-ground bigraph,

which has two sites represented by shaded rectangles:

B

x y

A

CH : 〈2, {xy}〉→〈2, ∅〉

The outer face of F equals the inner face of H, so that we can form the categorical

composition H ◦F : ε→〈2, ∅〉. In general, to form a composition F ′ ◦F we place the

regions of F in the corresponding sites of F ′, then delete those rectangles; we also

join each open link of F , named x say, to the link in F ′ that contains the inner name

x, then delete those names. These two operations are completely independent. If

you form H ◦F in this way, you find that G = H ◦F . Henceforth we shall omit the

composition symbol, writing HF instead of H ◦ F .

Product

Two interfaces I = 〈m,X〉 and J = 〈n, Y 〉 are disjoint if X ∩ Y = ∅; then they

have a tensor product I ⊗ J
def

= 〈m + n,X ] Y 〉. If the pairs (I0, I1) and (J0, J1) are

disjoint, then the pair Gi : Ii→Ji has a tensor product

G0 ⊗G1 : I0 ⊗ I1→J0 ⊗ J1

in which G0 and G1 are placed side-by-side, in that order. Note that the tensor

product is partial, unlike in a standard monoidal category, since it requires the

name-sets X and Y to be disjoint. This is because names are drawn from a single

global alphabet, thus allowing for a much easier derivation of other operations,

including the parallel and prime products (which are central to process calculi),

while making little difference to the mathematical treatment.

Other forms of product can be derived, in which the outer faces J0 = 〈m,X〉 and

J1 = 〈n, Y 〉 need not be disjoint; their parallel product is J0 ‖ J1
def

= 〈m + n,X ∪ Y 〉

and their prime product is J0 | J1
def

= 〈1, X ∪ Y 〉. This yields the parallel and prime

products

G0 ‖ G1 : I0 ⊗ I1→J0 ‖ J1 and

G0 | G1 : I0 ⊗ I1→J0 | J1 .
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In both cases the two bigraphs may be linked via shared outer names. In the second

case their regions are also merged into one. Prime product is essentially the ‘parallel

composition’ of the π-calculus. All these products are useful and have nice algebraic

properties.

Linking

An interface 〈0, X〉 with zero width will be written as X. Also, in interfaces, a set

X = {x, y, . . .} will be written xy . . .. A linking 2 λ :X→Y is a node-free bigraph

whose faces have zero width. All linkings are generated by composition and tensor

product from elementary substitutions y/x1 · · · xn and closures /x:

x

y

. . .
x1 . . . . . . xn

elementary linkings:

y/x1 · · ·xn : x1 · · ·xn→y /x : x→ε

The substitution y/y is just the identity idy.

To illustrate parallel product and closure, we may factorise our previously de-

fined F as F = (idI ⊗ /z)(F0 ‖ F1) where I = 〈2, xy〉:

y

A

A

B

x

F : ε→〈2, xy〉 F0 : ε→〈1, xz〉

y

A

B

z

F1 : ε→〈1, zy〉

x z

A

This concludes our brief survey of the structure of bigraphs. For any signature

K, they form essentially a strict symmetric monoidal category, which we shall call

here an ssm category.

We now move on to dynamics. We need a little terminology. Note that the sites,

nodes and regions in a bigraph form a forest—i.e. an ordered set of trees whose roots

are the regions. Thus ‘root’ and ‘region’ are synonyms.

Terminology

Every site or node in a bigraph has a parent which is either a node or a root. A

root is idle if it has no children; an outer name is idle if its link has no ports or

inner names. A site is guarding if its parent is a node. The siblings of a site or node

are those with the same parent; the siblings of an inner name or port are those in

the same link. A bigraph is discrete if every link is open and contains exactly one

port or one inner name.

From now on we shall use lower case letters a, . . . , g, . . . for ground bigraphs, and

upper case letters A, . . . , G, . . . for arbitrary bigraphs. But we reserve I, J,K for

interfaces. We shall call ground bigraphs agents, since we ascribe dynamic behaviour

to them.

2 There is an analogous definition of a placing, a node-free bigraph whose faces have no names; we need
not to detail it here.
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Definition 2.1 [solid bigraph] A bigraph is solid if these conditions hold:

(a) no roots or outer names are idle;

(b) no two sites or inner names are siblings;

(c) every site is guarding;

(d) no outer name is linked to an inner name. 2

Definition 2.2 [reaction rule] 3 A (linear, parametric) reaction rule is a pair

R = (R :m→J, R′ :m→J)

where R is the parametric redex and R′ the parametric reactum, and R is solid.

The rule generates all ground reaction rules (r, r ′), where r = (idY ⊗ R)d and

r′ = (idY ⊗ R′)d for some discrete ground parameter d : ε→〈m,Y 〉. The reaction

relation .R over ground bigraphs is defined by

g .R g′ iff g = Dr and g′ = Dr′

for some bigraph D and some ground reaction rule (r, r ′) generated by R. 2

Four examples of reaction rules are shown in Figure 2. Parameters are shown as

shaded rectangles. The fourth rule has m = 1 and J = 〈2, {x}〉.

The constraint that d is discrete does not affect the reaction relation (since if d

is non-discrete it can be replaced by a discrete parameter by adjusting the context

D). This constraint simplifies the analysis in the computation of rates.

