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Composite Kernel Learning

Marie Szafranski, Yves Grandvalet, Alain Rakotomamonjy

1 Motivations

Kernel methods are very versatile tools for learning from examples
(Schölkopf and Smola 2001). In these models, the observations x belonging to
some measurable instance spaceX are implicitly mapped in a feature spaceH via a
mappingΦ : X → H, whereH is a Reproducing Kernel Hilbert Space (RKHS) with
reproducing kernelK : X × X → R.

When learning from a single source, selecting the right kernel is an essential choice,
conditioning the success of the learning method. Indeed, the kernel is crucial in many
respects regarding data representation issues. Formally,the primary role ofK is to
define the evaluation functional inH:

∀x ∈ X , K(x, ·) ∈ H and∀f ∈ H, f(x) = 〈f, K(x, ·)〉
H

,

butK also defines

1. H, since∀f ∈ H, ∀x ∈ X , ∃αi ∈ R, i = 1, . . . ,∞, f(x) =
∞
∑

i=1

αiK(xi, x);

2. a metric, and hence a smoothness functional inH, where, forf defined above,

‖f‖2H =
∞
∑

i=1

∞
∑

j=1

αiαiK(xi, xj);

3. the mappingφ(x) = K(x, ·) and a scalar product between observations:
∀(x, x′) ∈ X 2, 〈Φ(x), Φ(x′)〉

H
= K(x, x′).

In other words, the kernel defines

1. the hypothesis spaceH;

2. the complexity measure‖f‖2H indexing the family of nested functional spaces in
the structural risk minimization principle (Vapnik 1995);

3. the representation space of data endowed with a scalar product.

These observations motivate the developments of means to avoid the use of un-
supported kernel, which do not represent prior knowledge about the task at hand, and
are fixed before observing data. The consequences of the arbitrary choice that may be
involved at this level range from interpretability issues to poor performances (see for
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example Weston et al. 2001, Grandvalet and Canu 2003). “Learning the kernel”, aims
at alleviating these problems, by adapting the kernel to theproblem at hand.

A general model of learning the kernel has two components: (i) a family of kernels,
that is, a setK = {Kθ, θ ∈ Θ}, whereΘ is a set of parameters andKθ is the kernel
parameterized byθ, and (ii) an empirical functional, whose minimization withrespect
to θ will be used to choose a kernel inK that best fits the data according to some
empirical criterion.

In this paper, we develop the Composite Kernel Learning (CKL) approach, which
is dedicated to learning the kernel when there is a known group structure among a
set of candidate kernels. This framework applies to learning problems arising from
a single data source when the input variables have a group structure, and it is also
particularly well suited to the problem of learning from multiple sources. Then, each
source can be represented by a group of kernels, and the algorithm aims at identifying
the relevant sources and their apposite kernel representation. Thanks to the notion of
source embedded in the kernel parameterization, our framework introduces in the Mul-
tiple Kernel Learning framework (Lanckriet et al. 2004) theability to select sources, or
alternatively to ensure the use of all sources.

We briefly review the different means proposed to extend kernel methods beyond
the predefined kernel setup in Section 2, with an emphasis on Multiple Kernel Learning
and the parametric relatives that inspired our approach. InSection 3, we formalize the
general CKL framework, starting from basic desiderata, andfinishing with a general
and compact formulation amenable to optimization. The algorithm is provided in Sec-
tion 4, and experiments are reported in Section 5. Finally, Section 6 summarizes the
paper and provides directions for future research. We used the standard notations found
in textbooks, such as Schölkopf and Smola (2001); they are introduced when they first
appear in the document, and an overview is provided in appendix C.

2 Flexible Kernel Methods

From now on, we restrict our discussion to binary classification, where, fromn pairs
(xi, yi) ∈ X × {−1, 1} of observations and binary labels, one aims at inferring a
decision rule that predicts the class labely of any observationx ∈ X . However, most
of our statements carry on to other settings, such as multiclass classification, regression
or clustering with kernel methods. Indeed, the penalties wewill propose are learned
from data, but they are defined without any interdependence with the data-fitting term.

2.1 Support Vector Machines

A Support Vector Machine (SVM) is defined as the decision rulesign (f⋆(x) + b⋆),
wheref⋆ andb⋆ are the solution of















min
f,b,ξ

1

2
‖f‖2H + C

n
∑

i=1

ξi

s. t. yi (f(xi) + b) ≥ 1− ξi , ξi ≥ 0 , i = 1, . . . , n ,

(1a)

(1b)
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wheref ∈ H, b ∈ R andξ ∈ R
n are the optimization variables, andC is a positive

regularization parameter that is the only adjustable parameter in the SVM learning
problem onceH has been chosen. Note that, thoughC andH are usually tuned in the
same outer loop, their role is completely different. WhileC sets the trade-off between
regularity and data-fitting,H, the so-called feature space, defines the embedding of the
observations via the mappingΦ. Hence, while choosingC amounts to select a model in
a nested family of functional spaces whose size is controlled by‖f‖2H (or equivalently
by the margin inH), choosingH boils down to picking a representation (endowed with
a metric) for the observationsx.

Adapting the kernel to data is not representative of model selection strategies that
typically balance goodness of fit with simplicity. As a result, Vapnik (1995) did not
provide guidelines for choosing the kernel, which was considered to be chosen prior to
seeing data when deriving generalization bounds for SVMs. Following these observa-
tions, all methods adapting the kernel to data will be here referred to as kernel learning
instead of model selection.

Since solving (1) is usually not flexible enough to provide good results whenH
is fixed, most applications of SVM incorporate a mechanism for learning the kernel.
This mechanism may be as simple as picking a kernel in a finite set, but may also be
an elaborate optimization process within a finite or infinitefamily of kernels. These
options are described in more details below.

