

Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables

Anne-Catherine Lehours, Matthew T. Cottrell, Océane Dahan, David L.

Kirchman, Christian Jeanthon

▶ To cite this version:

Anne-Catherine Lehours, Matthew T. Cottrell, Océane Dahan, David L. Kirchman, Christian Jeanthon. Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiology Ecology, 2010, 74 (2), pp.397-409. 10.1111/j.1574-6941.2010.00954.x hal-00529310

HAL Id: hal-00529310 https://hal.science/hal-00529310

Submitted on 14 Apr 2015 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2		
2 3 4	1	Submitted to FEMS Microbiol. Ecol.
5 6	2	
7 8 9	3	
10 11	4	Title: Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the
12 13	5	Mediterranean Sea in relation to environmental variables
14 15 16	6	
17 18	7	Authors: Anne-Catherine Lehours ^{1,2*} , Matthew T. Cottrell ³ , Océane Dahan ^{1,2} , David L.
19 20 21	8	Kirchman ³ and Christian Jeanthon ^{1,2}
22 23	9	
24 25 26 27 28 29 31 23 32 33 35 36 37 38 30 41 23 44 45 46 78 90 12 33 45 52 53 54	10	Address :
	11	¹ UPMC Univ Paris 06, UMR 7144, Adaptation et Diversité en Milieu Marin, Station
	12	Biologique de Roscoff, 29682 Roscoff, France
	13	² CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff,
	14	29682 Roscoff, France
	15	³ University of Delaware, School of Marine Science and Policy, Lewes, Delaware 19958, USA
	16	
	17	*Present address: Clermont Université, Université Blaise Pascal, UMR CNRS 6023,
	18	Laboratoire Microorganismes : Génome et Environnement (LMGE), BP80026, F-63171
	19	Aubiere
	20	
	21	
	22	For correspondence. Email: jeanthon@sb-roscoff.fr. Tel. (+33) 298 292 379; Fax (+33)
55 56	23	298 292 324.
57 58 59 60	24 25 26 27	

1	
2	
3	
4	
2 3 4 5 6	
6	
1	
8 9 10	
9	
10	
11	
12	
13	
14	
16	
17	
18	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 58	
58	
59	
60	

52

53

54

28 29 30

31

Abstract

32 Aerobic anoxygenic phototrophic bacteria (AAP) represent an important fraction of 33 bacterioplankton assemblages in various oceanic regimes and have probably a great impact on 34 organic carbon production and cycling in the upper ocean. Although their abundance and 35 distribution have been recently explored in diverse oceanic regions, the environmental factors 36 controlling the population structure and diversity of these photoheterotrophic bacteria remain 37 poorly understood. Here, we investigate the horizontal and vertical distributions and the 38 genetic diversity of AAP populations collected in late summer throughout the Mediterranean 39 Sea using *pufM*-temporal temperature gradient electrophoresis (TTGE) and clone library 40 analyses. The TTGE profiles and clone libraries analyzed using multivariate statistical 41 methods demonstrated a horizontal and vertical zonation of AAP assemblages. Physico-42 chemical parameters such as pH, inorganic nitrogen compounds, photosynthetically active 43 radiation, total organic carbon and to a lesser extend particulate organic nitrogen and 44 phosphorus, and biogenic activities (e.g. bacterial production, cell densities) acted in synergy to explain population changes with depth. About half of the *pufM* sequences were less than 45 46 94% identical to known sequences. The AAP populations were predominantly (~ 80%) 47 composed of *Gammaproteobacteria*, unlike previously explored marine systems. Our results 48 suggest that genetically distinct ecotypes inhabiting different niches may exist in natural AAP 49 populations of the Mediterranean Sea whose genetic diversity is typical of oligotrophic 50 environments.

56

Introduction

1		
2		
3		
4		
4		
5		
6		
7		
8		
9		
3	_	
1	0	
1	0 1	
1		
1	2	
1	3	
1	1	
!	4	
1	5	
1	6	
i	-3 4 5 6 7 8 9	
1	1	
1	8	
1	q	
1	5	
2	υ	
2	1	
-	ว	
2	2	
222222	3	
2	4	
~	- -	
2	5	
2	6	
2	7	
~	~	
2	8	
22	9	
3	۰ ١	
3	U	
3	1	
3	2	
5	2	
3	3	
3	4	
2	5	
5	5	
3	6	
3	7	
2	,	
3 3 3 3 3 3 3 3 3 3	Q	
3	9	
4		
4		
4	2	
4		
4		
4	5	
4	-	
	-	
4		
4	8	
4		
4	3	
5	0	
5	1	
г		
5 5	2	
5	3	
5	4	
-	-т Г	
5	Э	
5	6	
5	7	
5		

59 60 57 Aerobic anoxygenic phototrophic bacteria (AAP) represent a functional group that was 58 recently found to account for a significant fraction of the bacterioplankton in marine 59 illuminated environments (Kolber et al., 2001; Cottrell et al., 2006; Koblížek et al., 2007; Mašín et al., 2006; Sieracki et al., 2006; Lami et al., 2007; Jiao et al., 2007). These 60 61 bacteriochlorophyll (BChl a)-containing prokaryotes, which can use both light and organic 62 matter for energy production, require oxygen and can use reduced organic compounds as 63 electron donors (Yurkov & Csotonyi, 2009). Although they are not primary producers, their 64 higher growth rates and efficiency in organic carbon utilization over strict heterotrophs are 65 likely to make them dynamic and significant contributors to the organic carbon production and cycling in the upper ocean (Koblížek et al., 2007). While physiological evidences 66 67 suggest that they would have a competitive advantage over strict heterotrophs in low-nutrient conditions (Yurkov & van Gemerden 1993; Suyama et al., 2002), the emerging findings 68 69 indicate that these bacteria may be adapted to a broad range of trophic conditions and are 70 abundant in eutrophic and oligotrophic environments (Cottrell et al., 2006; Sieracki et al., 71 2006; Waidner & Kirchman, 2007).

Molecular analyses based on the *pufM* gene encoding the M-subunit of the photosynthetic reaction center have revealed that AAP bacteria belong to different groups of *Alpha-*, *Beta-*, and *Gammaproteobacteria* (Béjà *et al.*, 2002; Yutin *et al.*, 2007). Their abundance and distribution have been explored in diverse oceanic regions and have been shown to vary greatly among oceanic regimes (Cottrell *et al.*, 2006; 2008; Jiao *et al.*, 2007, Imhoff, 2001; Yutin *et al.*, 2007; Waidner & Kirchman, 2008). However, AAP bacteria remain clearly undersampled in several areas, particularly in oligotrophic environments, that

represent 60% of the oceans. The environmental factors controlling the population structureand diversity of these photoheterotrophic bacteria remain yet poorly understood (Eiler, 2006).

The Mediterranean Sea is an ideal environment for these ecological studies as it offers a range of trophic conditions including extreme oligotrophy, particularly in summer when the water column is strongly stratified (Berman et al., 1985). While the N:P ratio is close to the Redfield ratio (16:1) in most oceanic waters, Mediterranean waters have a higher ratio, especially in the eastern Basin, leading to strong phosphorus limitation (Moutin & Raimbault, 2002). A complex thermohaline circulation coupled with regional hydrodynamic features also contributes to the establishment of many different oceanic regions throughout the Mediterranean Sea (Manca et al., 2004). As an example, the exchange of the Atlantic and Mediterranean water masses at the Strait of Gibraltar induces marked salinity and temperature gradients (Gascard & Richez, 1985). Although the different trophic conditions available in the Mediterranean Sea provide a unique context to link nutrient availability, trophic status and functioning of the food web to the dynamics of photoheterotrophic populations, the distribution and diversity patterns of AAP bacteria have been only partially explored (Oz et al., 2005; Yutin et al., 2005; 2008).

In the present study, we analyzed the biogeography patterns of AAP populations collected in late summer along two transect during the PROSOPE (PROductivité des Systèmes Océaniques PElagiques) cruise. To explore what environmental factors control structure and diversity of AAP populations in the Mediterranean Sea, we monitored their longitudinal and vertical changes using a *pufM*-based PCR-Temporal Temperature Gel Electrophoresis (TTGE) survey and analyzed the *pufM* clone libraries from selected stations and depths.

1		
2 3		
4	104	
5 6	105	
7		
8 9	106	Material and Methods
10 11	107	Sampling and nucleic acid extraction
12		
13 14	108	Seawater samples were collected from seven stations along two transects in the
15 16	109	Mediterranean Sea (from Gibraltar to the Ionian Sea off the north-east coast of Lybia and
17 18 19	110	north-west to the French coast through the Tyrrhenian and Ligurian Seas) in September and
20 21	111	October 1999 during the PROSOPE cruise aboard the R.V. La Thalassa (Fig. 1). For
22 23 24	112	molecular diversity studies of AAP populations, 1.45-5 l water samples were retrieved using
24 25 26	113	12 l Niskin bottles fitted on a Rosette sampler equipped with conductivity, temperature and
27 28	114	depth (CTD) sensors. Seawater was prefiltered through 3 µm pore-size, 47 mm diameter,
29 30	115	Nuclepore filters using moderate vacuum in order to separate picoplankton from larger
31 32 33	116	organisms. Picoplanktonic cells were collected by filtration as previously described (Marie et
34 35	117	al., 2006; Garczarek et al., 2007). The filtered biomass was transferred into a cryovial
36 37 38	118	containing 3.5 ml of DNA lysis buffer (0.75 M sucrose, 50 mM Tris-HCl, pH 8) and
39 40	119	immediately frozen in liquid nitrogen. DNA extraction was performed as previously described
41 42	120	(Marie et al., 2006). Ancillary data (nutrients, dissolved oxygen, chlorophyll a, salinity,
43 44 45	121	temperature, etc.) and methods used to analyze them are available from the PROSOPE web
45 46 47	122	site (<u>http://www.obs-vlfr.fr/cd_rom_dmtt/pr_main.htm</u>).
48	100	

51 124 Environmental *pufM* gene amplification 52

Multiple combinations of previously designed primer sets (Achenbach et al., 2001; Béjà et al., 2002; Yutin et al., 2005) were tested (data not shown). On the basis of specificity efficiency (e. yield) results, selected PufMF forward (5'and g. we TACGGSAACCTGTWCTAC-3', Béjà et al., 2002) and PufWAW reverse primers (5'-

AYNGCRAACCACCANGCCCA-3', Yutin et al., 2005) to amplify partial sequences of the pufM gene (245 bp fragments). For TTGE analyses, a 5'-Cy5-labeled PufMF primer and a PufWAW with GC-clamp primer bp a (CGCCCGCCGCGCCCCGCGCCCGCCCGCCCGCCCGC) added at the 5'-end were used. Reaction mixture (50 μ L) contained the following components: 5X buffer (10 μ l), 2 mM MgCl₂, 10 pmoles of each deoxyribonucleotide triphosphate (dATP, dCTP, dGTP, dTTP; Eurogenetec), 10 pmoles of each oligonucleotide primer, 2.5 U of GoTaq Flexi DNA polymerase (Promega) and 50 to 100 ng of template DNA. Amplifications were carried out in a GeneAmp PCR system 9700 (Applied Biosystems) with the following parameters: 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 58°C for 30 s, and 72°C for 30 s, with a final extension step at 72°C for 10 min. Amplified products were checked by electrophoresis in 1.5% agarose in 0.5× Tris-Acetate-EDTA (TAE) buffer and further quantified with a DNA quantitation fluorescence assay kit (Sigma-Aldrich).

143 Temporal Temperature gel Gradient Electrophoresis (TTGE) profiling and analyses

One hundred nanograms of each amplified product were electrophoresed along an 8% (wt/vol) polyacrylamide gel (ratio acrylamide to bis-acrylamide 37.5:1) containing 7M urea, 1.25X TAE, 0.06% of N,N,N',N'-Tetramethylethylenediamine (Temed) and 0.06% ammonium persulfate using the DCode Universal Mutation Detection System (BioRad, Hercules, CA). Runs were performed in 1.25x TAE at 68 V for 17 h with a temperature range of 66 to 69.7°C and a ramp rate of 0.2°C h⁻¹. Standard markers were generated with a mixture of *pufM* PCR products amplified from *Erythrobacter longus* strain OCh 101^T, *E. litoralis* strain T4^T, Roseobacter denitrificans strain OCh 114^T (CIP104266), Dinoroseobacter shibae strain DFL12^T. Gel images were obtained at 100-µm resolution using a Typhoon Trio variable mode imager (Amersham Biosciences, Piscataway, NJ). Typhoon scans were acquired using

FEMS Microbiology Ecology

the 633 nm excitation laser and the 670 BP 30 emission filter as recommended by the manufacturer for the detection of Cy5-labeled molecules. All gels were scanned with photomultiplier tube voltages to maximize signal without saturating fingerprint bands. Band patterns were analyzed with GelCompare 4.6 software package (Applied Maths, Kortrijk, Belgium). In band assignment, a 1% band position tolerance (relative to total length of the gel) was applied, which indicates the maximal shift allowed for two bands in different TTGE patterns to be considered as identical. The number of bands in a profile was expressed as the phylotype richness and the Shannon-Weiner index (H') was calculated as previously described (Hill et al., 2003). The Smith and Wilson evenness index (E_{var}, Smith & Wilson, 1996) was calculated using the Ecological Evenness Calculator software (http://www.nateko.lu.se/personal/benjamin.smith/software).