Now the central definition of the bigraphical framework follows.

Definition 2.3 [bigraphical reactive system] A bigraphical reactive system (BRS),

written Big(K,R) consists of the bigraphical category Big(K) determined by a sig-

nature K, together with a set R of parametric reaction rules over K. It has a

reaction relation
.R

def

=
⋃

R∈R

.R

which will be written as . when R is understood. 2

These are the systems we wish to understand. We also need a refinement of them,

for two reasons. First, much work in bigraphs has been done to derive (labelled)

transition systems from the reaction rules, and this required a rigorous method to

distinguish occurrences of redexes within agents. Second, it turns out that the very

same method provides a means to count the number of ways (i.e. redex-occurrences)

that can give rise to a reaction or to a transition, thus determining its rate. In what

follows we shall derive rates for both reactions and transitions; the relation between

the two will provide us with a good consistency check.

3 This definition simplifies the standard one, but is sufficient for present purposes. There are two sim-
plifications. First, we here restrict a rule to be linear, while in general a non-linear rule may discard or
replicate some factors of the parameter d. Second, the standard definition requires the context D to be
active, recognising that some controls prevent reaction within them.
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We shall call a BRS abstract if it is defined as in Definition 2.3. Thus an abstract

BRS is based upon an ssm category. In contrast, a concrete BRS is based upon a

refinement of such a category, which we now define.

Definition 2.4 [s-category] An s-category is just as an ssm category, but each

arrow A is equipped with a finite set |A|, its support. Furthermore, composition

and tensor product are defined only for two arrows F , G with disjoint supports, and

the support of the result is then |F | ] |G|. When defined, composition and product

obey the usual properties of an ssm category.

In providing a way to identify occurrences, this refinement acts very like a la-

belling discipline in the λ-calculus.

Two arrows A and B are support-equivalent, written A l B, if they differ only

by a bijection between their supports which respects structure 4 . Denote the l-

equivalence class of A by [[A]]. 2

In bigraphs, the structure that must be respected by a support bijection consists of

its placing and linking. If, e.g., u, u′ 7→ v, v′ under a support bijection from A to B,

then node u is the parent of node u′ in A iff v is the parent of v′ in B.

Assume two disjoint infinite sets: V for node-identifiers, and E for edge-identifiers.

(An edge is a closed link—one that has no outer name.)

We shall now define concrete bigraphs, as an s-category. Thereafter we shall

often deal with concrete and abstract bigraphs simultaneously, so we need a con-

vention to indicate which is which. It will turn out that concrete bigraphs get

mentioned more often than abstract ones, so we shall adopt the following conven-

tion: Abstract bigraphs will always be denoted using a tilde, as in Ã, g̃, and concrete

bigraphs without a tilde.

Definition 2.5 [concrete BRS] If G̃ is an abstract bigraph, then a concrete bigraph

G, called a concretion of G̃, is obtained by assigning to each node a unique identifier

v ∈ V, and to each edge a unique identifier e ∈ E . The support of G is given by

|G|
def

= V ]E, where V ⊂ V and E ⊂ E are the identifiers used.

Let Big(K, R) be an abstract BRS. Then the corresponding concrete BRS,

B̀ig(K, R), is defined thus: Form the bigraphical s-category B̀ig(K) over the

given signature, then equip it with the reaction rules R. The concrete reaction re-

lation is defined as follows: g .R g′ in B̀ig(K, R) whenever (g, g′) is a concretion

of (g̃, g̃′) and g̃ .R g̃′ in Big(K, R). 2

From now on, when we do not need to specify K or R we shall write just Big or

B̀ig for an abstract or concrete BRS.

Definition 2.6 If R = (R̃, R̃′) is a rule in Big, then any concretion (R,R′) of this

pair is called a concrete parametric rule of B̀ig. Similarly, any concretion (r, r ′) of

an abstract ground rule (r̃, r̃′) is called a concrete ground rule of B̀ig. 2

4 At the general level of s-categories, structure-respecting is defined by a few axioms which can be found
in Definition 2.3 of [20]. They are omitted here.
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Concrete bigraphs have structural properties that abstract bigraphs lack. For ex-

ample, recall that an epi(morphism) A is an arrow such that BA = B ′A implies

B = B′; similarly, A is a mono(morphism) if AC = AC ′ implies C = C ′. Epis and

monos rarely exist in abstract bigraphs; in contrast we have:

Proposition 2.7 (concrete epis and monos) A concrete bigraph is

(a) epi if no roots or outer names are idle;

(b) mono if no two sites or inner names are siblings.

Now recall the notion ‘solid’, as defined in Definition 2.1; it applies equally to

abstract and concrete bigraphs. But it implies the properties in Proposition 2.7, so

by requiring redexes to be solid we know that in B̀ig they are both epi and mono.

In fact, they have an even stronger property:

Proposition 2.8 If a concrete bigraph A is solid then BAC = B ′AC ′ implies

B = B′ and C = C ′.

Proposition 2.8 states that once an occurrence of a concrete solid bigraph A is found

within D = BAC, then the occurrence uniquely determines its ‘environment’ in D.