2.2 Learning the Kernel

In our view, kernel learning methods encompass all processes where the kernelK is
chosen from a pre-defined setK, by optimizing an empirical functional defined on the
training set{xi, yi}

n
i=1. With this viewpoint, the most rudimentary, but also the most

common way to learn the kernel is cross-validation, that consists here in (i) defining
a family of kernels (e.g. Gaussian), indexed by one or more parameters (e.g. band-
width),K = {Km}

M
m=1, wherem indexes the trial values for the kernel parameters,

and, (ii) computing a cross-validation score on each hyper-parameter setting, and pick-
ing the kernel whose hyper-parameters minimize the cross-validation score. In this
example, the empirical functional used for learning the kernel is the minimum of the
cross-validation score with respect to the trial values of the regularization parameterC.

A thorough discussion of the pros and cons of cross-validation is out of the scope
of this paper, but it is clear that this approach is inherently limited to one or two hyper-
parameters and few trial values. This observation led to several proposals allowing for
more flexibility in the kernel choice, where cross-validation may still be used, but only
for tuning the regularization parameterC.

2.2.1 Filters, Wrappers & Embedded Methods

As already stated, learning the kernel amounts to learn the feature mapping. It should
thus be of no surprise that the approaches investigated bearsome similarities with the
ones developed for variable selection1, where one encounters filters, wrappers and em-

1In variable selection, the situation is simpler since selecting variables provides simpler models, so that
variable selection or shrinkage may be used for model selection purposes.
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bedded methods (Guyon and Elisseeff 2003). Some general frameworks, such ashy-
perkernels(Ong et al. 2005) do not belong to a single category, but the distinction is
appropriate in most cases.

In filter approaches, the kernel is adjusted before buildingthe SVM, with no ex-
plicit relationship with the objective value of Problem (1). For example, the kernel
target alignment of Cristianini et al. (2002) adapts the kernel matrix to the available
data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of twonested optimizers,
whose outer loop is dedicated to adjust the kernel. This tuning may be guided by var-
ious generalization bounds (Cristianini et al. 1999, Weston et al. 2001, Chapelle et al.
2002). In all these methods, the set of admissible kernelsK is defined by kernel pa-
rameter(s)θ, whereθ may be the kernel bandwidth, or a diagonal or a full covariance
matrix in Gaussian kernels. The empirical criterion optimized with respect toθ is
a generalization bound such as the radius/margin bound (using the actual radius and
margin obtained withθ on the training set).

Kernel learning can also be embedded in Problem (1), with theSVM objective
value minimized jointly with respect to the SVM parameters and the kernel hyper-
parameters (Grandvalet and Canu 2003). In this line of research, Argyriou et al. (2006)
consider combinations of kernels whose parameters are optimized by a DC (difference
of convex functions) program. The present approach builds on the simplest Multiple
Kernel Learning (MKL) framework initiated by Lanckriet et al. (2004), which is lim-
ited to the combination of prescribed kernels but leads to simpler convex programs.

2.2.2 Multiple Kernel Learning

In MKL, we are provided withM candidate kernels,K1, . . . , KM , and we wish to
estimate the parameters of the SVM classifier together with the weights of a convex
combination of kernelsK1, . . . , KM that defines theeffective kernelKσ

K =

{

Kσ =

M
∑

m=1

σmKm, σm ≥ 0 ,

M
∑

m=1

σm = 1

}

. (2)

Each kernelKm is associated to a RKHSHm whose elements will be denotedfm, and
σ = (σ1, . . . σM )⊤ is the vector of coefficients to be learned under the convex combi-
nation constraints. The positiveness constraint ensures thatK is positive definite when
the base kernelsKm are themselves positive definite. The unitary constraint may be
seen as a normalization of the effective kernel that is necessary to avoid diverging so-
lutions. In an embedded approach, where the empirical functional used to selectKσ is
the fitting criterion (1), the unitary constraint onσ is also important to preserve the role
of the SVM regularization parameterC. Furthermore, provided that the individual ker-
nelsKm are properly normalized (with identical trace norm), the norm constraint onσ
can be motivated by generalization error bounds that are valid for learned kernels. The
first works in this direction (Lanckriet et al. 2004, Bousquet and Herrmann 2003) were
found to be meaningless, with bounds on the expected error never less than one, but
Srebro and Ben-David (2006) provide tighter bounds based onthepseudodimensionof
a family of kernel, which is at most the number of kernels in combination (2).
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The original MKL formulation of Lanckriet et al. (2004) was based on the dual of
the SVM optimization problem. It was later shown to be equivalent to the following
primal problem (Bach et al. 2004)






























min
f1,...,fM

b,ξ

1

2

( M
∑

m=1

‖fm‖Hm

)2

+ C

n
∑

i=1

ξi

s. t. yi

( M
∑

m=1

fm(xi) + b

)

≥ 1− ξi , ξi ≥ 0 , i = 1, . . . , n ,

(3a)

(3b)

whose solution leads to a decision rule of the formsign
(

∑M
m=1 f⋆

m(x) + b⋆
)

. This

expression of the learning problem is remarkable in that it only differs slightly from
the original SVM problem (1). The squared RKHS norm inH is simply replaced by a
mixed-norm, with the standard RKHS norm within each featurespaceHm, and anℓ1

norm inR
M on the vector built by concatenating these norms.

With this mixed-norm, the objective function is not differentiable at‖fm‖Hm
= 0.

This is the cause of a considerable algorithmic burden, which is rewarded by the sparse-
ness of solutions, that is, solutions where some functionsfm have zero norm. As each
functionfm is computed fromKm, this results in a sparse kernel expansion in (2).