166 Clone library construction and analyses

Fresh PCR products were cloned using the TOPO TA cloning kit according to the manufacturer's instructions (Invitrogen Corporation, Carlsbad, CA, USA). Recombinant clones were screened for insert-containing plasmids by direct PCR amplification with M13 forward and reverse primers. Clones were sequenced using an ABI 3130 POP7 sequencer (Applied Biosystems, Foster City, CA) at the Biogenouest Sequencing-Genotyping Platform (Roscoff site). Clone libraries were screened for chimeric sequences with Chimera Check program available on the RDP website (Cole et al., 2003). The 388 remaining sequences were subjected to BLAST search against publicly available sequences to determine their approximate phylogenetic affiliations. A conservative value of 94 % nucleic acid sequence similarity (Zeng et al., 2007) was chosen for grouping sequences into Operational Taxonomic Units (OTUs) using the phylogenetic analysis software Bosque available at http://bosque.udec.cl (Ramírez-Flandes & Ulloa, 2008). Coverage value (C) was calculated as

previously described (Mullins *et al.*, 1995). The Shannon-Weiner index (H', Hill *et al.*, 2003), the richness-estimator S_{chao1} (Hughes *et al.*, 2001) and the Abundance-base Coverage Estimator (ACE, Chazdon *et al.*, 1998) were computed using EstimateS software Version 7.5.

182 (K. Colwell, <u>http://purl.oclc.org/estimates</u>).

A *pufM* database containing more than 700 aligned sequences of cultured species and clones environmental retrieved from GenBank database (http://www.ncbi.nlm.nih.gov/Genbank/) and the GOS scaffold nucleotide sequences was constructed using ARB (Ludwig et al., 2004). Sequences were translated to protein and the resulting alignment was then used to manually realign nucleotide sequences. A neighbor-joining tree was first constructed with all the sequences longer than 600 bp and the robustness of inferred tree topologies was tested by bootstrap analysis (1000 resamplings) using PHYLIP (Felsenstein, 1993). Shorter sequences were aligned as above and added to the tree using ADD-BY-PARSIMONY algorithm. Phylogenetic tree display and annotation were performed with iTOL software (Letunic & Bork, 2006). The *pufM* sequences obtained in this study are deposited in the GenBank database under accession No. GQ468944 to GQ468986.

s

195 Statistical analyses

The normality of environmental variables was checked using Shapiro-Wilk (Shapiro, 197 1965) and Anderson-Darling (Stephens, 1974) tests and variables were transformed when necessary to correct for deviations from normality. Principal component analysis (PCA), performed with XLSTAT version 6.01 (Addinsoft), was used to group samples according to environmental variables using the Pearson correlation coefficient.

For TTGE patterns, pairwise similarity matrices were calculated using the Dice and the Bray Curtis equations for presence/absence and relative peak height data, respectively.
 Dendrograms were generated from the Dice matrix using the method described by Ward

FEMS Microbiology Ecology

(1963). The consistence of a cluster was expressed by the cophenetic correlation which calculates the correlation between the dendrogram-derived similarities and the matrix similarities. A distance of 35 was used to separate clusters in the hierarchical classification. Analysis of similarity (ANOSIM, Clarke and Warwick, 2001) was used to test the hypothesis that communities within each cluster were more similar to each other than to communities in other clusters. Correlations between similarity matrices were calculated using a Mantel test (Mantel, 1967) with 10000 permutations and were performed with XLSTAT version 6.01. Relationships samples visualized using the ordination among were technique multidimensional scaling (MDS) using a standardized stress with 1000 iterations computed with XLSTAT version 6.01. Canonical correspondence analyses (Legendre & Legendre, 1998) used to determine the extent to which selected environmental variables explained patterns of similarity in community composition were performed using PAST 1.81 (Hammer et al., 2001) available at http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Results

219 Oceanographic context

The PROSOPE cruise sampled the highly eutrophic Morocco upwelling off Agadir (St. UPW, Fig. 1) and then proceeded to a first Mediterranean west-east (W-E) transect, through a markedly decreasing gradient of surface chlorophyll *a* concentrations, from the mesotrophic St. 1 at the Strait of Gibraltar to St. MIO located in a highly oligotrophic area in the center of the Ionian Sea. A second transect sampled the Tyrrhenian and Ligurian Seas (St. 9, St. DYF).

Plots of the depth variations of environmental variables analyzed along both these
 transect revealed the complexity of the studied zones in which several physical and chemical
 gradients were superimposed (Figs. S1a to S1l). Temperature and salinity transects reflected

the progression of low-salinity, low-temperature Atlantic waters penetrating through the Gibraltar Strait and flowing along the African coast (Figs. S1a-b). Thus a strong halocline was observed between St. 3 and St. 5 identifying a partitioning of surface waters into westwards and typical high salinity eastwards (21.6°C and 36.7% for St. 1 to 26°C and 38.9% for St. MIO, respectively). The upwelling at St. UPW supplied abundant dissolved nutrients to the surface layer, which supported phytoplankton growth as indicated by the surface maximum in chlorophyll a (Fig. S1c). A progressive W-E deepening of the nitracline and phosphacline down to 98 and 124 m depth at St.1 and St. MIO, respectively, was noted (Figs. S1d-e). Along the second transect (from St. MIO to St. DYF), concentrations of nitrates and phosphates increased below the deep chlorophyll maximum (DCM).

The main biological and physico-chemical parameters of the waters were analyzed using a principal component analysis (PCA) including nineteen variables (salinity, temperature, dissolved oxygen, light, pH, depth, phosphate, nitrate, nitrite, particulate organic carbon, nitrogen, phosphorus, total chlorophyll a, accessory pigments, bacterial production, abundances of Synechococcus, Prochlorococcus, non photosynthetic bacteria and picoeukaryotes) (Fig. S2). This analysis allowed separation of the Mediterranean Sea euphotic zone into two distinct layers above and in/or below the DCM, whose discrimination was mainly explained by biological variables and nutrient levels (NO₃, NO₂, PO₄) respectively. All surface waters except that of the Morocco upwelling and the Gibraltar Strait (St. 1) were nutrient depleted (Figs. S1 and S2). Covariation of biological parameters with particulate organic compounds, oxygen, pH and photosynthetically available radiation (PAR) are consistent with the characteristics of the upper layer where photosynthesis supports the formation of organic matter (Lucea et al., 2003) allowing heterotrophic activities as indicated by the inter-correlation of these parameters with bacterial production and cell densities (Fig. S1 and S2). Deep euphotic waters located in or below the DCM were relatively similar as they

FEMS Microbiology Ecology

were cold, enriched in nutrients and depleted in oxygen (Fig. S1). Although a strong halocline partitioned W-E surface waters, salinity did not explain variability among samples. This might result from the superimposed longitudinal and vertical variation trends of salinity concentrations (Fig. S1b). Discrimination of surface and deep euphotic layers in the Mediterranean Sea mainly according to their nutrient status suggests that the vertical gradient may prevail over the longitudinal gradient during summer stratification.

Spatial variability, diversity and structure of AAP populations

PCR amplified *pufM* genes from different depths (Fig. S3) were analyzed by temporal temperature gradient gel electrophoresis (TTGE) which yielded a total of 79 unique bands with an average of 34± 6 bands in each sample (Fig. 2). A Mantel test also showed that Bray-Curtis and Dice similarity matrices calculated from TTGE profiles were significantly correlated (r=0.748, p<0.05). The hierarchical clustering analysis (HCA) identified four clusters of AAP bacteria (Fig. 2) confirmed by ANOSIM statistics performed from both presence/absence and relative intensity of TTGE bands (data not shown). Cluster A contained populations from the coastal stations UPW and St. 1, together with those of the surface waters of the Algerian Basin (St. 3-5m). Cluster B represented the deep euphotic zone of the Algerian Basin (St. 3) and the Strait of Sicily (St. 5) whereas Cluster C grouped TTGE profiles of samples collected above the DCM in the Ionian, Tyrrhenian, Ligurian Seas and the Strait of Sicily. AAP bacteria from deep euphotic waters of stations St. 9 and St. DYF clustered together in Cluster D. Richness and diversity (E_{var} and H') values were not significantly different between clusters (data not shown). E_{var}, H' and richness were positively correlated to PAR and biological activity indicators and were negatively correlated with NO₃ and NO₂ concentrations.

To obtain two-dimensional-coordinates for samples and to confirm HCA groupings,
 ordination of Bray-Curtis similarities among sample profiles was performed by non-metric

multidimensional scaling (MDS). With the exception of samples St1-80m and St. 3-5m, the four clusters recovered by HCA were defined (data not shown). Populations above the DCM were significantly more similar to each other than to those in or below the DCM (R=0.419, p<0.001). Dimension 1 from the TTGE/MDS analyses was negatively correlated to nutrient variables (NO₃ and NO₂). In contrast to dimension 1, dimension 2 co-varied with numerous variables characterizing biological activity (e.g. oxygen, bacterial production, cell densities).

Variables significantly related to dimensions 1 and 2 were integrated in a Canonical Correspondence Analysis (CCA) performed from relative intensity of TTGE bands. CCA revealed that more than 50% of the variability of AAP communities was described by the 11 selected variables (Fig. 3). The four clusters (A to D) previously detected by HCA analysis were retrieved. Cluster D was mainly separated according to NO₃ and NO₂ variables, while clusters A and C were discriminated by pH, PAR, total organic carbon, biogenic activity variables and particulate nitrogen and phosphorus. None of the selected variables clearly explained pattern of similarity within cluster B.

Phylogenetic analyses of pufM genes

Ten out of the 29 samples were selected for phylogenetic analyses on the basis of their location and the diversity of AAP populations. Of a total of 388 clones analyzed, 44 distinct OTUs were identified after grouping the sequences at 94% nucleic acid sequence similarity (Fig. 4, Table S1). Coverage values (Table 1) and rarefaction curves (data not shown) indicated that most of the diversity was detected in most libraries (> 71%). Differences in AAP population diversity were not significant between samples collected above and below the DCM.

303 MDS for AAP populations from the 10 selected samples were performed from Dice
 304 similarity matrices for both TTGE and clone library analyses (Fig. S4). As also expressed by
 305 the significant correlation between Dice similarity matrices for TTGE and clone libraries

FEMS Microbiology Ecology

(R=0.39, p=0.05), both methods gave reliable information. The discrepancy observed for St.9-65m could be due to the low coverage of the clone library (Table 1).

About half of the *pufM* sequences were less than 94% identical to known sequences (Table S1). Most sequences were related to clones retrieved from the Mediterranean Sea (29%) and coastal environments (52%) including the Delaware and Monterey Bays. A unique sequence (PROSOPE-7) was affiliated with a clone from the Atlantic Ocean. The phylogenetic analysis demonstrated that the sequences were distributed into 7 of the 12 phylogroups previously defined by Yutin et al. (2007). None of the sequences was affiliated with the A, D, H, J and L groups (Fig. 4, Table S1) that are mainly found in anoxic environments (Yutin et al., 2007).