Both these propositions will help in computing rates 5 .

We now come to another property found in concrete bigraphs: the notions of

relative pushout and idem pushout.

Terminology (RPO and IPO):

A pair (F0, F1) of arrows is a span if they have the same inner face, and a cospan

if they have the same outer face. A cospan (G0, G1) bounds a span (F0, F1) if

G0F0 = G1F1. In this case, if (B0, B1) also bounds (F0, F1) and BBi = Gi (i = 0, 1)

then the triple (B0, B1, B) is a bound for (F0, F1) relative to (G0, G1). See the left-

hand diagram below.

F0 F1

C0

G0 G1 G0 G1

F0 F1

C

M
C1

B1B0

B

B0 B1

B

Definition 2.9 [relative pushout] Let (G0, G1) be a bound for (F0, F1). A relative

pushout (RPO) for (F0, F1) relative to (G0, G1) is a relative bound (B0, B1, B)

such that for any relative bound (C0, C1, C) there is a unique arrow M for which

MBi = Ci (i = 0, 1) and CM = B. (See the right-hand diagram.)

We say that an (s-)category has RPOs if, whenever (F0, F1) has a bound, it also

has an RPO relative to that bound. 2

5 The result of Proposition 2.8 will mainly be applied with A a redex of a reaction rule. In such a case,
condition (d) of Definition 2.1 is given for free since redexes have no inner names (see Definition 2.2).
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In a sense, this makes (B0, B1) a minimal bound for (F0, F1); this is a weaker notion

than a minimum bound, which is a pushout. We can express this minimality using

the following special case of an RPO:

Definition 2.10 [idem pushout] (B0, B1) is an idem pushout (IPO) for (F0, F1) if

(B0, B1, id) is an RPO for (F0, F1) relative to (B0, B1). 2

Then the minimality of RPOs is expressed by the property (b) in the next proposi-

tion. RPOs and IPOs behave nicely, but for our present purpose we only need the

following properties:

Proposition 2.11 (RPO properties) It holds that:

(a) Any RPO is unique up to isomorphism.

(b) The lower pair in any RPO is an IPO.

(c) B̀ig has RPOs, but Big does not.

(d) Any IPO for a span with no idle roots or outer names is unique up to iso.

Property (a) of the proposition says that an RPO is unique except for any variant

obtained by applying an isomorphism (iso) at its mediating interface. Similarly,

when we compute rates by counting the number of distinct arrow structures (of

certain kinds), variants by an iso at a mediating interface are not counted. An iso

at an interface I = 〈m,X〉 consists of a permutation of its regions m and a bijective

renaming of its names X.

The main use of RPOs has been to derive (labelled) transitions a L
. a′, from a

given set R of reaction rules. The label L is a bigraph which, when composed with

a, completes an occurrence of a ground redex. The transition is minimal if L is no

larger than needed to complete this occurrence, but to make this precise requires

IPOs to exist. Since an abstract BRS Big(K,R) does not possess IPOs, we work in

the concrete BRS B̀ig(K, R̀), taking R̀ to consist of all concretions of the rules

R. Then:

Definition 2.12 [minimal transitions] Given a reaction rule R, a minimal transi-

tion a L
.R a′ is a concrete triple 6 (a, L, a′) such that, for some concrete ground

rule (r, r′) generated by R and some bigraph D, the cospan (L,D) is an IPO for the

span (a, r) and a′ l Dr′. 2

Thus we may compare concrete reactions and transitions by the following diagram,

in which an IPO is indicated by a small quarter-circle:

g

g .R g′
reaction

r r′

g′

r r′

a a′

D D

L

l l

minimal transition a
L .R a′

6 In previous work, transitions had a fourth component needed to ensure that the bisimilarity generated
by minimal transitions is a congruence. This component makes no difference to the calculation of rates, so
we ignore it here.
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This completes the bigraphical background.

3 Modelling and simulating molecular systems

In this section we illustrate the expressivity of bigraphs in the context of a molecular

system using compartments. The idea of using a formal language to model biology

was pioneered by Regev and Shapiro [24] who modelled bio molecular interactions

using the π-calculus [19]. Following the intuition, Danos and Laneve have proposed

a flexible rule-based language called κ-calculus [9], that allows to model molecu-

lar complexation and post transcriptional modifications (activation or inhibition of

binding domains of proteins) in a fairly direct way.

We show here how to represent a simple model of membrane budding in order

to motivate the need of a stochastic semantics for bigraphs.

Membrane budding is a mechanism by which molecules living inside (or on the

surface of) a cell may be transported to other cells via inter-cellular carriers [14].

We will first give a schematic description of the biological mechanisms at stake and

then proceed with the bigraphical reactive system that models it qualitatively.

3.1 Membrane budding

Coat proteins

(Mem)brane

Particles

Initial state Budding Fission

Fig. 1. Membrane budding

Our simple model of membrane budding proceeds in three steps. In the initial state,

particles (the polygons in Fig.1) are freely floating inside the cell. Concurrently some

coat proteins (the small circles in Fig.1) may assemble on the surface of the cell,

modifying the lipid bi-layer of the membrane which in turns produces a bud [14].

If enough coat proteins are assembled, the bud may part completely from the cell.