Looking at Problem (3), one may wonder why a mixed-norm should be more flex-
ible than a squared RKHS norm, and why the former should be considered as a ker-
nel learning technique. These questions are answered with the MKL formulation of
Rakotomamonjy et al. (2008), which is a variational form of Problem (3), in the sense
that the solution of Problem (3) is defined as the minimizer with respect to the addi-
tional variableσ of an optimization problem inf1, . . . , fM , b, ξ. By introducing the
parametersσ1, . . . , σM of the combination (2) in the objective function, kernel learning
comes explicitly into view. The resulting optimization problem, which is equivalent to
Problem (3), circumvents its differentiability issues, asshown below:






















































min
f1,...,fM

b,ξ,σ

1

2

M
∑

m=1

1

σm
‖fm‖

2
Hm

+ C
n
∑

i=1

ξi

s. t. yi

( M
∑

m=1

fm(xi) + b

)

≥ 1− ξi , ξi ≥ 0 , i = 1, . . . , n

M
∑

m=1

σm = 1 , σm ≥ 0 , m = 1, . . . , M ,

(4a)

(4b)

(4c)

where, here and in what follows,u/v is defined by continuation at zero asu/0 =∞ if
u 6= 0 and0/0 = 0.

MKL may be used in different prospects. When the individual kernelsKm repre-
sent a series, such as Gaussian kernels with different scaleparameters, it constitutes
an alternative to cross-validating the kernel parameters.When the input data origi-
nates fromM differents sources, and that each kernel is affiliated to onegroup of input
variables, it enables to select relevant sources.
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However, MKL is not meant to address problems where several kernels pertain
to a single source. In this situation, its sparseness mechanism does not account for
the structure among kernels. In particular, it cannot favorsolutions discarding all the
kernels computed from an irrelevant source. Although most of the related coefficients
should vanish in combination (2), spurious correlation maycause irrelevant sources
to participate to the solution. A single coefficient could beattached for each source,
but this solution forbids kernel adaptation within each source, whose equivalent kernel
would be clamped to the average kernel. Note also that, in theopposite situation where
we want to involve all sources in the solution, with only a fewkernels per source, MKL
is not guaranteed to provide a solution complying with the requisite.

2.3 Group and Composite Penalties

The selection/removal of kernels between or within predefined groups relies on the
definition of a structure among kernels. This type of hierarchy has been investi-
gated among variables in linear models (Yuan and Lin 2006, Szafranski et al. 2008a,
Zhao et al. to appear).

The very general Composite Absolute Penalties (CAP) familyof Zhao et al.
(to appear) considers a linear model withM parameters,β = (β1, . . . , βM )T. Let
I = {1, . . . , M} be a set of index on these parameters, a group structure on thepa-
rameters is defined by a series ofL subsets{Gℓ}

L
ℓ=1, whereGℓ ⊆ I. Additionally,

let {γℓ}
L
ℓ=0 beL + 1 norm parameters. Then, the member of the CAP family for the

chosen groups and norm parameters is

L
∑

ℓ=1

(

∑

m∈Gℓ

|βm|
γℓ

)γ0/γℓ

.

To our knowledge, there is no efficient general purpose algorithm for fitting para-
metric models with penalties belonging to the CAP family, but for the prominent par-
ticular cases listed below, such algorithms exist. They allconsiderγ0 = 1 that enforces
sparseness at the group level and identical norms{γℓ}

L
ℓ=1 at the parameter level:

• γℓ = 1 is the LASSO (Tibshirani 1996), which clears the group structure;

• γℓ = 4/3 is the Hierarchical Penalization (Szafranski et al. 2008a), which gives
rise to few dominant variables within groups;

• γℓ = 2 is the group-LASSO (Yuan and Lin 2006), which applies a proportional
shrinkage to the variables within groups;

• γℓ =∞ is the iCAP penalty (examined in more details by Zhao et al. toappear),
which limits the maximal magnitude of the coefficients within groups.

Mixed-norms correspond to groups defined as a partition of the set of variables. A
CAP may also rely on nested groups,G1 ⊂ G2 ⊂ . . . ⊂ GL, andγ0 = 1, in which case
it favors what Zhao et al. call hierarchical selection, thatis, the selection of groups of
variables in the predefined order{I \ GL}, {GL \ GL−1}, . . . , {G2 \ G1},G1 according
to some heredity principle. This example is provided here tostress that Zhao et al.’s
notion of hierarchy differs from the one that will be introduced in Section 3.
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2.4 Relations between MKL and CAP

CAP and its earlier predecessor LASSO have been initiated inthe parametric regression
setting. Using the notations introduced for CAP, the LASSO penalty is

L
∑

ℓ=1

(

∑

m∈Gℓ

|βm|
)

=
M
∑

m=1

|βm| =
M
∑

m=1

(

β2
m

)1/2
,

but the LASSO penalty can take a more general form. In the example of M RKHS
H1, . . .HM , one may consider the penalty

M
∑

m=1

‖fm‖Hm
=

M
∑

m=1

(

α⊤
mKmαm

)1/2

,

whereαm ∈ R
n, Km is themth kernel matrixKm(i, j) = Km(xi, xj) andfm(x) =

∑n
i=1 αm(i)K(xi, x).
The representer theorem (Schölkopf and Smola 2001) ensuresthat thefm solv-

ing the MKL Problem (3a) are of the above form. Hence, MKL may be seen as
a kernelization of LASSO, extended to SVM classifiers, whosepenalty generalizes
the ones proposed in the framework of additive modeling withspline functions (see
Grandvalet and Canu 1999) to arbitrary RKHS. In this sense, MKL extends the sim-
plest member of the CAP family to SVM classifiers.

Being a sum ofℓ2 norms, the MKL penalty is also of the group-LASSO type, but
the groups are defined at the level of the expansion coefficients αm.2 CKL extends
the MKL framework by defining groups at a higher level, that isat the kernel level:
Composite Kernel Learning is to CAP what Multiple Kernel Learning is to LASSO.

3 Composite Kernel Learning

The flat combination of kernels in MKL does not include any mechanism to cluster
the kernels related to each source. In order to favor the selection/removal of kernels
between or within predefined groups, one has to define a structure among kernels,
which will guide the selection process. We present here the kernel methods counterpart
of the methods surveyed in Section 2.3 for parametric models.