Only two sequences, belonging to PROSOPE-48 and PROSOPE-52 phylotypes, were highly similar to that of cultured representatives (Methylobacterium radiotolerans and Erythrobacter longus, respectively). Among the 7 AAP groups recovered from this study, only groups B and K were present in all samples (Fig. 5). PROSOPE-6 which shared 99% similarity with a clone from the Monterey Bay (Béja et al., 2002) was the main phylotype of group B. Representing 11% of the *pufM* sequences, PROSOPE-6 was prevalent (> 80%) at coastal and mesotrophic stations (Fig. 4, Table S1). Most of our sequences (~80%) fell into Group K which contained *Gammaproteobacteria* representatives including few isolates such as Congregibacter litoralis KT71 (Eilers et al., 2001) and strains NOR5-3 and NOR51B and HTCC2080 (Cho et al., 2007) and BAC clones EBAC65D09 and EBAC29C02 (Béjà et al., 2002), all related to the OM60 clade (Rappé et al., 1997). Among the 30 OTUs affiliated to Group K, 10 (i.e. PROSOPE -10, -11, -38) and 9 (i.e. PROSOPE -12, -15, -45) phylotypes were only detected at the coastal Atlantic (St. UPW and St. 1) and at Mediterranean stations, respectively. Among gammaproteobacterial sequences, PROSOPE-34, which represented up to 20% of the total *pufM* sequences, dominated at meso- and eutrophic stations while other

phylotypes (i.e. PROSOPE-14, -42, -45) prevailed (>80%) at oligotrophic stations. The distribution of the other groups was sporadic. A few clones recovered at MIO and UPW stations clustered in the group C. The Roseobacter-like (group G) and Rhodobacter-like (groups E and F) clones were only distributed in the nutrient rich coastal waters of the Morocco upwelling (st. UPW) and the Strait of Gibraltar (UPW and St. 1) (Fig. 5). The phylotype PROSOPE-7 consisting of a few clones retrieved at station MIO grouped into the group I. The closest cultured relatives of this group are *Betaproteobacteria* widely distributed in freshwater and estuarine environments (Page et al., 2004; Yutin et al., 2007). This could suggest that closely related organisms also thrive in oceanic surface waters.

Discussion

The Mediterranean Sea is semi-enclosed allowing the study, on a reduced scale, of processes typical of the world's oceans. It constitutes a unique environment for ecological studies as it offers a range of trophic conditions, including extreme oligotrophy, particularly in summer when the water column is strongly stratified. The PROSOPE cruise was organized a few years before the discovery of the ecological significance of AAP bacteria in oceanic waters (Kolber et al., 2001). Therefore, the sampling strategy was not intended to allow the examination of their abundance and their contribution to the microbial community structure using infrared microscopy and fluorometry methods. One of the main objectives of the present study was to investigate environmental factors influencing biogeography of AAPs by analyzing the *pufM* gene diversity in archived bacterial community DNA samples. We agree that top-down regulation factors probably contribute to the distribution of AAP populations (Koblížek et al., 2007; Zhang & Jiao, 2009), however, this study provides one of the first look on bottom-up factors that contribute to longitudinal and vertical distribution and diversity of AAP populations.

357

1	
•	
2	
~	
3	
3 4 5	
+	
5	
-	
6	
_	
6 7	
8	
q	
0	0
1	0
ż	0 1 2 3 4
1	1
1	2
I	Z
1	3
'	0
1	4
1	5
1	6
I	6
1	7
1	<u>.</u>
1	8
Ĵ	~
1	9
	Λ
2	0
2	1
<u> </u>	
2	1234567890123456780
~	~
2	3
ი	1
~	4
2	5
<u> </u>	0
2	6
_	-
2	1
n	0
2	0
2	9
_	-
3	0
0	Ā
3	1
2	2
0	2
ર	3
0	0
3	4
~	-
3	5
h	c
3	ю
Q	7
0	'
3	8
~	~
3	9
л	^
	0
4	1
ŗ	-
4	2
,	2 3
4	3
Δ	4
4	5
	6
4	
+	1
4	8
4	9
-	^
С	0
5	1
J	1
5	2
_	
5	3
5	3
5	4
5	4
5 5	4 5
5 5	4 5
5 5 5	4 5 6
5	4 5 6

358 Linking AAP population structure and diversity to environmental parameters

359 The diversity of AAP populations as evident in *pufM* sequences was relatively 360 constant along both transects and was similar to that reported by Jiao et al. (2007) in 361 oligotrophic oceanic provinces. We found a positive correlation between the PAR and 362 diversity (H'/E_{var}) indices, suggesting that AAP populations are more diverse in the upper 363 surface layer and that light affected their community structure. In contrast to Jiao et al. 364 (2007), who reported that the AAP diversity decreased with increasing Chla concentrations, 365 we did not find a significant correlation between these variables. Our study found, however, 366 an inverse relationship between AAP diversity and nitrate levels. This result together with the 367 highest richness observed for the highly oligotrophic station MIO also supports the hypothesis 368 that inorganic nitrogen concentrations may affect their distribution (Waidner & Kirchman, 2007) and that AAP diversity decreases with increasing trophic status (Jiao et al., 2007). This 369 370 suggests that the scarcity of inorganic nutrients and dissolved organic matter in oligotrophic 371 environments leads to a higher specialization of AAP assemblages and increases the 372 functional redundancy (Curtis & Sloan, 2004) for this group, as it has been observed 373 elsewhere for other bacterial populations (Wohl et al., 2004). This hypothesis is consistent 374 with the contrasting variation of abundance and diversity of AAP assemblages previously 375 suggested by a large-scale survey analysis of their distribution patterns (Jiao et al., 2007).

376

59 60

Variation in the composition of AAP assemblages and environmental context

The HCA and MDS analyses suggest that AAP populations follow nutrient status and that oceanic Mediterranean populations differed from those of the Atlantic coast. This clustering deduced from TTGE analyses was consistent with the clone library results with some phylotypes retrieved only at coastal stations while others dominated in oligotrophic waters.

Our analyses suggest that stratification is a critical factor determining the vertical distribution of AAP species in the Mediterranean Sea. Similar vertical stratification has been reported for the whole bacterial community structure in the Mediterranean Sea (Acinas et al., 1997; Ghiglione et al., 2008) and in other oligotrophic waters, including the Pacific and Atlantic oceans, the Caribbean Sea (Lee & Fuhrman, 1991), and Antarctic environments (Murray et al., 1998). Multivariate analyses of environmental parameters and molecular fingerprinting profiles revealed that the variation in AAP populations with depth is due to synergetic driving forces similar to those involved in the vertical stratification of bacterial communities at the DYF station (Ghiglione et al., 2008). Fifty percent of the variability of AAP composition was explained by the selected environmental parameters. This suggests that the composition of AAP assemblages may be additionally influenced by other factors such as specific and multiple interactions with other organisms of their environment such as their bacterial counterparts, protists, viruses, and metazoans (Fuhrman, 2009) as well as intrinsic photoheterotrophic capabilities and physiological peculiarities of each species. Indeed, AAP bacteria have diverse metabolisms, ranging from generalists (e.g. *Erythrobacter*, *Roseobacter*) to specialized species (e.g. Citromicrobium) able to grow on a broad and a narrow spectrum of carbon sources (Yurkov and Csotonyi 2009). Further in-depth studies on the physiology and metabolism of environmentally significant organisms and on their biological interactions with other planktonic counterparts are essential to better understand the ecology of marine AAP.

Phylogenetic composition of populations

Most *pufM* sequences retrieved from our samples belonged to clades previously identified in a global metagenomic survey (Yutin et al., 2007). As previously observed in

FEMS Microbiology Ecology

405 environmental surveys of these genes (e.g. Béjà *et al.*, 2002), most of the OTUs retrieved in
406 this study were distantly related to known anoxygenic phototrophs. More than 80% of our
407 *pufM* sequences had their best matches with clone sequences obtained from the Mediterranean
408 Sea and from coastal areas suggesting that AAP populations in this sea are different from
409 those in open oceans. We acknowledge, however, that this observation may be biased by the
410 low number of offshore *pufM* sequences available in the databases.

In contrast to previous PCR-based studies (Oz et al., 2005; Yutin et al., 2005), Alphaproteobacteria constitute a minor fraction of the Mediterranean AAP community. Members of the *Roseobacter*-related group (group G), often a key player in diverse marine systems (Buchan et al., 2005; Yutin et al., 2007), were only detected at Atlantic coastal stations. While this finding supports the notion that *Roseobacter*-like bacteria are favored by nutrient-rich conditions, in agreement with the common association of *Roseobacter* with phytoplankton blooms (González et al., 2000; Suzuki et al., 2001), it seems to contradict their suspected important role and dominance in the Mediterranean Sea (Oz et al., 2005). However, since *Roseobacter* species can be more abundant in winter than in summer, this discrepancy with previous studies (Oz et al., 2005; Yutin et al., 2005) could be explained by the different sampling period.

Previous studies have revealed a high contribution of Gammaproteobacteria to AAP populations (Béjà et al., 2002; Hu et al., 2006; Yutin et al., 2007). However, the large proportions observed in this study (~ 80%) have never been reported from any environments. Possible PCR biases cannot be definitively ruled out to explain the large dominance of Gammaproteobacteria in our samples. However, by using the same primer combination to study the diversity of AAP in arctic waters and in coastal systems of the English Channel, we did not find such high percentages of gammaproteobacterial sequences (Lehours et al., Dahan et al., unpublished results). Consistent with previous observations, gammaproteobacterial

sequences were retrieved in eutrophic and oligotrophic waters (Hu et al., 2006; Jiao et al. 2007). Athough some gammaproteobacterial phylotypes were obtained from both nutrient levels, the distribution of most suggests an adaptation to specific trophic conditions. For example, some of our cloned *pufM* sequences from the Atlantic coast were similar to the sequences belonging to the OM60 clade abundant in coastal oceans (Béjà et al., 2002; Yutin et al., 2007). Although prevalent at coastal stations, phylogroup B also showed a ubiquitous distribution across the different trophic regimes (Yutin et al., 2007). Onboard enrichment experiments performed along the PROSOPE transect demonstrated a switch from a phosphorus limitation in the surface layer to organic carbon limitation in the deep chlorophyll maximum (Van Wambeke et al., 2002). Specific adaptation capabilities to extreme oligotrophy are likely to explain the success of phylogroups B and K in typical Mediterranean waters. In line with this hypothesis, genes coding for several storage compounds were identified in the genome of the gammaproteobacterium Congregibacter litoralis (Fuchs et al., 2007). Among them, the storage compounds cyanophycin and polyphosphate probably reflect an adaptation to fluctuating carbon and phosphorus availability.

446 Conclusion

The molecular analyses of AAP diversity conclusively demonstrated that typical Mediterranean populations varied greatly along depth profiles, with strong and opposite gradients of light and nutrient availability. This variation with depth was much greater than seen across both transects. During stratification, the vertical distribution of AAP bacteria seems to be governed by the same environmental variables as that of the whole bacterial community (Ghiglione et al., 2008). This result, however, does not imply that they may act as strict heterotophs in situ and that phototrophy has a minor impact on their distribution and lifestyle. Since evidence from other studies indicate that AAP use their phototrophic

FEMS Microbiology Ecology

3 4	455
5 6	456
7 8 9	457
10 11	458
12 13	459
14 15 16	460
17 18	461
19 20 21	462
22 23	463
24 25	464
26 27 28	465
29 30	466
31 32 33	467
34 35	468
36 37 38	469
39 40	470
41 42	471
43 44	472
45 46	473
40 47	474
48	475
49	476
50 51	477
52	478
53	479
54 55	480 481
55 56	481
57	483
58	484
59 60	485
59	

455 capability at nutrient-poor levels (Cho *et al.*, 2007; Spring *et al.*, 2009), additional variables
456 may influence their populations in the extreme oligotrophic conditions prevailing in the
457 Mediterranean Sea.

This study was the first to reveal such a high abundance of gammaproteobacterial AAP in the environment. An ecotypic differentiation was suggested by both TTGE and cloning approaches. Further culture efforts are therefore needed to expand the diversity of gammaproteobacterial isolates and to delineate the environmental parameters that govern the activity and distribution of gammaproteobacterial trophic ecotypes.

Acknowledgements

465 We wish to thank H. Claustre for coordinating the PROSOPE cruise and L. Garczarek, D. Marie and F. Partensky for sampling. We are grateful to M. Perennou (Biogenouest 466 Sequencing Platform at the Station Biologique) for help with sequencing. We also thank 467 Milton Da Costa and I. Wagner-Döbler for the gift of the cultures of *Erythrobacter longus*, *E*. 468 469 *litoralis*, and *Dinoroseobacter shibae*, respectively. This work was supported by the programs 470 PROOF and LEFE-CYBER (CNRS-INSU). A-C. Lehours benefited from a post-doctoral 471 fellowship from the CNRS. Kirchman and Cottrell were supported by NSF MCB-0453993. 472 **References** 473 474 475 476 Achenbach LA, Carey J & Madigan MT (2001) Photosynthetic and phylogenetic primers for 477 detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 478 **67:**2922–2926. 479

480 Acinas SG, Rodríguez-Valera F & Pedrós-Alió C (1997) Spatial and temporal variation in
481 marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S
482 rDNA. *FEMS Microbiol Ecol* 24:27-40.