After fission, the bud carries away a certain amount of particles. Importantly, the

size of the bud is constant in reality, thus implying that more coat proteins will lead

to more buds and not to larger ones [15].

Node controls

Before presenting the reactive system itself, we proceed with the description of

the different node controls that we will use in our example. Controls coat, gate and

particle denote the atomic nodes of the system, meaning that no node may be nested

inside them. The coat and gate nodes have arity 1 and particles have no ports. The

non atomic controls (the compartments) are bud, with arity 1, and (mem)brane,

with arity 0.

Rules

We may now use the nodes described above as lego parts to construct reaction rules.

We will give each time the algebraic notation for the rules and depict the graphical

9
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descriptions in Fig. 2. We will use 2 to denote parameters and Kx1,...,xn
to denote

a node of control K whose ith port is connected to the outer name xi. We shall also

use the nesting operator, which is a simple but useful extension of the composition

operation defined as:

G0.G1
def
= (idX ‖ G0) ◦G1

where idX is the identity on the outer names of G1.

The first rule describes how a bud may form upon the collision of a coat protein

and a membrane:

(/x coatx) | (brane.2) → /xy (coatx | budx.gatey | brane.(gatey | 2)) (1)

A bud is formed whenever a coat protein binds to the membrane. Note the creation

of a channel between the bud and the membrane whose entries are denoted by gate

nodes. The closure /x on the left hand side ensures that the coat protein is not

already bound to another bud in the system.

The second rule allows coat proteins to assemble around a bud.

budx | (/y coaty) → budx | (x/y coaty) (2)

A free coat protein may join a coat complex that is forming around a bud.

The next rule describes how particles may use a channel to pass from one com-

partment to another (here the bud and the membrane). Note that this rule is using

explicitly two regions so we have to use here the parallel composition in addition to

the prime product:

(gatex | particle) ‖ gatex → gatex ‖ (gatex | particle) (3)

A channel consists of two gate nodes on different regions connected to each other. A

particle may pass from one region to the other whenever it collides with a gate. Note

that rule (3) is symmetrical, therefore it may be applied either to pump particles

into the bud or to push them back into the cell 7 .

Our last rule produces the fission of the bud from the membrane as a consequence

of the breaking of the channel that was linking them. As said, in this particular

case of membrane budding, the size of a bud is given by the curvature of the coat

proteins, hence we will suppose that a fission may only occur after a critical number

(say n) of coat proteins have assembled.

/y
(

(
∏

n

coatx | budx.(gatey | 2)) ‖ gatey

)

→ (
∏

n

coatx | budx.(2)) ‖ 0 (4)

When a sufficient amount of coat proteins have assembled, the channel attaching a

bud to its membrane may break entailing the formation of a separated vesicle. The

probability of fission increases with further coat binding after the n initial ones (see

Example 1 of Section 4). In the appendix A we briefly show how one can study

further this mechanism using the PRISM modele checker [17]. Note that the second

region will always find its place inside a brane node.

7 Although the rule is symmetrical, its stochastic version could be made asymmetric to express the differ-
ences of volumes between the cell and the bud.

10
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bud

brane

coatcoat

gate

brane

(1)

coat

bud

coat

(2)
bud

x x

particle

gategategategate

particle
(3)

gatecoat

n

bud

n

bud

coat
(4)

x x

Fig. 2. Reactive System.

From a biological point of view, the reactive system we defined above only makes

sense on particular initial graphs. To simplify, we can consider initial graphs where

no buds have started to form and where coat nodes are siblings of brane nodes

that contain particles. This kind of well formedness condition can be expressed, for

example, using a sorting policy (see [13]).

The question is the following: given such an initial graph and the rules given

in Fig. 2, can we make any quantitative description of the evolution of the system?

In the next section we introduce the theoretical concepts which are necessary to

answer this question.

4 Stochastic Bigraphs

In this section we associate a rate constant ρ > 0 with each abstract reaction rule.

Based upon these rated rules, which take the form R = (R̃, R̃′, ρ), we then define a

rate for every reaction and every transition where redexes are assumed to be solid.

Since rates depend on counting occurrences, it is simplest to define rates first for

concrete reactions and transitions. We begin with a general notion of occurrence.

We talk of an abstract bigraph G̃ occurring within a concrete one H; different

occurrences are determined by different concretions of G̃. With the help of this, we

define occurrences of rules, and their results.

Definition 4.1 [inner occurrence] If G̃ is an abstract bigraph, an inner occurrence

of G̃ in H is a pair (C,G) where G is a concretion of G̃ and H = CG. 2

Definition 4.2 [occurrence] An occurrence of a rule R in a concrete agent g is an

inner occurrence (C, r) in g, where (r, r ′) is a concrete ground rule generated by R.

Two such occurrences are regarded as the same if they differ only by an iso on the

interface between C and r; otherwise they are distinct. If also g ′ l Cr′ then we say

the occurrence results in g′. 2

11
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We shall need the following, which can be proved from the fact that every parametric

redex R̃ is solid and every parameter d̃ is discrete:

Proposition 4.3 (determining reaction) Given a rule R = (R̃, R̃′, ρ), let (C, r)

be an occurrence of R in g, where (r, r ′) is a concrete ground rule generated by R.