3.1 Groups of Kernels

We consider problems where we have a set of kernels, partitioned in groups, which
may correspond to subsets of inputs, sources, or more generally distinct families of
similarity measures between examples. This structure willbe represented by a tree,
as we envision more complex structures with a hierarchy of nested groups. We index
the tree depth byh, with h = 0 for the root, andh = 2 for the leaves. The leaf
nodes represent the kernels at hand for the classification task; the nodes at depth 1

2 Note that, except for the case whereKm has a block-diagonal structure, there is no effective grouping
in the MKL penalty.
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K1
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K3

K4

K5

K6

1

2

3

K1 G1

K2

K3

K4

G2

K5

K6

G3

σ1,1

σ1,2

σ1,3

σ2,1

σ2,2

σ2,3

σ2,4

σ2,5

σ2,6

Figure 1 –A tree of height two depicting groups of kernels.

stand for thegroup-kernelsformed by combining the kernels within each group; the
root represents the globaleffective kernelmerging the group-kernels. Without loss of
generality, we consider that all leaves are at depth 2. If notthe case, an intermediate
node should be inserted at depth 1 between the root and each isolated leaf, as illustrated
in Figure 1.

In CKL, learning the kernel consists in learning the parameters of each combination
of kernels. There areL + 1 such combinations, one at each group level, and one at the
root level. As illustrated in Figure 1, the weights of these combinations may be thought
of as being attached to the branches of the tree: a branch stemming from the root and
going to nodeℓ is labelled byσ1,ℓ , which is the weight associated to theℓth group in
the effective kernel; a branch stemming from nodeℓ at depth 1 and reaching leafm is
labelled byσ2,m , which is the weight associated to themth kernel in its group-kernel.

3.2 Kernel selection

In the learning process, we would like to suppress the kernels and/or the groups that
are irrelevant for the classification task. In the tree representation, this removal process
consists in pruning the tree. When a branch is pruned at the leaf level, a single kernel is
removed from the combination. When a subtree is pruned, a group-kernel is removed
from the combination, and the corresponding group of kernels has no influence on
the classifier. With the branch labeling introduced above and illustrated in Figure 1,
removing kernelm consists in settingσ2,m to 0, and removing groupℓ consists in
settingσ1,ℓ to 0.

For the purpose of performing flat kernel selection,σ1,ℓ is redundant withσ2,m, but
the decomposition proposed here allows to pursue differentgoals, by constraining the
solutions to have a given sparsity pattern induced by the sparseness constraints at each
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level of the hierarchy: in the example of Figure 1, though they delete the same number
of leaves, we may prefer for a solution withσ1,3 = 0 (that is, the removal of group 3
composed of kernels 5 and 6) toσ2,3 = σ2,4 = 0 that also removes two kernels, but
retains all the groups.

We now elaborate on the notations introduced in Section 2.3 for the CAP family.
TheM kernels situated at the leaves are indexed by{1, . . . , m, . . . , M}, and the group-
kernels (at depth1) are indexed by{1, . . . , ℓ, . . . , L}. The setGℓ of cardinalitydℓ

indexes the leaf-kernels belonging to group-kernelℓ, that is, the children of nodeℓ.
The groups form a partition of the leaf-kernels, that is,∪ℓGℓ = {1, . . . , m, . . . , M}
and

∑

ℓ dℓ = M . Note that, to lighten notations, the range of indexes will often be
omitted in summations, in which case: indexesi andj refer to examples and go from
1 to n ; indexm refers to leaf-kernels and goes from 1 toM ; indexℓ refers to group-
kernels and goes from 1 toL .

In a hard selection setup, whereσ1 = (σ1,1 . . . σ1,L)⊤ andσ2 = (σ2,1 . . . σ2,M )⊤

are binary vectors, the learning problem is stated as follows










































































min
f1,...,fM

b, ξ, σ1 σ2

1

2

∑

m

‖fm‖
2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

ℓ

σ1,ℓ

∑

m∈Gℓ

σ2,mfm(xi) + b

)

≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n
∑

ℓ

dℓ σ1,ℓ ≤ s1 , σ1,ℓ ∈ {0, 1} ℓ = 1, . . . , L

∑

m

σ2,m ≤ s2 , σ2,m ∈ {0, 1} m = 1, . . . , M ,

(5a)

(5b)

(5c)

(5d)

(5e)

wheres1 ands2 designate the number of leaves that should be retained afterpruning.
The constraint (5d) onσ1 imposes some pruning at the group level, while the constraint
(5e) onσ2 imposes some additional pruning at the leaf level. Note thatconstraint (5e)
may only be active ifs2 ≤ s1.

Problem (5) has a number of shortcomings. First, it is an inherently combinatorial
problem, for which finding a global optimum is challenging even with a small number
of kernels. Second, this type of hard selection problem is known to provide unsta-
ble solutions (Breiman 1996), especially when the number ofkernels is not orders of
magnitude lower than the training set size. Unstability refers here to large changes in
the overall predictor, in particular via the changes in the set of selected kernels, in re-
sponse to small perturbations of the training set. Besides having detrimental effects on
the variability of model parameters, unstability has been shown to badly affect model
selection (Breiman 1996). More recently, stability has been shown to characterize the
generalization ability of learning algorithms (Bousquet and Elisseeff 2002).

As the kernel choice is especially decisive for small to moderate sample sizes, we
should devise well-behaved algorithms in this setup. Hence, we will consider stable
soft-selection techniques, such as the ones based onℓ2 or ℓ1 regularization.
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3.3 Soft Selection

To convert Problem (5) in a smooth soft-selection problem, we will transform the bi-
nary vectorsσ1 andσ2 in continuous positive variables, which may either “choke”
some branches or prune them. We also replace the hyper-parameterss1 ands2 in con-
straints (5d) and (5e) by 1, since their role is redundant with the parametersdℓ when
the latter are not restrained to be equal to the group size. The problem reads










































































min
f1,...,fM

b, ξ, σ1 σ2

1

2

∑

m

‖fm‖
2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

ℓ

σ1,ℓ

∑

m∈Gℓ

σ2,mfm(xi) + b

)

≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n
∑

ℓ

dℓ σ
2/p
1,ℓ ≤ 1 , σ1,ℓ ≥ 0 ℓ = 1, . . . , L

∑

m

σ
2/q
2,m ≤ 1 , σ2,m ≥ 0 m = 1, . . . , M ,

(6a)

(6b)

(6c)

(6d)

(6e)

where we incorporated two hyper-parametersp andq appearing respectively in con-
straints (6d) and (6e), whose roles are to drive these constraint closer or further from
their binary counterpart in (5), as illustrated in Figure 2.These exponents can thus
be tuned to implement harder or softer selection strategies, and different values forp
andq will lead to more or less emphasis on sparsity within or between groups. Some
properties related to the choice ofp andq will be discussed in the following section,
and the practical outcomes of these choices will be illustrated in Section 5.