484 Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser
485 CM & DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic
486 phototrophs. *Nature* 415: 630–633.
487

Berman T, Walline PD, Schneller A, Rothenberg J & Towsend DW (1985) Secchi disk depth record: a claim for the eastern Mediterranean. Limnol Oceanogr 30:447-448. Buchan A, González JM & Moran AM (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665-5677. Chazdon RL, Colwell RK, Denslow JS & Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. Pp. 285-309 in F. Dallmeier and J. A. Comiskey, eds. Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies. Parthenon Publishing, Paris. Cho JC, Stapels MD, Morris RM, Vergin KL, Schwalbach MS, Givan SA, Barofsky DF & Giovannoni SJ (2007) Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ Microbiol 9:1456–1463. Clarke KR & Warwick RW (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition, Primer-E, Plymouth. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM & Tiedje JM (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acid Res 31:442-443. Cottrell MT, Mannino A & Kirchman D (2006) Aerobic anoxygenic phototrophic bacteria in the mid-Atlantic bight and the north Pacific gyre. Appl Environ Microbiol 72:557-564. Cottrell MT, Michelou VK, Nemcek N, Ditullio G & Kirchman DL (2008) Carbon cycling by microbes influenced by light in the Northeast Atlantic Ocean. Aquat Microb Ecol 50:239-250. Curtis TP & Sloan WT (2002) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Op Microbiol 7:221-226. Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper Ocean: implications and consequences. Appl Environ Microbiol 72:7431-7437. Eilers H, Pernthaler J, Peplies J, Glöckner FO, Gerdts G & Amann R (2001) Isolation of novel pelagic bacteria from the german bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134-5142. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson JM, Glöckner FO & Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459: 193-199.

2		
3	538	
4	539	Garczarek L, Dufresne A, Rousvoal S, West NJ, Mazard S, Marie D, Claustre H, Raimbault
5 6	540	P, Post AF, Scanlan D & Partensky F (2007) High vertical and low horizontal diversity of
7	541	Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiol Ecol
8	542	60 :189-206.
9	543	00.107-200.
10	543 544	Concerned IC & Disher C (1095) Water manages and simulation in the Western Alberton See and
11		Gascard JC & Richez C (1985) Water masses and circulation in the Western Alboran Sea and
12	545	in the Straits of Gibraltar. <i>Prog Oceanog</i> 15: 175–216.
13	546	
14	547	Ghiglione JF, Palacios C, Marty JC, Mével G, Labrune C, Conan P, Pujo-Pay M, Garcia N &
15	548	Goutx M (2008) Role of environmental factors for the vertical distribution (0-1000 m) of
16 17	549	marine bacterial communities in the NW Mediterranean Sea. Biogeosciences Discuss 5:2131-
18	550	2164.
19	551	
20	552	González JM, Simó R, Massana R, Covert JS, Casamayor EO, Pedrós-Alió C & Moran MA
21	553	(2000) Bacterial community structure associated with a dimethylsulfoniopropionate-
22	554	producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246.
23		
24	555	Hammer Ø, Harper DAT & Ryan PD (2001) PAST: Paleontological Statistics Software
25	556	Package for Education and Data Analysis. Palaeontologia Electronica 4: 9pp.
26 27	550	Tackage for Education and Data Analysis. Talacontologia Electronica 4. 5pp.
28	557	Hill TCL Walch KA Harris IA & Moffatt DE (2002) Haing applaciaal diversity management
29		Hill TCJ, Walsh KA, Harris JA & Moffett BF (2003) Using ecological diversity measures
30	558	with bacterial communities. <i>FEMS Microbiol Ecol</i> 43 :1-11.
31	559	
32	560	Hu Y, Du H, Jiao N & Zeng Y (2006) Abundant presence of the gamma-like proteobacterial
33	561	pufM gene in oxic seawater. FEMS Microbiol Lett 263: 200–206.
34	562	
35	563	Hughes JB, Hellmann JJ, Ricketts TH & Bohannan BJM (2001) Counting the uncountable:
36 37	564	statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399-
38	565	4406.
39	566	
40	567	Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch
41	568	Microbiol 176 :243-254.
42	569	
43	570	Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F & Wang P (2007) Distinct distribution
44	571	pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global
45 46	572	ocean. Environ Microbiol 9: 3091–3099.
40 47	573	occan. Environ Microbiol 9. 5091–5099.
48		Kohlížak M. Možín M. Dog I. Doulton AI. & Drážil O. (2007) Danid grouth rotas of carobia
49	574	Koblížek M, Mašín M, Ras J, Poulton AJ & Prášil O (2007) Rapid growth rates of aerobic
50	575	anoxygenic prototrophs in the Ocean. Envir Microbiol 9: 2401–2406.
51	576	
52	577	Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C,
53	578	Koblížek M, Rathgeber C & Falkowski PG (2001) Contribution of aerobic photoheterotrophic
54	579	Bacteria to the carbon cycle in the ocean. Science 292:2492-2495.
55 56	580	
56 57	581	Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Kirchman DL & Lebaron P
58	582	(2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the south Pacific
59	583	Ocean. Appl Environ Microbiol 73 :4198-4205.
60	584	

1		
2 3	505	
4	585	Lee S & Furhman JA (1991) Spatial and temporal variation of natural bacterioplankton
5	586	assemblages studied by total genomic DNA cross-hybridization. <i>Limnol Oceanogr</i> 36 :1277-
6	587	1287.
7	588	Less des D. 9. Less des L. (1008) Menuerie et Esste en 2 nd Enstite et Elessien, 952 au
8 9	589	Legendre P & Legendre L (1998) Numerical Ecology, 2 nd English ed. Elsevier, 853pp.
10	590 591	Laturia L & Dark D (2006) Internative tree of life (iTOL), on online tool for phylogenetic tree.
11	591 592	Letunic I & Bork P (2006) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. <i>Bioinformatics</i> 23 :127-128.
12	592 593	display and annotation. <i>Dioinformatics</i> 23.127-128.
13 14	595 594	Lucea A, Duarte CM, Agustí S & Søndergaard M (2003) Nutrient (N, P and Si) and carbon
14	595	partitioning in the stratified NW Mediterranean. J Sea Res 49:157-170.
16	595 596	partitioning in the stratified it w Wednerfancan. J Sea Res 47.137-170.
17	597	Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. (2004) ARB: a software
18	598	environment for sequence data. Nucleic Acid Res 32 :1363-1371.
19 20	599	environment for sequence data. Tvactete fieta fiets 52.1505 1571.
20	600	Manca B, Burca M, Giorgetti C, Coatanoan C, Garcia MJ & Iona A (2004) Physical and
22	601	biochemical averaged vertical profiles in the Mediterranean regions: an important tool to trace
23	602	the climatology of water masses and to validate incoming data from operational
24	603	oceanography. J Mar Syst 48: 83–116.
25 26	002	
20 27	604	Mantel N (1967) The detection of disease clustering and a generalized regression approach.
28	605	Cancer Research 27: 209–220.
29		\mathbf{Q}
30	606	Marie D, Zhu F, Balagué V, Ras J & Vaulot D (2006) Eukaryotic picoplankton communities
31 32	607	of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE,
33	608	QPCR). FEMS Microbiol Ecol 55: 403–415.
34	609	
35	610	Mašín M, Zdun A, Ston-Egiert J, Nausch M, Labrenz M, Moulisová V & Koblížek M (2006)
36	611	Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat
37 38	612	Microbial Ecol 45 : 247–254.
39	613	
40	614	Moutin T & Raimbault P (2002) Primary production, carbon export and nutrients availability
41	615	in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst
42	616	33-34 :273-288.
43 44	617	
45	618	Mullins TD, Britschgi TB, Krest RL & Giovannoni SJ (1995) Genetic comparisons reveal the
46	619	same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities.
47	620	Limnol Oceanogr 40:148-158.
48 40	621	
49 50	622	Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K & DeLong EF (1998)
51	623	Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters off
52	624	Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595.
53	625	
54 55	626	Oz A, Sabehi G, Koblížek M, Massana R & Béjà O (2005) Roseobacter like bacteria in Red
55 56	627	and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ
50 57	628	<i>Microbiol</i> 71 :344–353.
58	629	
59	630	Page KA, Connon SA & Giovannoni SJ (2004) Representative freshwater bacterioplankton
60	631	isolated from Crater Lake, Oregon. Appl Environ Microbiol 70: 6542-6550.
	632	

1 2		
3 4 5	633 634 635	Ramírez-Flandes S & Ulloa O (2008) Bosque: Integrated phylogenetic analysis software. <i>Bioinformatics</i> 24 :2539-2541.
6 7 8 9 10	636 637 638 639	Rappé MS, Kemp PF & Giovannoni SJ (1997) Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. <i>Limnol Oceanogr</i> 42 :811-826.
11 12 13 14	640 641 642	Shapiro SS & Wilk MB (1965) An analysis of variance test for normality (complete samples). <i>Biometrika</i> 52 : 591–611.
15 16 17 18 19	643 644 645 646	Sieracki ME, Gilg IC, Thier EC, Poulton NJ & Goericke R (2006) Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. <i>Limnol Oceanogr</i> 51: 38–46.
19 20 21	647 648	Smith B & Wilson JB (1996) A consumers's guide to evenness indices. <i>Oïkos</i> 76 :70-82.
22 23 24 25	649 650 651 652	Spring S, Lünsdorf H, Fuchs BM & Tindall BJ (2009) The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium <i>Congregibacter litoralis</i> gen. nov., sp. nov. <i>Plos One</i> 4 : 1-23.
$\begin{array}{c} 26\\ 27\\ 28\\ 30\\ 31\\ 32\\ 33\\ 35\\ 37\\ 39\\ 41\\ 42\\ 44\\ 45\\ 46\\ 78\\ 9\\ 51\\ 52\\ 54\\ 55\\ 56\end{array}$	652 653 654 655	Stephens MA (1974) EDF Statistics for Goodness of Fit and Some Comparisons. <i>J Amer Stat Assoc</i> 69 : 730–737.
	656 657 658 659	Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP & Hanada S (2002) Photosynthetic apparatus in <i>Roseateles depolymerans</i> 61A is transcriptionally induced by carbon limitation. <i>Appl Environ Microbiol</i> 68 :1665-1673.
	660 661 662 663	Suzuki MT, Preston CM, Chavez FP & DeLong EF (2001) Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. <i>Aquat Microbiol Ecol</i> 24: 117–127.
	664 665 666 667	Van Wambeke F, Christaki U, Giannakourou A, Moutin T & Souvemerzoglou K (2002) Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. <i>Microb Ecol</i> 43 : 119–133.
	668 669 670 671	Waidner LA & Kirchman DL (2007) Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. <i>Appl Environ Microbiol</i> 73: 3936–3944.
	672 673 674 675	Waidner LA & Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene <i>pufM</i> in the Delaware estuary. <i>Appl Environ Microbiol</i> 74 :4012-4021.
	676 677 678	Ward JH (1963) Hierarchical Grouping to optimize an objective function. <i>J Amer Stat Assoc</i> 58 : 236-244.
57 58 59 60	679 680 681	Wohl DL, Arora S & Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. <i>Ecology</i> 85 :1534-1540.

Yurkov V & Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. Adv *Photosynth Res* **28**: 31–55.

 Yurkov V & van Gemerden H (1993) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84-89.

Yutin N, Béjà O & Suzuki M (2008) The use of denaturing gradient gel electrophoresis with fully degenerate pufM primers to monitor aerobic anoxygenic phototrophic assemblages Limnol Oceanogr Methods 6:427–440.

Yutin N, Suzuki MT & Béjà O (2005) Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71:8958–8962.

Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB & Béjà O (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9: 1464–1475.

Zeng YH, Chen XH & Jiao NZ (2007) Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett Appl Microbiol 45:639-645.

Zhang Y & Jiao N (2009) Roseophage RDJL 1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745-1749.

Table 1. Properties of the distribution of phylotypes in clone libraries. H': Shannon-Weiner index, ACE: Abundance-base Coverage Estimator. The richness estimator SChao1 was computed along with log-linear 95% confidence intervals.