Then:

(a) r is an epimorphism.

(b) C is determined uniquely by r.

(c) r′ is determined uniquely by r up to support equivalence.

4.1 Stochastic Reactions

We now associate a rate with each reaction g .R g′. Such a rate is the parameter

of an exponential distribution that characterizes the stochastic behaviour of that

reaction. The rate is obtained as the product of the rate constant ρ of the reaction

rule and the number of distinct occurrences of the rule.

Definition 4.4 [rate of concrete reaction] Given g, g ′ concrete, and an abstract

reaction rule R = (R̃, R̃′, ρ), define µR[g, g′] to be the number of distinct occurrences

(C, r) of R in g resulting in g′.

Each such occurrence is also called a contribution of R to the rate of g .R g′.

The reaction rate of (g, g′) for the rule R is defined formally by

rateR[g, g′]
def

= ρ · µR[g, g′] .

Finally, the reaction rate for a set R of rules is given by

rateR[g, g′]
def

=
∑

R∈R

rateR[g, g′] . 2

To compute the reaction rate of an abstract pair (g̃, g̃ ′), we can just compute the

rate for an arbitrary concretion (g, g ′), because the rate is independent of the chosen

concretions, i.e.:

Proposition 4.5 If f l g and f ′
l g′, all concrete, then

rateR[f, f ′] = rateR[g, g′].

This justifies the following definition of the abstract reaction rate:

Definition 4.6 [rate of abstract reaction] Given a set R of rated reaction rules,

the rate of an abstract reaction g̃ .R g̃′ is defined by

rateR[g̃, g̃′]
def

= rateR[g, g′]

where (g, g′) is an arbitrary concretion of (g̃, g̃ ′). 2

12
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Our rate calculation is consistent with the standard reaction relation, in the follow-

ing sense:

Proposition 4.7 (consistency) For any set R of stochastic reaction rules,

rateR[g, g′] > 0 iff g .R g′ , and rateR[g̃, g̃′] > 0 iff g̃ .R g̃′ .

The following lemma states, intuitively, that to count the occurrences (C, r) of a

rule we can just count the occurrences of its redex r (up to iso). It follows from

Proposition 4.3.

Lemma 4.8 Given a rule R, the count µR[g, g′] is the number of distinct concrete

ground rules (r, r′) generated by R such that, for some C, Cr = g and Cr ′ l g′.

Rates are especially simple when the parametric rules R = (r̃, r̃ ′, ρ) are ground

– i.e. the inner face of r̃ and r̃′ is ε. For then a generated concrete ground rule is

simply a concretion (r, r′) of (r̃, r̃′).

Example 4.9 [computing rates] Using ground rules, we now give a simple illustra-

tion of computing rates. The diagram shows an abstract agent g̃, two ground rules

R = (r̃, r̃′, ρ) and S = (s̃, s̃′, σ), and the result g̃′ of applying each rule to g̃. (Each

rule can occur in g̃ in two ways, but the abstract result g̃ ′ is the same in all cases.)

g̃

B

r̃

s̃

A

B

A

A

B

A

A B

B

A

B

A

g̃′

r̃′

s̃′

For each computation we fix a concretion g of g̃, assigning identifiers—say u0 and

u1—to its two A-nodes, and identifier v to its B-node. Clearly this yields two

occurrences of R in g, assigning u0 and u1 respectively to the A-node of r̃ and v to

its B-node. Hence

rateR[g, g′] = 2ρ .

On the other hand there is only one occurrence of S in g; this is because any

concretion of s̃ has a support automorphism, meaning that however we assign the

identifiers to the two A-nodes of s̃ we get the same bigraph. Hence

rateS[g, g′] = σ .

The situation is more interesting if we keep R and S fixed but give g̃ any number

n ≥ 2 of A-nodes. The reader can easily check that the rates of (g̃, g̃ ′) for R and S

will be respectively ρ · n and σ · n(n− 1)/2; the latter case involves the number of

unordered pairs of A-nodes in g̃. Note that when there are more than two A-nodes,

the open link in s can be linked to any other A-node in g̃. When there are just

two A-nodes in g̃, as it is the case in the figure, the open link will be closed by the

context. 2

13
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4.2 Stochastic Labelled Transitions

We now show that, just as minimal transitions a L
. a′ can be derived from reaction

rules, so can rates for these transitions be deduced from the rates for the rules. In

computing these rates, we recall first that a certain transition may arise from more

than one rule. So we begin by computing the rate of the concrete transition a L
.R a′

based upon a given rule R. Such a computation is done by counting occurrences of

R in La, as follows.

Definition 4.10 [rate of concrete transition] Let R = (R̃, R̃′, ρ) be an abstract

reaction rule, and let (a, L, a′) be a triple of concrete bigraphs where the composition

La exists. Define µR[a, L, a′] to be the number of distinct occurrences (D, r) of R

in La such that (L,D) is an IPO for (a, r) and a′ l Dr′, where (r, r′) is a concrete

ground rule generated by R.

Then the transition rate of the triple for the rule R is defined as follows:

rateR[a, L, a′]
def

= ρ · µR[a, L, a′] .