3.4 Properties

Problem (6) is difficult to analyze and to optimize. We derivehere a “flat” equivalent
formulation using a single weight per kernelKm, using the simple fact that the com-
position of combinations is itself a combination. The kernel group structure will not be
lost in the process, it will be transferred to the weights of the combination.

This simplification proceeds in three steps (see details in Appendix A). First, vari-
ableσ2 disappears in a change of variables whereσ appears, then, we use a necessary
optimality condition that tiesσ1 with σ for all stationnary points, including the global
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maximum.3 Finally, plugging these optimality conditions into Problem (6), we get


















































min
f1,...,fM

b, ξ, σ

1

2

∑

m

1

σm
‖fm‖

2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1− ξi , ξi ≥ 0 i = 1, . . . , n

∑

ℓ

d
p/(p+q)
ℓ

(

∑

m∈Gℓ

σ1/q
m

)q/(p+q)

≤ 1 , σm ≥ 0 m = 1, . . . , M ,

(7a)

(7b)

(7c)

where, here and it what follows
(

∑

m σ
1/0
m

)0

is defined as theℓ∞ norm, with value

maxm σm sinceσm ≥ 0.
Problem (7) is equivalent to Problem (6) in the sense that itsstationnary points

correspond to the ones of (6). As the objective function is convex, the stationnary
points are minima and multiple (local) minima may only occurif the feasible domain
is non-convex.

This flat formulation is more easily amenable to the analysisof convexity, and
optimization can be carried out by a simple adaptation of theSimpleMKL algorithm
(Szafranski et al. 2008b). Indeed, compared to (4), Problem(7) only differs in con-
straint (7c) onσ, where theℓ1 norm is replaced by a mixed-normℓ(1/q, 1/(p+q)). As a
special case, MKL is recovered from CKL for parameters(p, q) = (0, 1).

Proposition 1 Problem (7) is convex if0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1.

3 A stationnary point is defined as a point satisfying the KKT conditions.
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Proof. A problem minimizing a convex criterion on a convex set is convex:

• the objective function (7a) is convex (cf. Rakotomamonjy etal. 2008);

• the usual SVM constraints (7b) define convex sets in(f1, . . . , fM , b, ξ);

• if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1, the constraints (7c) defines a convex set inσ

since

–
(

∑

m∈Gℓ

σ1/q
m

)q

is convex;

–
∑

ℓ

t
1/(p+q)
ℓ is convex and non-decreasing intℓ.

The proposition below generalizes the equivalence betweenthe MKL formulations
Bach et al. (2004) and Rakotomamonjy et al. (2008), that is, between Problems (3)
and (4) respectively. If MKL may be seen as the kernelizationof the LASSO, CKL
can be interpreted as the kernelization of the hierarchicalpenalizer of Szafranski et al.
(2008a) or more generally of the Composite Absolute Penalty(CAP) of Zhao et al.
(to appear).

Proposition 2 Problem (7) is equivalent to


























min
f1,...,fM

b, ξ

1

2

(

∑

ℓ

d t
ℓ

(

∑

m∈Gℓ

‖fm‖
s
Hm

)r/s
)2/r

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1− ξi ξi ≥ 0 i = 1, . . . , n ,

(8a)

(8b)

where s =
2

q + 1
, r =

2

p + q + 1
and t = 1−

r

s
, in the sense that the minima of

(7) are the minima of(8). See proof in Appendix B.

Corollary 1 Problem (7) is sparse at the group level if and only ifp + q ≥ 1. It is
sparse at the leaf level if and only ifq ≥ 1 or p + q ≥ 1.

Proof. This is the direct consequence of the equivalence stated in Proposition 2, since
sparsity is obtained if and only if the boundary of the feasible region is nondiffer-
entiable atfm = 0 (Nikolova 2000). The sub-differential at‖fm‖Hm

= 0 is re-
duced to one point if and only ifs > 1, that isq < 1, and the sub-differential at
∑

m∈Gℓ

‖fm‖Hm
= 0 is reduced to one point if and only ifr > 1, that isp + q < 1.

Note that the external square on the norm of (8) affects the strength of the penalty,
but not its type. Hence, CKL penalizes a kernelized mixed-norm ℓ(r, s) in ‖fm‖Hm

.
Table 1 displays some particular instances of the equivalence given in Proposition 2.

Since the latter was obtained from the primal formulation ofProblem (7), it also holds
for non-convex penalties, such as the one displayed in the last column of the table.

12



(p, q) (0, 1) (1, 0) (−1, 1) (1/2, 1/2) (1,1)

σm ℓ(1, 1) ℓ(1,∞) ℓ(∞, 1) ℓ(1, 2) ℓ(1/2, 1)

‖fm‖Hm
ℓ(1, 1) ℓ(1, 2) ℓ(2, 1) ℓ(1, 4/3) ℓ(2/3, 1)

Table 1 – Equivalence between mixed-norms inσm in Problem (7), and mixed-norms in
‖fm‖Hm

in Problem(8) for some particular(p, q) values.