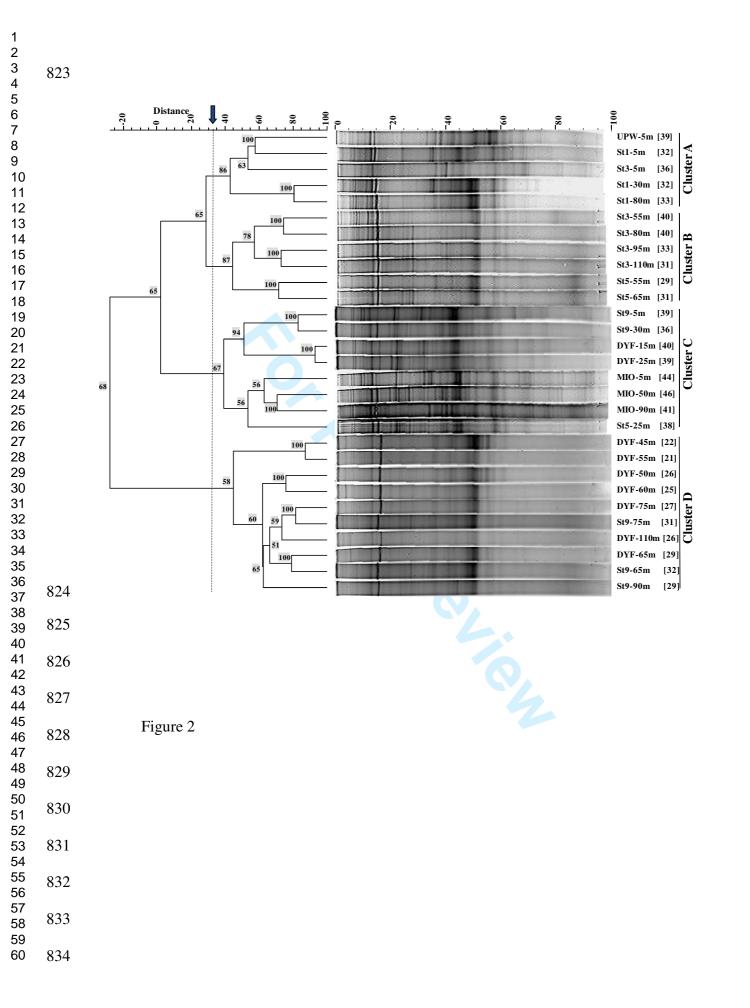
Station-Depth	Number of	ACE	Schao1	H'	Coverage (%)
-	distinct OTUs				C
UPW-5m	18	33	25 (20-50)	2.45	78
St1-5m	16	28	21 (17-45)	2.5	88
St1-30m	14	17	14 (13-23)	2.2	87
St1-80m	8	17	10 (7-30)	1.3	83
MIO-5m	13	19	19 (14-51)	2.4	90
MIO-50m	12	13	13 (12-22)	2	71
MIO-90m	18	28	22 (19-40)	2.6	86
St9-65m	13	35	35 (18-110)	2	61
DYF-15m	10	14	11 (10-21)	1.9	93
DYF-50m	7	7.5	7 (6-21)	1.4	82

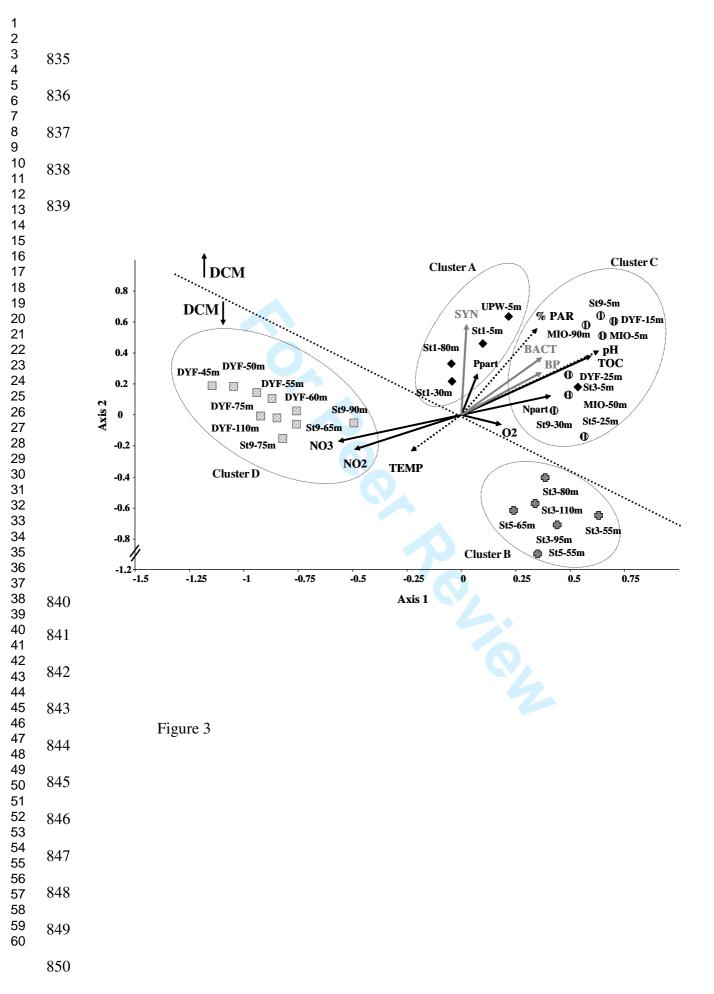
Z. QL

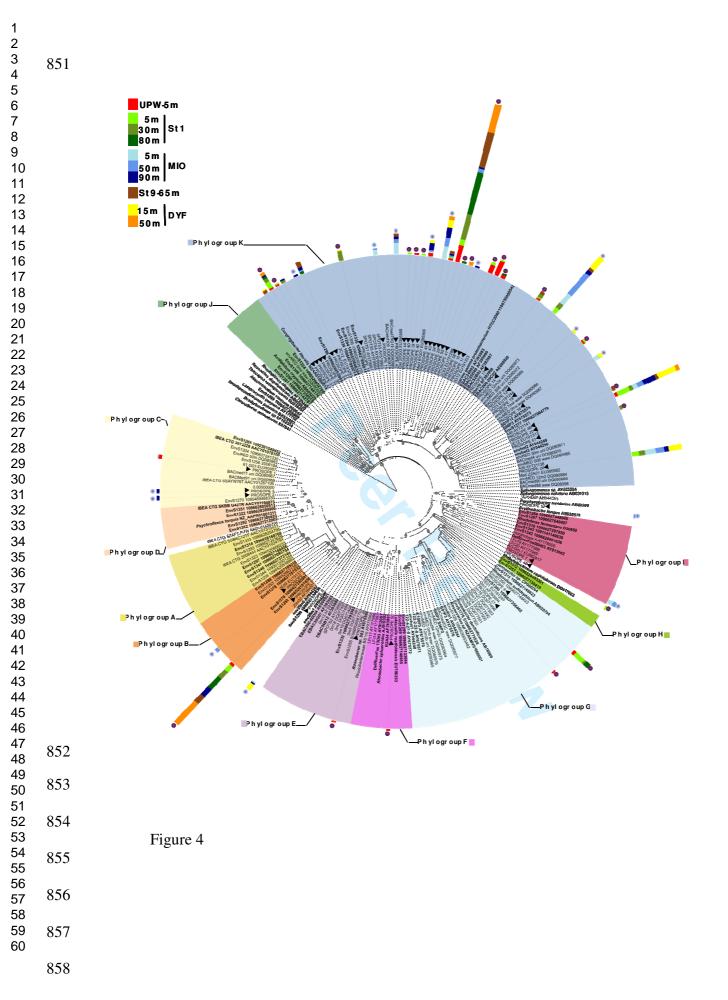
7 8 9 784 surface 9 10 11 785 analyzed 12 13 786 Figure 2 14 787 fragment 15 787 fragment 16 787 fragment 17 18 788 analysis 20 789 indicates 22 790 sample is 24 25 791 Figure 3 25 791 Figure 4 30 793 Figure 4 31 794 sequence 34 795 (NJ) tree 36 796 perform 37 796 perform 38 797 50% for 41 798 defined 42 798 defined 43 799 triangles 45 800 OTU in the 48 801 at the to 50 55 804 relative p 55 805	2		
6 783 Figure 1 8 784 surface 4 9 784 surface 4 10 785 analyzed 12 786 Figure 2 13 786 Figure 2 14 787 fragment 15 787 fragment 16 787 fragment 17 788 analysis 9 789 indicates 22 790 sample is 24 25 791 Figure 3 25 791 Figure 4 30 793 Figure 4 31 32 794 sequence 34 795 (NJ) tree 36 796 perform 39 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles 39 797 50% for 44 799 triangles 45 801 at the to <	4	782	
8 784 surface 10 11 785 analyzed 12 13 786 Figure 2 13 786 Figure 2 14 787 fragment 15 787 fragment 16 787 fragment 17 18 788 analysis 20 789 indicates 21 790 sample is 22 790 sample is 24 25 791 Figure 3 25 791 Figure 4 30 793 Figure 4 31 32 794 sequence 34 795 (NJ) tree 36 796 perform 38 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles 44 799 triangles 45 800 OTU in 1 46 800 OTU in 1 4	6	783	Figure 1
11 785 analyzed 12 13 786 Figure 2 13 786 Figure 2 15 787 fragment 16 787 fragment 17 18 788 analysis 20 789 indicates 21 790 sample is 22 790 sample is 24 25 791 Figure 3 25 791 Figure 4 32 792 of the T1 29 793 Figure 4 31 794 sequence 33 795 (NJ) tree 36 796 perform 38 797 50% for 41 798 defined 14 42 798 defined 14 43 799 triangles. 44 799 triangles. 45 800 OTU in ta 48 801 at the to 50 55 804 relative p 55	8	784	surface of
13 786 Figure 2 14 787 fragment 15 787 fragment 17 788 analysis 20 789 indicates 21 789 indicates 22 790 sample is 24 25 791 Figure 3 25 791 Figure 4 26 792 of the TT 29 793 Figure 4 31 794 sequence 32 794 sequence 34 795 (NJ) tree 36 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles. 44 799 triangles. 45 800 OTU in 1 48 801 at the to 50 54 804 relative p 55 804 relative p 56 805 59 59 805 59 <	11	785	analyzed
15 787 fragment 17 788 analysis 19 789 indicates 20 789 indicates 21 790 sample is 22 790 sample is 24 791 Figure 3 25 791 Figure 4 26 792 of the TT 29 793 Figure 4 31 32 794 32 794 sequence 34 795 (NJ) tree 36 37 796 37 796 perform 38 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles 45 800 OTU in 1 46 800 OTU in 1 48 801 at the to 50 54 Roat relative p 55 804 relative p 55 56 805 59 59<	13	786	Figure 2
18 788 analysis 19 789 indicates 20 789 indicates 21 790 sample is 24 25 791 Figure 3 26 792 of the TT 29 792 of the TT 29 793 Figure 4 31 794 sequence 34 795 (NJ) tree 36 796 perform 39 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles 44 799 triangles 45 800 OTU in 1 48 801 at the to 50 51 802 found to 52 56 804 relative p 55 805 59 805	15	787	fragment
20 789 indicates 21 790 sample is 22 790 sample is 24 25 791 Figure 3 26 792 of the TT 29 793 Figure 4 31 32 794 sequence 33 795 (NJ) tree 36 796 perform 36 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles 44 799 triangles 45 800 OTU in triangles 46 800 OTU in triangles 47 802 found to 53 803 Figure 5 54 804 relative p 55 804 relative p 58 805 59	18	788	analysis
22 790 sample is 23 791 Figure 3 25 791 Figure 3 26 792 of the TT 29 793 Figure 4 30 793 Figure 4 31 32 794 sequence 33 795 (NJ) tree 36 796 perform 39 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles. 44 799 triangles. 45 800 OTU in 1 48 801 at the to 50 51 802 found to 52 803 Figure 5 56 804 relative p 57 58 805	20	789	indicates
25 791 Figure 3 26 792 of the TT 29 30 793 Figure 4 31 32 794 sequence 33 795 (NJ) tree 36 796 perform 38 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles. 45 800 OTU in 6 45 801 at the to 50 51 802 found to 52 54 804 relative p 55 804 relative p 57 58 805 59 60	22	790	sample is
27 792 of the TI 28 793 Figure 4 30 793 Figure 4 31 32 794 sequence 33 795 (NJ) tree 36 796 perform 39 797 50% for 41 798 defined 1 42 798 defined 1 43 799 triangles. 45 800 OTU in the toto 50 51 802 found tot 51 802 found tot 55 804 relative p 56 805 59	25	791	Figure 3
29 793 Figure 4 31 794 sequence 32 794 sequence 33 795 (NJ) tree 36 796 perform 37 796 perform 39 797 50% for 41 798 defined 42 798 defined 43 799 triangles 45 800 OTU in the 45 801 at the to 50 51 802 found to 51 803 Figure 5 55 804 relative p 57 58 805	27	792	of the TT
32 794 sequence 33 795 (NJ) tree 36 796 perform 37 796 perform 38 797 50% for 40 798 defined 41 798 defined 42 798 defined 43 799 triangles 45 800 OTU in triangles 45 801 at the to 50 51 802 found to 51 802 found to 52 56 804 relative p 55 805 59 60 60 60	29 30	793	Figure 4
34 795 (NJ) tree 36 796 perform 37 796 perform 38 39 797 50% for 40 41 798 defined 42 42 798 defined 43 44 799 triangles 45 46 800 OTU in triangles 48 49 801 at the to 50 51 802 found to 52 53 803 Figure 5 55 804 relative p 57 58 805 59 60 60	32	794	sequence
36 796 perform 38 39 797 50% for 40 40 41 798 defined 42 42 798 defined 43 44 799 triangles 43 44 799 triangles 45 46 800 OTU in the tot of tot of the tot of t	34	795	(NJ) tree
39 797 50% for 40 798 defined 41 798 defined 42 798 defined 43 799 triangles 44 799 triangles 45 800 OTU in the second secon	36 37	796	perform
41 798 defined 42 799 triangles. 43 44 799 triangles. 45 46 800 OTU in the second s	39	797	50% for
44 799 triangles. 45 46 800 OTU in the total state of total state	41	798	defined
46 800 OTU in t 47 801 at the to 48 801 at the to 50 50 50 51 802 found to 52 53 803 Figure 5 54 804 relative p 55 805 59 60 60 60	43 44	799	triangles.
48 801 at the to 50 50 51 802 found to 52 53 803 Figure 5 53 54 Figure 5 55 56 804 relative p 57 58 805 59 60 60	46	800	OTU in t
51 802 found to 52 53 803 Figure 5 53 54 803 Figure 5 55 56 804 relative p 57 58 805 59 60 60 60 60	48	801	at the to
53 803 Figure 5 54 804 relative p 55 804 relative p 57 58 805 59 60 60	51	802	found to
55 56 804 relative p 57 58 805 59 60	53	803	Figure 5
58 805 59	55 56	804	relative p
60	58	805	
806	59 60	806	