The rate for a set R of rules is given by

rateR[a, L, a′]
def

=
∑

R∈R

rateR[a, L, a′] . 2

Now, just as for reactions, the rate of a concrete transition is independent of the

chosen concretions:

Proposition 4.11 In B̀ig, let a l b, L l M and a′ l b′, with |a|∩|L| = |b|∩|M | =
∅, where the compositions La and Mb exist. Then

rateR[a, L, a′] = rateR[b,M, b′] .

This justifies the definition of the rate of an abstract transition:

Definition 4.12 [rate of abstract transition] Given a set R of rated reaction rules,

the rate of an abstract transition ã L̃
.R ã′ is given by

rateR[ã, L̃, ã′]
def

= rateR[a, L, a′]

where (a, L, a′) is an arbitrary concretion of (ã, L̃, ã′) with |a| ∩ |L| = ∅. 2

Again, our rate calculation is consistent with the standard transition relation.

Proposition 4.13 (consistency) For any set R of stochastic reaction rules,

rateR[ã, L̃, ã′] > 0 iff ã L̃
.R ã′ .

4.3 A consistency check

In order to justify our definitions of rates for reactions and transitions we consider a

consistency check, showing that they are related in a way we expect. The intuition

14
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is as follows: Given an agent g and another agent a lying ‘inside’ g, the reactions

possible for g should correspond exactly to the transitions that a can make using

only labels that can be found within g. We now make this statement precise for a

concrete BRS.

First we recall a useful property of IPOs containing epis.

Proposition 4.14 (IPO) If F0 and F1 are epi then any IPO for (F0, F1) is unique

up to iso.

We also need to specify when we regard two transitions as distinct. Since an IPO

can be varied by an iso ι, we find that whenever a L
. a′ then also a ιL

. ιa′, and we

regard these as essentially the same transition. Also recall that the result a ′ of a

transition can be varied by support equivalence. This leads to the following:

Definition 4.15 [distinct transitions] Two pairs (L0, a
′
0) and (L1, a

′
1), or two tran-

sitions a L0 . a′0 and a L1 . a′1, are equivalent if L1 = ιL0 and a′1 l ιa′0, for some iso

ι. Otherwise they are called distinct. 2

Since this property is expressed in terms of occurrences, we prove it only for

concrete reactions and transitions. A corresponding property for the abstract case

follows as a corollary.

Theorem 4.16 Let R be a set of abstract reaction rules. In B̀ig, let g and a be

fixed, with Fa = g. Assume that a has no idle names or roots. Then the rate of a

concrete reaction from g equals the sum of the rates of all distinct transitions from

a that are possible within g. Namely, for all g ′:

rateR[g, g′] =
∑

{rateR[a, L, a′] | distinct pairs (L, a′) compatible with g′}

where (L, a′) is compatible with g′ if F = F ′L and F ′a′ l g′ for some F ′.

Proof. For simplicity we consider only ground rules with rate 1; the generalisation

is straightforward. In particular, without loss of generality, we assume R to contain

just one ground rule, R = (r̃, r̃′, 1).

Let us refer to the left- and right-hand sides of the required equation as the LHS

and RHS respectively.

Case ≤:

Since the rule is ground, a contribution to the LHS consists of a pair (E, r) with

g = Er and g′ l Er′, where (r, r′) is a concretion of (r̃, r̃′). This is shown in the

left-hand diagram.

a D

F ′

g .R g′reaction

E

L

g′

a′

l

l
E

F

a

Fg gg′

r r′r′r
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Now take an RPO (L,D, F ′) for (a, r) relative to (F,E) as shown on the right-hand

diagram. Also define a′ = Dr′.

Since La = Dr is an IPO, (D, r) contributes to rateR[a, L, a′] in the RHS, the

consistency condition is satisfied. Furthermore, by Proposition 4.3(b), each distinct

contribution (E, r) to the LHS has a distinct component r, implying a distinct

contribution (D, r) to rateR[a, L, a′]. Thus the case ≤ is proven.

Case ≥:

We need to show that each distinct contribution to the RHS determines a distinct

contribution to the LHS. Now a contribution to the RHS is determined in two stages;

first a contribution to the transition rate for a with some pair (L, a′), and second

the compatibility of this pair with g ′.

(1) A contribution to rateR[a, L, a′]: This consists of a pair (D, r) for some

concretion (r, r′) of the rule, such that (L,D) is an IPO for (a, r) and a′ l Dr′.

This is shown in the left-hand diagram.

a L
.R a′transition

a D

F ′

E

L

g′g

D
a′

F

a′
L

g F

a
r r′

l l

r r′

Since a and r are both epi, by Proposition 4.14 this IPO is unique up to iso.

Hence, L,D and a′ are determined by (r̃, r̃′) up to an iso at their outer face and

up to support translation of a′. Thus every contribution (D, r) to the transition

rate rateR[a, L, a′] is determined by a distinct concretion r of r̃. Furthermore

this contribution is single; it cannot contribute to the transition rate for any

other pair distinct from (L, a′).

(2) Compatibility of (L, a′) with g′: Compatibility ensures that F = F ′L and

F ′a′ l g′, for some F ′. Then, defining E
def

= F ′D, we easily check that Er = g

and Er′ l g′. Hence (E, r) is an occurrence of r̃ in g leading to the result g ′,

so it contributes to the LHS.