The first column of Table 1 illustrates that CKL indeed generalizes MKL, since it
enables to implement aℓ(1, 1) mixed-norm, that is theℓ1 norm of MKL. The second
column leads to aℓ(1, 2) mixed-norm, that could also be obtained by an MKL algo-
rithm using the average of leaf-kernels within each group. The third column displays a
more interesting result, with theℓ(2, 1) that encourages a sparse expansion within each
group, and then performs a standard SVM with the kernel formed by summing the
group-kernels. This setting corresponds to the situation where we want all sources
to participate to the solution, but where the relevant similarities are to be discov-
ered for each source. It has been used in the regression framework for audio signals
(Kowalski and Torrésani 2008). The fourth solution, leading to aℓ(1, 4/3) norm is the
kernelized version of hierarchical penalization (Szafranski et al. 2008a), which takes
into account the group structure, provides sparse results at the group-level and approx-
imately sparse ones at the leaf level, with few leading coefficients. Finally, the last
column displays a non-convex solution that enables exact sparsity at the group-level
and at the leaf-level, with a group-structure that greatly encourages group selection.

Figure 3 illustrates the shape of the feasible region

∑

ℓ

d t
ℓ

(

∑

m∈Gℓ

‖fm‖
s
Hm

)r/s

≤ 1 ,

for the values of(r, s) given in Table 1, in a problem withM = 3 kernels.
The left column depicts the 3D-shape in the positive octant,where the two horizon-

tal axes represent the positive quadrant(‖f1‖H1
, ‖f2‖H2

) associated to the first group
G1, and the vertical axis represents‖f3‖H3

associated to the second groupG2.
The cuts at‖f2‖H2

= 0 and‖f3‖H3
= 0 are displayed to provide a between-group

plane and the within group view of the feasible region in the center and right column
respectively. These plots provide an intuitive way to comprehend the convexity and
sparsity issues. Sparsity is related to convexity and the shape of the boundary of the
admissible set as‖fm‖Hm

goes to zero (Nikolova 2000).

4 Solving the Problem

Since CKL generalizes MKL, we begin this section by a brief review of the algorithmic
developments of MKL dedicated to solve Problem (3) or one of its equivalent forms.
The original MKL algorithm of Lanckriet et al. (2004) was based on a quadratically-
constrained quadratic program (QCQP) solver that had high computational require-
ments and was thus limited to small problems, that is, small numbers of kernels and
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data points. This restraint motivated the introduction of asmoothing term allowing to
use the SMO algorithm (Bach et al. 2004).

The following generation of MKL algorithms was then based onwrapper algo-
rithms, consisting in two nested optimization problems, where the outer loop optimizes
the kernel and the inner loop is a standard SVM solver. The outer loop was a cut-
ting plane algorithm for the Semi-Infinite Linear Program (SILP) of Sonnenburg et al.
(2006) that optimizes the non-smooth dual of Problem (3); itwas later improved by a
gradient algorithm addressing Problem (4) in the SimpleMKLof Rakotomamonjy et al.
(2008).

The benefit of these approaches is to rely on standard SVM solvers, for which
several efficient implementations exist. This type of approach was also used in the
multiple task learning framework by Argyriou et al. (2008),and again in some recent
developments of MKL (Xu et al. 2009, Bach 2009).

We first chose the gradient-based approach that was demonstrated to be efficient
for MKL (Szafranski et al. 2008b). Nevertheless, moving along a curved surface such
as the ones illustrated in Figure 3 may be problematic for some mixed-norms. Hence,
we pursue here another wrapper approach, where we will use a fixed point strategy to
update the kernels parameters in the outer loop.

4.1 A Wrapper Approach

Our wrapper scheme extends SimpleMKL by considering the following optimization
problem



















min
σ

J(σ)

s. t.
∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ1/q
m

)q
)1/(p+q)

≤ 1 , σm ≥ 0 m = 1, . . . , M ,

(9a)

(9b)

whereJ(σ) is defined as the objective value of


























min
f1,...,fM

b, ξ

1

2

∑

m

1

σm
‖fm‖

2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1− ξi ξi ≥ 0 ∀i .

(10a)

(10b)

In the inner loop, the criterion is optimized with respect to{fm}, b andξ, con-
sidering that the coefficientsσ are fixed. In the outer loop,σ is updated to decrease
the criterion, using an expression derived from the optimality conditions, with the dual
variables related to{fm}, b andξ being fixed.

4.2 First-Order Optimality Conditions

To lay down the foundations of our algorithm, we derive the first-order optimality con-
ditions for each part of Problem (7). These conditions characterize the global mini-
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mizer if Problem (7) is convex, and all local minima otherwise. The Lagrangian reads

L =
1

2

∑

m

1

σm
‖fm‖

2
Hm

+ C
∑

i

ξi

−
∑

i

αi

[

yi

(

∑

m

fm(xi) + b

)

+ ξi − 1

]

−
∑

i

ηi ξi

+ λ

[

∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ1/q
m

)q
)1/(p+q)

− 1

]

−
∑

m

µm σm ,

whereαi andηi, the usual positive Lagrange multipliers related to the constraints (7b)
on the slack variableξi, will be optimized by considering Problem (10), whileλ and
µm are the positive Lagrange multipliers related to constraints (7c) onσm, that appear
in Problem (9).

Optimality Conditions for fm, b and ξ

We first focus on the optimality conditions of Problem (10). The derivative ofL with
respect tofm, b andξ give

∂L

∂fm
= 0 ⇒ fm(·) = σm

∑

i

αiyiKm(xi, ·)

∂L

∂b
= 0 ⇒

∑

i

αiyi = 0

∂L

∂ξi
= 0 ⇒ 0 ≤ αi ≤ C .

Hence, the equivalent dual formulation of Problem (10) is a standard SVM problem






























max
α

−
1

2

∑

i, j

αiαj yiyj Kσ(xi, xj) +
∑

i

αi

s. t.
∑

i

αiyi = 0

C ≥ αi ≥ 0 i = 1, . . . , n ,

(11a)

(11b)

(11c)

whereKσ is the effective kernel defined in (2). Note that this dual pertains to the
sub-problem (10), not to the global problem (7).

