Geodesic Methods in Computer Vision and Graphics

Gabriel Peyré 1 Mickaël Péchaud 2, 3 Renaud Keriven 2, 3 Laurent D. Cohen 1
2 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
Abstract : This paper reviews both the theory and practice of the numerical computation of geodesic distances on Riemannian manifolds. The notion of Riemannian manifold allows one to define a local metric (a symmetric positive tensor field) that encodes the information about the problem one wishes to solve. This takes into account a local isotropic cost (whether some point should be avoided or not) and a local anisotropy (which direction should be preferred). Using this local tensor field, the geodesic distance is used to solve many problems of practical interest such as segmentation using geodesic balls and Voronoi regions, sampling points at regular geodesic distance or meshing a domain with geodesic Delaunay triangles. The shortest paths for this Riemannian distance, the so-called geodesics, are also important because they follow salient curvilinear structures in the domain. We show several applications of the numerical computation of geodesic distances and shortest paths to problems in surface and shape processing, in particular segmentation, sampling, meshing and comparison of shapes.
Type de document :
Article dans une revue
Foundations and Trends in Computer Graphics and Vision, Now Publishers, 2010, 5 (3-4), pp.197-397
Liste complète des métadonnées

Littérature citée [299 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00528999
Contributeur : Gabriel Peyré <>
Soumis le : samedi 23 octobre 2010 - 21:23:20
Dernière modification le : jeudi 5 juillet 2018 - 14:23:44
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 12:10:20

Fichier

fnt-geodesic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00528999, version 1

Citation

Gabriel Peyré, Mickaël Péchaud, Renaud Keriven, Laurent D. Cohen. Geodesic Methods in Computer Vision and Graphics. Foundations and Trends in Computer Graphics and Vision, Now Publishers, 2010, 5 (3-4), pp.197-397. 〈hal-00528999〉

Partager

Métriques

Consultations de la notice

1112

Téléchargements de fichiers

1316