Taking the two stages together, every contribution to the RHS determines a distinct

contribution to the LHS. This concludes the proof of the case ≥. 2

Notice that the consistency check holds for any choice of a. As a varies, F also

varies; by the condition F = F ′L this in turn affects the labels available in g for

possible transitions of a.

Having established reasonable rates for transitions, it is natural to consider be-

havioural equivalences and pre-orders that take account of rates. We conjecture

that bisimilarity, in which each transition of one agent is matched by one for the

other agent with the same rate, is a congruence. We also expect a well-behaved

pre-order in which the matching rate of the second agent must be at least as fast

as that of the first. We leave these questions for future work.
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5 Conclusions and Future Work

In this paper we have proposed a theoretical framework to deal with stochastic

bigraphs. Here, rates are associated with rewrite rules from which it is possible to

derive the rule activities on a given bigraph. We have pointed at biology to give

an application that, on the one hand, shows the expressiveness of bigraphs, which

are able to model dynamic compartmentalisation, on the other hand, convincingly

underlines the necessity to extend the model with rates. We have the feeling that

the method proposed here could be simplified to provide a more general collision-

based stochastic semantics which could be applied in other graph transformations

frameworks.

The stochastic engine behind PEPA [12] and the Stochastic π–calculus [22,21]

is constructed on the intuition of cooperating agents under different bandwidth

limits. If two agents are interacting, the time spent for a communication is given by

the slowest of the agents involved. Our stochastic semantics is defined in terms of

the collision–based paradigm introduced by Gillespie. A similar approach is taken

in BioSPi ([22]) and the quantitative variants of the κ–calculus([7,16]), and the

Calculus of Looping Sequences ([1]). Inspired by the law of mass action, here we

need to count the number of the reactants present in a system in order to compute

the exact rate of a reaction.

It remains to see how a stochastic machine could be implemented to run this

kind of models. One might start by extending the highly scalable implementation

of the stochastic κ-calculus [7] to bigraphs. The algebraic work on axiomatisation

and implementation of bigraph matching [3] should also be considered.

The present paper is not limited to biology, it actually defines a model that

can be used for a stochastic analysis of distributed systems in general. We plan,

however, to study in more depth the possibility to model biological systems using

a BRS. This certainly requires to narrow down the relevant subset of BRSs that is

suitable for representing biological systems and to compare more precisely bigraphs

expressiveness with existing algebraic formalisms for modelling membranes.
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A Simulating Stochastic Bigraphs

In Section 3 we introduced a process of membrane budding as a motivating example

for developing a stochastic semantics for bigraphs. In this appendix we would like

to study the budding example when rates are associated to the rules. Since we

still lack a simulator for stochastic bigraphs, it is hard to show more than the

expressive power of bigraphs to advocate their use in the design of a language for

biological cells. However, under some assumptions, the budding example could be

made sufficiently simple to move the analysis on the Continuous Time Markov Chain

that can be extracted from the transition system resulting from our quantitative

semantics for bigraphs. Thus we can perform some simulations using existing tools

like, e.g., the PRISM model checker [17].
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A.1 Stochastic Bigraphs as CTMCs

In this section we show how the transition system deriving from our stochastic

reactions can be transposed into a Continuous Time Markov Chain.

Definition A.1 A Continuous Time Markov Chain (CTMC) is a triple 〈S,T, π〉,
where:

• S is the set of states,

• T : S× S 7→ IR≥0 is the transition function,

• π : S 7→ [0, 1] is the starting distribution. 2

A state s ∈ S denotes a possible configuration of the described system. The sys-

tem is assumed to pass from a state s to a state s′ by consuming an exponentially

distributed quantity of time, in which the parameter of the exponential distribu-

tion is T(s, s′). The summation
∑

s′∈S T(s, s′) is called the exit rate of state s.

Finally, the system is assumed to start from a state s ∈ S with probability π(s),

and
∑

s∈S π(s) = 1.

If the set of states of the CTMC is finite (S = {s1, . . . , sn}), then the transition

function T can be represented as a square matrix of size n in which the element at

position (i, j) is equal to T(si, sj).

Many analysis techniques are available from mathematics and computer science

for CTMCs. For example, if the set of states of the CTMC is finite, one can verify

properties of the described system by using a probabilistic model checker such as

PRISM.

The semantics of a concrete bigraph g can be naturally transformed into a CTMC

by considering bigraphs as states, by setting π(g) = 1 and by defining T(g, g ′) as

the rate of all reactions in R from g to g ′, namely:

T(g, g′) = rateR[g, g′]

The set of states of the CTMC obtained by the semantics of a bigraph g can be

restricted to the set of bigraphs which are reachable from g. Obviously, if such a

set of bigraphs is finite, we obtain a finite state CTMC.

A.2 Simulating CTMCs

Given the CTMC obtained from the transition system resulting from our stochastic

semantics, we can follow a standard simulation procedure. Roughly speaking, the

algorithm starts from the initial state of the CTMC and performs a sequence of

steps by moving from state to state. At each step a global clock variable (initially

set to zero) is incremented by a random quantity which is exponentially distributed

with the exit rate of the current state s as parameter, and the next state s′ is

randomly chosen with a probability proportional to T(s, s′).