Optimality Conditions for σm

The first-order optimality conditions forσm, derived in Appendix B, establish the re-
lation betweenσm and‖fm‖Hm

, which is

σm =‖fm‖
2q/(q+1)
Hm

(

d−1
ℓ sℓ

)p/(p+q+1)
(

∑

ℓ′

d
p/(p+q+1)
ℓ′ s

(q+1)/(p+q+1)
ℓ′

)−(p+q)

(12)
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wheresℓ =
∑

m∈Gℓ

‖fm‖
2/(q+1)
Hm

.

Since‖fm‖
2
Hm

= σ2
m

∑

i,j
αiαjyiyjKm(xi, xj), Equation (12) only provides an

implicit definition of the optimal value ofσm. Let gm(σ) denote the right-hand-side
of Equation (12), we have thatg(σ) = (g1(σ), . . . , gM (σ)) is a continuous mapping
from the closed unit ball defined by constraint (9b) to itself. Hence, Brouwer’s fixed
point theorem applies,4 and the outer loop of the wrapper can be performed by a fixed
point strategy, using the expression (12).

When the values ofp andq do not define a convex set in (9b), Brouwer’s theorem
does not hold anymore. Nevertheless, one can circumvent this problem by consider-
ing the optimization with respect toσ1 andσ2, such as in Problem (6) provided the
constraints (6d) and (6e) both span closed unit balls.

4.3 Algorithm

We now have all the ingredients to define our wrapper algorithm.

Algorithm 1 : CKL

initialize σ

solve the SVM problem→ J(σ)

repeat
repeat

σ = g(σ) // with gm(σ) defined by the l.h.s of (12)
until convergence

solve the SVM problem→ J(σ)

until convergence

The stopping criterion for assessing the convergence ofσ can be based on standard
criteria for fixed point algorithms, while the one related tothe SVM solver can be based
on the duality gap. In the following experiments, it is respectively based on the stability
of σ andJ(σ).

5 Channel Selection for Brain Computer Interfaces

We consider here two studies in Brain-Computer Interfaces (BCI). In BCI, one aims at
recognizing the cerebral activity of a person subject to a stimulus, thanks to an array of
sensors placed on the scalp of the subject that records a set of electroencephalograms
(EEG). Here, the EEG signals are collected from64 electrodes orchannels, positioned
onto the scalp as illustrated in Figure 4.

4 Brouwer’s fixed point theorem states that, ifB is a closed unit ball, then, any continuous function
g : B → B, has at least one fixed point.
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Figure 4 –Positions of the 64 electrodes on the scalp, for the two considered BCI problems. The
arrow represents the frontal direction.

Automated channel selection has to be performed for each single subject since it
leads to better performances or a substantial reduction of the number of useful chan-
nels (Schröder et al. 2005). Reducing the number of channelsinvolved in the decision
function is of primary importance for BCI real-life applications, since it makes the
acquisition system cheaper, easier to use and to set-up.

In this setup, each electrode may be considered as a source that generates a series
of potentials along the experiment. Composite Kernel Learning is well-suited to the
identification of a specific behavior in the EEG signals, by its ability to encode the no-
tion of channels. Besides the benefits of potentially reducing the number of channels,
CKL may also be beneficial if able to identify the salient features within each channel.
Hence, we will experiment with a non-convex parameterization of CKL that encour-
ages sparseness within and between groups, in order to reacha sparse solution at the
channel and the feature levels. Note that, for non-convex settings, we have no means
to assess the convergence towards a global optimum. Though the SVM solver may
return the optimal decision rule for the returnedσ, we have no way to secure global
convergence for the outer Problem (9), and no certificate of sub-optimality, such as the
one that could be provided by a duality gap.

In the following, CKL1/2 stands for a convex version of our algorithm, with
p = q = 1/2 (a ℓ(1,4/3) mixed-norm), CKL1 is a non-convex version, withp = q = 1
(a ℓ(2/3,1) dissimilarity, that we will also abusively qualify as a mixed-norm). Note
that MKL is also implemented by our algorithm, withp = 0 andq = 1.
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5.1 P300 Speller Paradigm

5.1.1 Protocol

The so-calledoddballparadigm states that a rare expected stimulus produces a positive
deflection in an EEG signal after about 300 ms. The P300 speller interface is based
on this paradigm (Farwell and Donchin 1998). Its role is to trigger a related event
potential, namely the P300, in response to a visual stimulus. This protocol uses a
matrix composed of6 rows and6 columns of letters and numbers, as illustrated in
Figure 5. First, the subject chooses a specific character in the matrix. Then, the12
lines (rows or columns) are intensified in a random order. When an intensified row or
column contains the chosen character, the subject is asked to count; this is assumed to
generate a P300. Because the signal to noise ratio of a scalp EEG signal is usually low,
this process is repeated15 times per character.

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z 1 2 3 4

5 6 7 8 9 _

Figure 5 –The spelling matrix.

The dataset, collected for a BCI competition (Blankertz et al. 2004), is processed as
described in (Rakotomamonjy and Guigue 2008). For each channel, 14 time samples
(that will be referred as frames), going from the beginning of the stimulus up to667 ms
after, have been extracted from the EEG signals. Frames7 and8, respectively centered
around300 and350 ms, are the most salient ones according to the paradigm.

The dataset is composed of7560 EEG signals (observations), paired with positive
or negative stimuli responses (classes). The896 features extracted (64 channels× 14
frames) are not transformed. However, to unify the presentation, we will refer to these
features as kernels. The kernels related to a given channel form a group of kernels, and
we have to learnM = 896 coefficientsσm, divided intoL = 64 groups. Thus, our
goal is to identify the significant channels, and within these channels, the significant
frames, which discriminate the positive from the negative signals.

The classification protocol is the following: we have randomly picked567 training
examples from the dataset and used the remaining as testing examples. The parameter
C has been selected by 5-fold cross-validation. This overallprocedure has been re-
peated10 times. Using a small part of the examples for training is motivated by the use
of ensemble of SVM (that we do not consider here) at a later stage of the EEG classi-
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fication procedure (Rakotomamonjy and Guigue 2008). The performance is measured
by the AUC, due to the post-processing that is done throughout repetitions in the P300:
as the final decision regarding letters is taken after several trials, the correct row and
column should receive high scores to identify correctly theletter.