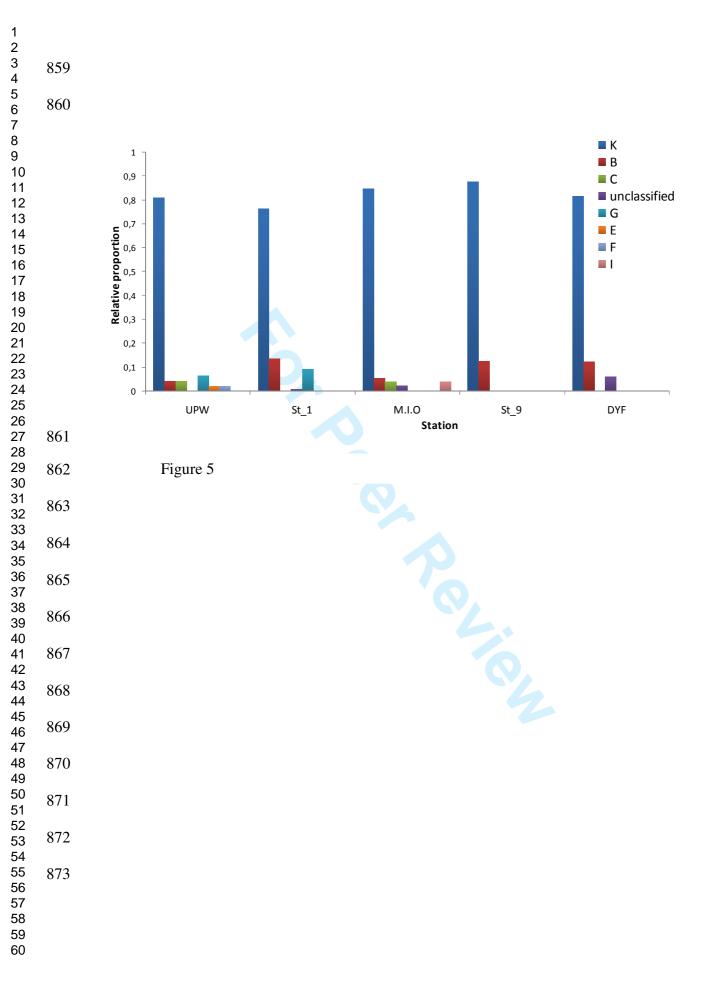
Figure Legends

Figure 1. Track of the PROSOPE cruise superimposed on the composite SeaWiFS image of surface chlorophyll *a* concentrations in September 1999. Arrows indicated the stations analyzed in this study. ST#, station number.


Figure 2. Temporal temperature gradient gel electrophoresis (TTGE) analyses of *pufM* gene fragments amplified from DNA samples from the Mediterranean Sea. Hierarchical cluster analysis was performed as indicated in the Experimental procedures section. The dashed line indicates the distance chosen for cluster separation. The number of distinct TTGE bands per sample is indicated between brackets. DCM: deep Chlorophyll maximum.


Figure 3. Canonical correspondence analysis (CCA) performed using relative intensity peak
of the TTGE bands. Samples and environmental parameters are coded as in Fig. S2.


Figure 4. *pufM* phylogenetic tree showing inferred phylogenetic relationships of *pufM* gene sequences cloned from the Mediterranean samples. The tree is based on a Neighbor-Joining (NJ) tree to which short sequences were added by ARB_PARISMONY. Sequences used to perform NJ tree are marked in bold and grey circles on nodes represent confidence values > 50% for branches found in the initial NJ tree. Color ranges highlight the different groups defined by Yutin *et al.* (2007). Sequences retrieved in this study are indicated by filled triangles. The multi-value bar charts represent the relative frequencies of the corresponding OTU in the different clone libraries. Colors used to represent the clone libraries are indicated at the top of the figure. Green and blue crosses indicate that the corresponding OTU was found to be dominant (>80%) at meso-eutrophic and oligotrophic conditions, respectively.


Figure 5. Distribution of the AAP phylogroups along the PROSOPE transects based on their
relative proportion in the clone libraries.

Supplementary material

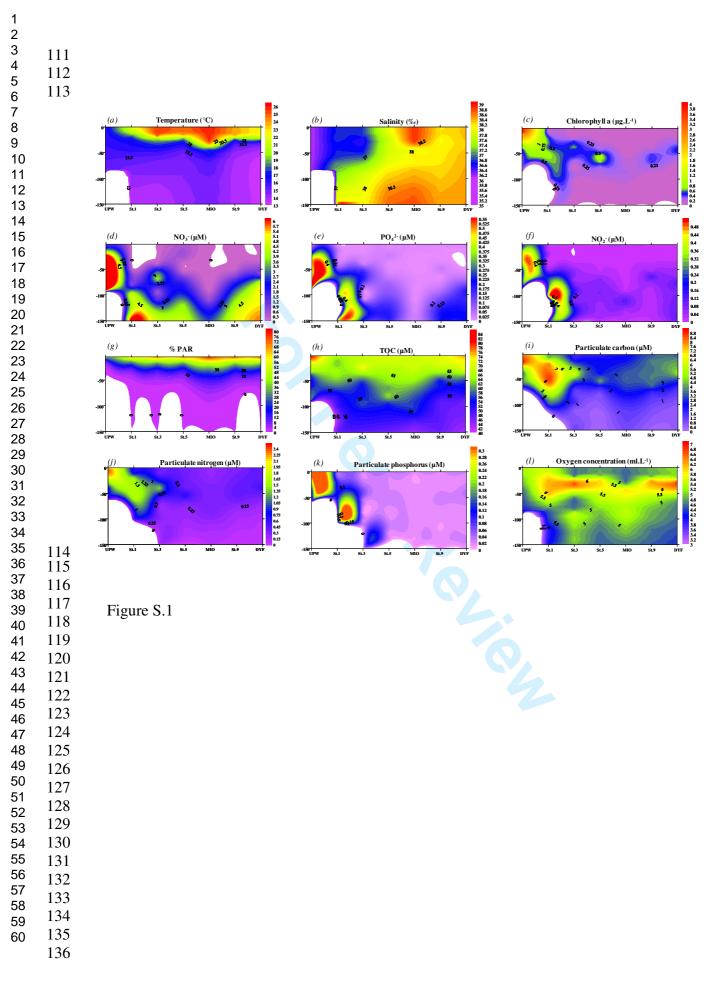
Table S1. Representative sequence for each OTU, their closest relative by BLAST and percentage identity. Med, Mediterranean Sea; DelBay, Delaware Bay; MontBay, Monterey Bay; AO, Atlantic Ocean; Sarg, Sargasso Sea; Mar. Env, Marine environment.

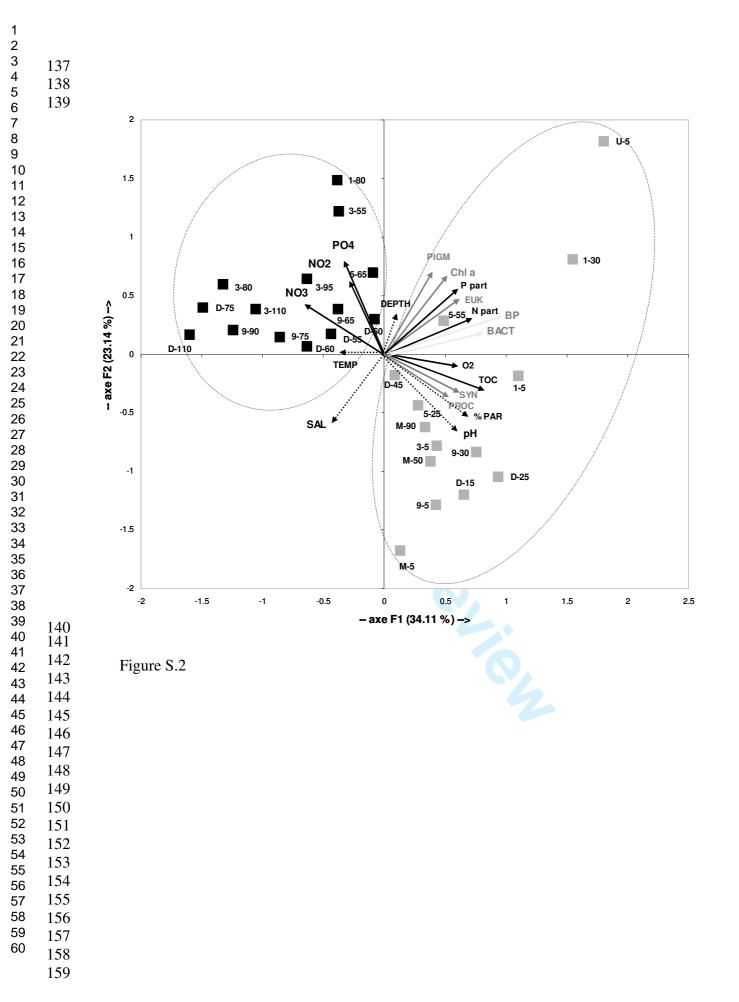
Figure S1. Hydrological conditions along both transects of the PROSOPE cruise. Both transects (W-E from St. UPW to St. MIO and S-N from St. MIO to St. DYF) were plotted on each graph. (a) temperature, (b) salinity, (c) chlorophyll a, (d) nitrate, (e) phosphate, (f) nitrite (g) PAR, , (h) total organic carbon, (i) particulate carbon, (j) particulate nitrogen, (k) particulate phosphorus, and (l) oxygen. Stations and depths (in m) are indicated on the horizontal and vertical axes respectively.