The same approach can be applied to Stochastic Bigraphs, where a state of the

simulation is a pair (g, t) where g is the current concrete bigraph and t ∈ IR≥0 is

the global clock. Assuming a finite set of rewrite rules R and an initial graph g0,

the initial state of the simulation is the pair (g0, 0).
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Given a simulation state (g, t), from the stochastic semantics, we have a finite

set of transitions starting from g, namely the set of transitions {g . gj}, with

j ∈ [1, n], where n is the number of possible reactions starting from g. Now, a

simulation step transforms the state (g, t) into (gj , t + τ) where τ is exponentially

distributed with parameter p =
∑n

j=1 rateR[g, gj ] and the target bigraph gj is chosen

randomly with probability rateR[g, gj ]/p.

The race condition described above implements the fact that, on the lines of

Gillespie’s algorithm [11], when different reactions are competing with different

rates, the ones which are not chosen should restart the competition at the following

step.

A.3 Adding Rates to the Membrane Budding Example

We are now able to extend the example of Section 3 by adding rates to the rules.

For simplicity we restrict ourselves to the case of a single membrane and a single

bud formation (note, however, that the exposed example allows, in general, the

creation of several buds in parallel).

Since we consider the creation of a single bud we may discard the first rule of the

example (describing the interaction of a coat protein with the membrane starting

the creation of a bud). Thus, we just consider the last three rules presented in

Section 3, for coating (a coat protein joins the bud in formation), diffuse in out bud

(a particle may either enter or exit a bud in formation) and fission (the bud leaves

the membrane).

Note that removing the rule for the initial bud formation strongly simplifies the

CTMC obtained from the stochastic transition system, which can now be extracted

by hand. In fact, the restricted set of rules, together with the methodology for

counting the occurrences in bigraphs and the procedure given in the previous sub-

section, can be used to get a quite simple CTMC which we are then able to simulate

using PRISM. Actually, we obtained the following CTMC defined in the PRISM

input language.

stochastic

const int NC=50; //initial value of free coat proteins

const int NP=50; //initial number of particles within the cell

const double rc; //rate of coating

const double rd; //rate of particles diffusion (in or out the bud)

const double rf; //rate of fission

module budding

//State variables:

c : [0..NC] init 0; //number of coat proteins in the bud

p : [0..NP] init 0; //number of particles within the bud

bud : [0..1] init 0; //after fission bud=1 (termination state)

20



J. Krivine, R. Milner, A. Troina

//Transitions ([label] "guard" -> "rate" : "state update"):

[coating] (bud=0)&(NC-c>0) -> rc*(NC-c) : (c’=c+1);

//NC-c=occurrences of free coat proteins

[diffuse_in_bud] (bud=0)&(NP-p>0) -> rd*(NP-p): (p’=p+1);

//NP-p=occurrences of particles within the membrane

[diffuse_out_bud] (bud=0)&(p>0) -> rd*(p): (p’=p-1);

//p=occurrences of particles in the forming bud

[fission] (bud=0)&(c>30) -> rf*func(pow,c,c-31): (bud’=1);

//since PRISM does not yet implement the binomial function

//we used "func(pow,c,c-31)" to approximate it

[self_loop] (bud=1) -> 1: (bud’=1);

//self loop transition needed by PRISM

//for computing the steady states space

endmodule

We considered a fixed initial configuration where 50 coat proteins are present in

the environment surrounding the membrane and 50 particles are contained within

the compartment, we set as n = 31 the minimum number of coat proteins needed

for a bud to part from the membrane (fission rule). Note that the values used here

have no relevant biological meaning, they are just used to analytically study the

proposed application.

We start by computing the dimension of the bud after fission (i.e. the number

of coat proteins which aggregated to form the bud). The next graph reports the

probability of getting a bud whose dimension (i.e. the number of coat proteins

assembled around the bud) is given by the value in the axis of abscissa. The study

is performed for two different values of the rate at which coat proteins assemble,

given by constant rc. The rate rf of the fission rule used for this experiment is 0.5,

while rd, the rate of diffusion of particles in and out of the bud, was set to 1.

One sees that the number of coat proteins around a bud does not increase

21



J. Krivine, R. Milner, A. Troina

significantly on increasing the rate of the coating rule. Indeed, when the limit of 31

coat proteins is reached, the application rate of the fission rule grows exponentially.

In the next graph we see that a similar result arises when slowing the rate rf of

the fission rule. Here we used rc=rd=1.

Hence, one may verify that the number of coat proteins that are carried out by

a bud after fission is pretty much constant which coincide with the idea that the

volume of a bud is also constant [15].

Another interesting analysis consists in the study of the number of particles

present in the bud after fission. The following graph shows how such a value depends

on the rates rc and, in particular, rd which models the movement of the particles

between the two compartments. Again, we set rf=0.5.

We see that the final number of particles within the bud after fission increases

when either increasing the rate rd (when particles move faster within the cell) or

decreasing the rate rc (when coat proteins bind slower). Also note that the number

of particles always follows a quite wide Gaussian distribution (and always with the

same width).
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