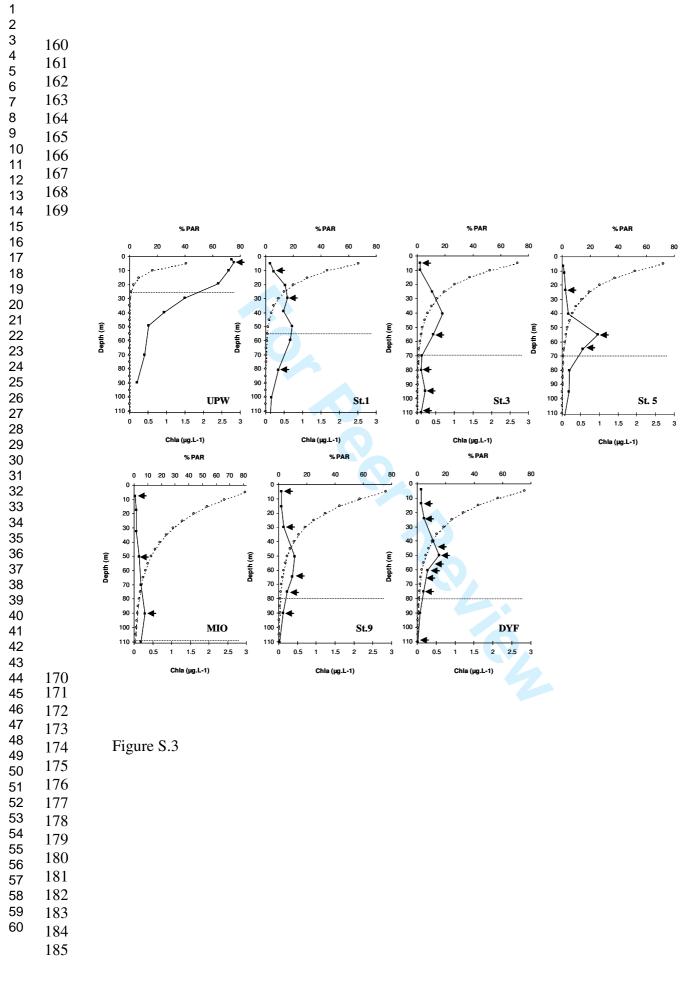
Figure S2. Principal component analysis (PCA) of environmental parameters. The percentage of variability explained by each axis is indicated. Samples (squares) and variables (arrows) are plotted against the first two axes. Samples are labeled as follows: Station-Depth. Stations U, D and M correspond to UPW, DYF and MIO respectively. Black arrows represent variables characterizing the "physical environment": TEMP (temperature, °C), pH, PAR (percentage of the photosynthetically available radiation), O₂ (concentration in dissolved oxygen, ml.1⁻¹), SAL (salinity, %₀), Depth (m). Grey arrows represent variables characterizing the "biological activity": PROC (Prochlorococcus cell concentration, cell.ml⁻¹), SYN (Synecococcus cell concentration, cell.ml⁻¹), BACT (bacteria cell concentration, cell.ml⁻¹), EUK (eukaryotes cell concentration, cell.ml⁻¹), BP (bacterial production, ng C.l⁻¹.h⁻¹), Chla (chlorophyll a, μg , l^{-1}), PIGM (accessory pigments, μg , l^{-1}). Black dashed arrows represent variables characterizing the "trophic status":TOC (total organic carbon, µM), NO₃ (nitrate,

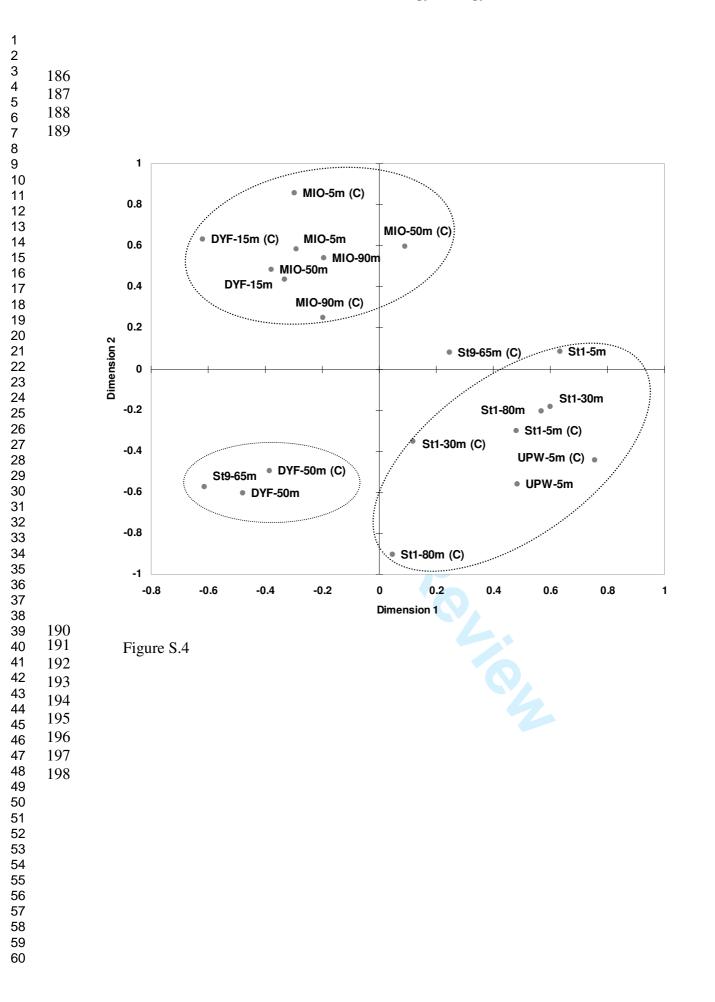
FEMS Microbiology Ecology

3 4	26
5 6	27
7 8 9	28
10 11	29
12 13 14	30
14 15 16	31
17 18	32
19 20 21	33
22 23	34
24 25	35
26 27 28	36
29 30	37
31 32	38
33	39
34 35 36	40
37 38	41
39 40	42
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


 μ M), PO₄ (phosphate, μ M), NO₂ (nitrite, μ M), N part (particulate N, μ M), P part (particulate P, µM). Samples collected above and below the DCM are indicated by grey and black squares respectively. Component 1, 2 and 3 (component 3, not shown) represent 34%, 23% and 12% of the total variance, respectively.


Figure S3. Profiles of chlorophyll a (Chla) (solid) and PAR (dashed) with depth. Arrows in the Chla profiles indicate sample depths. Dashed line indicates the limit of the euphotic layer $(Z_{1\%}).$


Figure S4. Multidimensional scaling plot (MDS) of AAP populations based on TTGE and cloning-sequencing of *pufM* genes. This plot corresponds to a two-dimensional visualization of the Dice distance matrix. "(c)" refers to data obtained from clone libraries analyses.


FEMS	Microbiology	Ecology
------	--------------	---------

PROSOPE 1 GG468943 2 - - 1 - - - 6G03 99 EU39554 Med PROSOPE 2 GG468944 - - - - 2 - - - 46F01 84 EU395550 Med PROSOPE 4 GG468946 - - - 2 - - - 2009 97 EU191310 DeBa PROSOPE 4 GG468946 - - - 3 2 - - - AO-0m-1 98 EU802417 AO PROSOPE 7 GG468949 - - - 1 - 4 - IE01 89 EU191249 DelBa PROSOPE 9 GG468951 10 1 - - - - - 2G12 98 EU39559 Mar. 6 PROSOPE 11 GG468953 - - - 1 - IE01 89 EU91333 DelBa PROSOPE 14 GG468956 - - - 3 1		0			No. of clones in libraries									Closest relative				
PROSOPE 2 COLR8934 - - - - 2 -	- - -	Kepresentativ clone	Accession No.	UPW-5m	St1-5m	St1-30m	St1-80m	MIO-5m	MIO-50m	ml0-0lM	St9-65m	DYF-15m	DYF-50m	Taxon/Clone	Identity (%)	Accession . No.	Environmental source	
PROSOPE 4 GOAGRANGE 5 -				2	-	-	-											
PROSOPE 4 Codessate 2 5 5 6 - 7 3 - 8 200m2 99 AF349001 Month PROSOPE 7 GOABS940 - - - 3 2 - - AO-Om-1 98 EU85217 AO PROSOPE 8 GOABS940 - - - 1 - 4 - IE01 88 EU191249 Delba PROSOPE 10 GOABS95 2 8 1 - - - - IE01 81 AY652816 Mar. C PROSOPE 10 GOABS95 - - - - - - 2G12 94 EU191310 Mar. AY652816 Mar. C I AY652816 Mar. C I AY652816 Mar. C I AY652816 Mar. C I IIII AY652816 Mar. C IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				-	-	-	-	-			-		-					
PROSOPE 6 Corressory 2 5 5 6 - 7 3 - 8 20m22 99 ÅE304001 Mont PROSOPE 7 GG468949 - - - 3 2 - - AOhm-1 98 EU836217 AO PROSOPE 9 GG468960 2 8 1 - - - - 1 10				-	-	-	-	-		2	-		-					
PROSOPE 7 GOAGESSA -				2	5	5	-	-		- 7	3		8					
PROSOPE 8 CO-6693-0 - - - 1 - 4 - IEO1 80 EU191249 DelBa PROSOPE 10 GG469350 2 8 1 2 -				-	-	-	-						-					
PROSOPE 9 GO468950 2 8 1 2 -				-	-	-	-			1	-	4	-				DelBay	
PROSOPE 10 GC468951 10 1 -	Р	ROSOPE 9		2	8	1	2	-	-	-	-		-				DelBay	
PROSOPE 12 GC468853 - - - - 1 - Barmed19_waw 93 DQ080989 Med PROSOPE 14 GC468855 - - - 3 1 - - 22G04 100 EU395559 Med PROSOPE 16 GC468956 - - - 3 1 - - 22G06 98 EU395571 Med PROSOPE 16 GC468959 1 1 2 - - 1 - EBAC000-29C02 96 AED191328 DelBa PROSOPE 19 GC468959 1 1 - - - - 1 212 12 12 13 DelBa PROSOPE 26 GC468960 2 9 2 3 4 9 112 1 211 21 212 88 EU191313 DelBa PROSOPE 26 GC468963 - - 1 - - 2A01 79 EU39552 Med PROSOPE 36 GC468966 - 1 -	Р	ROSOPE 10				-	-	-	-	-	-	-	-				Mar. en	
PROSOPE 14 GO468954 - 4 3 - 7 16 3 1 9 - Bacmed19 waw 98 DQ080989 Med PROSOPE 16 GG468955 - - - 3 1 - - 22G04 100 EU395561 Med PROSOPE 16 GG468957 1 1 2 - - - 2 22G06 98 EU393551 Med PROSOPE 16 GG468958 - 5 - - - 1 2 2 3 4 9 1 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 <th2< th=""> 2</th2<>	Р	ROSOPE 11	GQ468952	2	-	-	1	-	-	-	-	-	-	2G12	94	EU191333	DelBay	
PROSOPE IS GQ468955 -	Р	ROSOPE 12	GQ468953	-	-	-	-	-	-	-	-	1	-	Bacmed19_waw	93	DQ080989	Med	
PROSOPE 16 GQ468956 .			GQ468954	-	4	3	-		16	3	1	9	-					
PROSOPE 17 GG468957 1 1 2 - - - EBAC000-29C02 96 AE008920 Month PROSOPE 18 GG468958 - - 5 - - - 1 - EG466 98 EU191324 DelBa PROSOPE 20 GG468950 1 1 - 1 - 1 - 1 2 2 - 2B11 - - - - - - - - - - 22A01 79 EU395582 Med PROSOPE 29 GG468963 - - 1 - - - 2C11 2 2A08 88 EU191249 DelBa POS0573 GG468966 1 1 - - 1 - <td></td> <td></td> <td>GQ468955</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>22G04</td> <td></td> <td>EU395569</td> <td>Med</td>			GQ468955	-	-		-		1	-	-		-	22G04		EU395569	Med	
PROSOPE 18 GQ468958 - 1 1 2 - - - 2 - - 2 1 1 - - - - - 1 1 - - - - - 2 2 1 1 - - - - - 2 2 1 1 - - - - 2 2 1 1 - - - 2 2 1 - - - 2 2			GQ468956				-	3	-	-	-	2	-					
PROSOPE 19 GQ469959 1 1 - - - - - 1C03 95 EU191244 DelBa PROSOPE 20 GQ469950 2 9 2 - 3 4 9 1 12 2E12 88 EU191313 DelBa PROSOPE 26 GQ469962 - - 1 - 1 2 2 - Bacmed88_waw 98 DQ80983 Med PROSOPE 27 GQ469962 - - 1 - - - 2A01 79 EU395582 Med PROSOPE 36 GQ469964 1 4 18 - 2 1 - - 2A08 88 EU19124 DelBa PROSOPE 36 GQ469966 1 1 - - 1 - - 1 2 1 - 12 - 8 EU19124 DelBa PROSOPE 36 GQ469966 5 2 - - 1 - - 1 1 - - 2A08				1	1		-	-	-	-	1		-				MontBa	
PROSOPE 20 GQ468960 2 9 2 - 3 4 9 1 12 1 2E12 88 EU191313 Delba PROSOPE 26 GQ468961 - 5 3 - 6 5 3 - 8 - Bacmed88_waw 98 DQ80983 Med PROSOPE 27 GQ468962 - - 1 - 1 - 2 2 2 2 Delba PROSOPE GQ468964 11 4 14 18 - 2 1 12 - 8 2A08 88 EU191209 Delba PROSOPE 35 GQ468966 1 1 - - - - - 2G01 84 EU19129 Delba PROSOPE 36 GQ468966 5 2 1 - - 1 - - 2 2 0610 93 EU19129 Delba PROSOPE 36 GQ468966 5 2 1 - - 2A08 89 EU191209 Delba									-	-	-		-					
PROSOPE 26 GQ468961 - 5 3 - 6 5 3 - 8 - Barmed88_waw 98 DQ80983 Mcd PROSOPE 27 GQ468962 - - 1 - 1 2 2 - 2B11 99 EU191282 DelBa PROSOPE 36 GQ468964 11 4 14 18 - 2 1 - - 2CA01 79 EU39252 Med PROSOPE 36 GQ468966 1 1 - - - - 2G01 84 EU191249 DelBa PROSOPE 36 GQ468966 - 1 - - 1 - - 2G01 84 EU191249 DelBa PROSOPE 36 GQ468966 5 2 - - - 2A08 89 EU191249 DelBa PROSOPE 36 GQ468970 2 - 1 5 - 2 61G01 93 EU395566 Med PROSOPE 41 GQ468971 2 -							-		-	-								
PROSOPE 27 GQ468962 . . 1 1 2 2 . 2B11 99 EU191282 DelBa PROSOPE 29 GQ468963 . . 1 .							-						1					
PROSOPE 29 GC4689963 - - 1 - - - 22A01 79 EU395582 Med PROSOPE 34 GC4689963 1 1 4 14 18 - 2 1 12 - 8 2A08 88 EU191269 DelBa PROSOPE 35 GC468966 1 1 - - - - - - 2C12 84 EU191239 DelBa PROSOPE 36 GC468967 1 5 2 1 - 1 - - 2C12 84 EU191239 DelBa PROSOPE 38 GC468967 1 5 2 1 - 1 - 2A08 89 EU191249 DelBa PROSOPE 39 GC468970 2 - - 1 5 2 1 - - 2A08 88 EU191269 DelBa PROSOPE 40 GC468971 - - 1 1 - - 2A08 93 EU191269 DelBa PROSOPE 44 </td <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>					5								-					
PROSOPE 34 GQ468964 11 4 14 18 - 2 1 12 - 8 2A08 88 EU191269 DelBa PROSOPE 35 GQ468965 1 1 - 2G01 88 EU191269 DelBa Ba C0468971 - - - 2A08 23 EU191269 DelBa Ba<				-	-	-	-	-	1	4	2		-					
PROSOPE 35 GQ468965 1 1 - - - - - - 2G01 84 EU191324 DelBa PROSOPE 36 GQ468966 - 1 - - 1 - - 2G01 84 EU191324 DelBa PROSOPE 37 GQ468966 - 1 - - 1 1 - - 2C12 84 EU191293 DelBa PROSOPE 36 GQ468966 2 2 - - 1 1 - - 2C12 84 EU191293 DelBa PROSOPE 36 GQ468966 - 1 - - - - 2A08 89 EU191269 DelBa PROSOPE 40 GQ468970 2 - - 1 1 5 2 2 61G01 96 EU395566 Med PROSOPE 41 GQ468973 1 1 - - 1 1 2 2003 98 EU395565 Med PROSOPE 42 GQ468973 1 1 </td <td></td> <td></td> <td></td> <td>- 11</td> <td>-</td> <td>- 14</td> <td></td> <td>-</td> <td>-</td> <td>1</td> <td>12</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				- 11	-	- 14		-	-	1	12		-					
PROSOPE 36 GQ468966 - 1 - - 1 - - 2C12 84 EU191293 DelBa PROSOPE 37 GQ468967 1 5 2 1 - 1 - 1 1E01 78 EU191293 DelBa PROSOPE 38 GQ468968 5 2 - - - - 1 1E01 78 EU191293 DelBa PROSOPE 39 GQ468969 1 - - - - - 2A08 89 EU191269 DelBa PROSOPE 40 GQ468970 2 - - 1 1 5 2 - 61G01 93 EU39556 Med PROSOPE 41 GQ468971 - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 43 GQ468974 1 - - 1 1 - 2A08 93 EU191269 DelBa PROSOPE 44 GQ468976 - - 7 5 7 5<												-	0					
PROSOPE 37 GQ468967 1 5 2 1 - 1 <th1< th=""> 1 1</th1<>																		
PROSOPE 38 GQ468998 5 2 -				1			1	-	_		-	-	1					
PROSOPE 39 GQ468969 - 1 - - - - - - - - - - 61G01 93 EU395566 Med PROSOPE 40 GQ468970 2 - - 1 1 5 - 2 - 61G01 96 EU395566 Med PROSOPE 41 GQ468971 - - - 1 - - 2 A08 88 EU191269 DelBa PROSOPE 42 GQ468971 1 1 - - 2 2 0 2 2 0 2 2 0 <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>DelBay</td></th<>					-	-	-	-				-	-				DelBay	
PROSOPE 40 GQ468970 2 - - 1 1 5 - 2 - 61G01 96 EU395566 Med PROSOPE 41 GQ468971 - - - - 1 1 5 - 2 - 61G01 96 EU395566 Med PROSOPE 42 GQ468972 - - - 1 - - 2A08 88 EU191269 DelBa PROSOPE 43 GQ468974 1 1 - - 1 1 - 2A08 93 EU191269 DelBa PROSOPE 44 GQ468975 - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468975 - - - 7 5 7 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468975 - - - 1 1 - ZA08 88 EU191269 DelBa PROSOPE 47 GQ468979<	Р	ROSOPE 39				-	-	-	- (<u> </u>	-	-					
PROSOPE 41 GQ468971 - - - - 1 - - 2A08 88 EU191269 DelBa PROSOPE 42 GQ468972 - - - 6 2 2 1 - 22G03 98 EU395568 Med PROSOPE 43 GQ468973 1 1 - - 1 1 - 22G03 98 EU395568 Med PROSOPE 43 GQ468973 1 1 - - 1 1 1 - 2A08 95 EU191269 DelBa PROSOPE 44 GQ468973 1 1 - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468976 - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 46 GQ468977 - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 47 GQ468971 - -<	P	ROSOPE 40		2	-	-	-	1	1	5	-	2	-	61G01	96	EU395566	Med	
PROSOPE 43 GQ468973 1 1 - - 1 1 - 2A08 95 EU191269 DelBa PROSOPE 44 GQ468974 - 1 - - - - 2A08 93 EU191269 DelBa PROSOPE 44 GQ468975 - - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 45 GQ468975 - - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468975 - - - 1 - JL-XM-C21 97 AY652816 Mar. 6 PROSOPE 47 GQ468979 - - - 1 1 - ZA08 88 EU191269 DelBa PROSOPE 48 GQ468978 - 1 - - 1 1 - ZA08 88 EU191269 DelBa PROSOPE 49 GQ468979 1 - - -	Р	ROSOPE 41		-	-	-	-	-		1	-	-	-	2A08	88	EU191269	DelBay	
PROSOPE 43 GQ468973 1 1 - - 1 1 1 - 2A08 95 EU191269 DelBa PROSOPE 44 GQ468974 - 1 - - - - 2A08 93 EU191269 DelBa PROSOPE 45 GQ468975 - - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468975 - - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 47 GQ468977 - - - - 1 - 2A08 88 EU191269 DelBa PROSOPE 47 GQ468979 1 - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 48 GQ468979 1 - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 50 GQ468981 1	P	ROSOPE 42		-	-	-	-	6	2		1		-		98			
PROSOPE 45 GQ468975 - - 7 5 7 - 5 1 2A08 93 EU191269 DelBa PROSOPE 46 GQ468976 - - - - 1 - JL-XM-C21 97 AY652816 Mar. of PROSOPE 47 GQ468977 - - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 48 GQ468977 - - - - 1 1 - 2A08 88 EU191269 DelBa PROSOPE 48 GQ468978 - 1 - - - - Methylobacterium radiotolerans 95 CP010101 PROSOPE 50 GQ468979 1 - - - - - 1 E01 1 87 EU191249 DelBa PROSOPE 50 GQ468980 1 - - - - 1 E01 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>Р</td> <td>ROSOPE 43</td> <td>GQ468973</td> <td>1</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td></td> <td>2A08</td> <td>95</td> <td>EU191269</td> <td>DelBay</td>	Р	ROSOPE 43	GQ468973	1	1	-	-	-	1	1	1	-		2A08	95	EU191269	DelBay	
PROSOPE 46 GQ468976 - - - - 1 - - JL-XM-C21 97 AY652816 Mar. of PROSOPE 47 GQ468977 - - - - 1 1 - ZA08 88 EU191269 DelBa PROSOPE 48 GQ468977 - 1 - - - 1 1 - ZA08 88 EU191269 DelBa PROSOPE 49 GQ468978 - 1 - - - - Methylobacterium radiotolerans 95 CP001001 PROSOPE 49 GQ468970 1 - - - - - 1E01 87 EU191249 DelBa PROSOPE 50 GQ468980 1 - - - - - Berpuf8 94 AM162694 PROSOPE 51 GQ468982 - - - - - - 0m1 98 AF393994 Mar. I PROSOPE 54 GQ468983 - - - 1 - - 2G03 86<			GQ468974	-	1	-	-						-	2A08			DelBay	
PROSOPE 47 GQ468977 - - - 1 - 2A08 88 EU191269 DelBa PROSOPE 48 GQ468978 - 1 - - - - 1 - 2A08 88 EU191269 DelBa PROSOPE 48 GQ468979 1 - - - - - - - - DelBa PROSOPE 49 GQ468979 1 - - - - - - - DelBa PROSOPE 50 GQ468980 1 - - - - - - IE01 87 EU191249 DelBa PROSOPE 51 GQ468981 1 - - - - - - Berpuf8 94 AM162694 PROSOPE 52 GQ468982 - - - - - - Berpuf8 98 AF393994 Mar. I PROSOPE 52 GQ468983 - - - 1 - - 2G03 86 EU191325 DelBa			GQ468975	-	-	-	-	7	5	7	- 1	5	1				DelBay	
PROSOPE 48 GQ468978 1 - - - - Methylobacterium radiotolerans 95 CP001001 PROSOPE 49 GQ468979 1 - - - - - Image: Constraint of the second				-	-	-	-	-	-	-			-				Mar. en	
PROSOPE 49 GQ468979 1 - - - - - - IE01 87 EU191249 DelBa PROSOPE 50 GQ468980 1 -				-	-	-	-	-	-	-	1		-				DelBay	
PROSOPE 50 GQ468980 1 - - - - - - Berpuf8 94 AM162694 PROSOPE 51 GQ468980 1 - - - - 0m1 98 AF393994 Mar. I PROSOPE 52 GQ468982 - - - 1 - - Erythrobacter longus 97 D50648 PROSOPE 54 GQ468983 - - - 1 - - 2G03 86 EU191250 DelBa PROSOPE 54 GQ468985 1 - - - - 1H02 86 EU191260 DelBa PROSOPE 60 GQ468985 1 - - - - 61G01 97 EU395566 Med PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med					1	-	-	-	-	-	-		-				DUD	
PROSOPE 51 GQ468981 1 - - - - 0m1 98 AF393994 Mar. I PROSOPE 52 GQ468982 - - - 1 - - Erythrobacter longus 97 D50648 PROSOPE 54 GQ468983 - - - 1 - - 2G03 86 EU191325 DelBa PROSOPE 55 GQ468985 1 - - - 1H02 86 EU191260 DelBa PROSOPE 61 GQ468986 - 1 - - - 61G01 97 EU395566 Med PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med					-	-	-	-	-	-	-	-	- 7				DelBay	
PROSOPE 52 GQ468982 - - 1 - - Erythrobacter longus 97 D50648 PROSOPE 54 GQ468983 - - - 1 - - 2G03 86 EU191325 DelBa PROSOPE 55 GQ468984 - - - - - - 1 - - 2G03 86 EU191325 DelBa PROSOPE 55 GQ468985 1 - - - - - 1 - - 2G03 86 EU191200 DelBa PROSOPE 60 GQ468985 1 - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>Mer F</td>					-	-	-	-	-	-	-	-	-				Mer F	
PROSOPE 54 GQ468983 - - - - 1 - - 2G03 86 EU191325 DelBa PROSOPE 55 GQ468984 - - - - - 100 DelBa PROSOPE 60 GQ468985 1 - - - - - 100 DelBa PROSOPE 61 GQ468986 - 1 - - - 61G01 97 EU395566 Med PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med				1	-	-	-	-	-	-	-		-				war. Ei	
PROSOPE 55 GQ468984 - - - - - - 1H02 86 EU191260 DelBa PROSOPE 60 GQ468985 1 - - - - 61G01 97 EU395566 Med PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med				-	-	-	-	-		-	-	-	-				DelBoy	
PROSOPE 60 GQ468985 1 - - - - 61G01 97 EU395566 Med PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med				-	-	-	-	-	-	1	-	-	-					
PROSOPE 61 GQ468986 - 1 - - - 22A01 91 EU395582 Med				1	-	-	-	-	-	-	-		1					
					-	1	-	-	-	-	-	-	-					
	_		30400300	47	50	-	30	41	43	49	24	45	20	##: 101	71	10373302	meu	
		IUIAL													-			