5.1.2 Results

Table 2 summarizes the average performance of SVM, MKL, and CKL, that is, for
4 different penalization terms: quadratic penalization forthe classical SVM (that is,
trained with the mean of the896 kernels),ℓ1 norm for MKL, and mixed-norms for the
two versions of CKL assessed here: CKL1/2 and CKL1. The number of channels and
kernels selected by these algorithms and the time needed forthe training process are
also reported, together with the standard deviations.

Algorithms AUC # Channels # Kernels Time (s)

SVM 84.6± 0.9 64 896 1.9± 1.0

CKL1/2 84.9± 1.1 40.1± 15.2 513.0± 224.7 149.1± 94.1

CKL1 84.7± 1.1 14.6± 13.1 65.8± 52.2 64.8± 18.5

MKL 85.7± 0.9 47.0± 7.9 112.6± 46.2 60.3± 12.1

Table 2 –Average results and standard deviations, for SVMs with different kernel learning strate-
gies on the BCI dataset (P300 speller paradigm).

The prediction performances of the four algorithms are similar, with an insignif-
icant advantage for MKL. In terms of kernels, MKL is much sparser than CKL1/2,
but twice less sparse than CKL1. Regarding the number of groups, CKL1 is still the
sparsest solution, removing about three quarters of the channels. At this level CKL1/2

is sparser than MKL, although it retained many more kernels:as expected, CKL1/2

favors sparseness among groups rather than sparseness in kernels.
Insofar as SVM does not require to estimate the coefficientsσm, the training pro-

cess is much faster than for other methods. The kernel learning methods training time
is however still reasonable, and is rewarded by interpretability and cheaper evaluations
in the test phase. CKL1/2 is slower than MKL and CKL1 on this problem, but this
difference is not consistently observed: the orders of magnitude are identical for all
versions.

Figure 6 represents the median relevance of the electrodes computed over the 10
experiments. It displays which electrodes have been selected by the different kernel
learning methods. For one experiment, the relevance of channel ℓ is computed by the
relative contribution of groupℓ to the norm of the solution, that is

dt
ℓ

Z

(

∑

m∈Gℓ

‖f⋆
m‖

s
Hm

)1/s

, (13)

whereZ is a normalization factor that sets the sum of relevances to one and where

‖f⋆
m‖

2
Hm

= σ⋆
m

2
∑

i, j

α⋆
i α

⋆
j yiyj Km(xi, xj) .
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Figure 6 –Electrode median relevance for MKL, CKL1/2 and CKL1 (P300 speller paradigm).
The darker the color, the higher the relevance. Electrodes in white with a black circle are dis-
carded (the relevance is exactly zero).

The results for CKL1 are particularly neat, with high relevances for the electrodes
in the areas of the visual cortex (lateral electrodes PO7 and PO8). The scalp maps for
MKL and CKL1/2 show the importance of the same region, followed by the primary
motor and somatosensory cortex (C• and CPZ).5 In addition, they also highlight nu-
merous frontal electrodes that are not likely to be relevantfor the BCI P300 Speller
paradigm. Finally, the plots of relevance through time (notshown) are similar for all
kernel learning methods, with a sudden peak at frames7 and8 followed by a slow
decline.

5.1.3 Sanity check for channel selection

We provide supplementary experiments to support the relevance of the channel selec-
tion mechanism of CKL. We first have randomly pickedx channels, then randomly
selectedy kernels among thex × 14 candidates. Variablex (resp.y) has been set so
that it corresponds to the average number of channels (resp.kernels) used by CKL1/2

and CKL1, that is41 and15 (resp. 513 and 66).
Table 3 gives the average performances for classical SVMs: SVM x is trained with

a subset ofx channels randomly chosen as described above, while SVMCV is trained
with the single channel that reaches the highest cross-validation score.

Algorithms AUC # Channels # Kernels

SVM 41 80.7± 1.0 41 513

SVM 15 76.8± 1.7 15 66

SVM CV 68.8± 2.0 1 14

Table 3 –Average results and standard deviations for SVMs (P300 speller paradigm). SVMCV

selects the single best channel using a cross-validation procedure, while SVMx randomly selects
a subset ofx channels.

5 These channels also appear in the third quartile map of CKL1.
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Figure 7 –Electrode median relevance for different SVMs, with channels and kernels randomly
selected (P300 speller paradigm). The darker the color, thehigher the relevance. Electrodes in
white with a black circle are discarded (the relevance is exactly zero). For SVMCV , electrodes
in black correspond to the best channels identified using a cross-validation procedure (over the
10 repetitions, PO8 and C1 have been selected 3 times each).

With only one channel left, SVMCV performs significantly worse than any other
method. Several channels are thus necessary to build accurate SVM classifiers. Note
that most of the channels picked out by cross-validation, shown in Figure 7, are also
identified by CKL (see Figure 6). SVM15 behaves poorly compared with CKL1, high-
lighting the ability of CKL to identify appropriate channels. The same remark applies
to SVM41, where, despite the important number of channels and kernels involved, the
average AUC for is much lower than for CKL1/2 that selected 41 channels. Figure 7
shows that some of the channels assumed to be relevant according to CKL1/2 are miss-
ing here, especially electrodes PO8 and P8 located in the visual cortex, and electrodes
CPZ , CP1 and C1 in the somatosensory cortex.

5.2 Contingent Negative Variation paradigm

5.2.1 Protocol

This new set of BCI experiments aims at detecting some activated regions in the
brain when an event is being anticipated (Garipelli et al. toappear).6 The potentials
are here recorded according to the Contingent Negative Variation (CNV) paradigm
(Walter et al. 1964). In this paradigm, a warning stimulus predicts the appearance of
an imperative stimulus in a predictable inter-stimulus-interval. More precisely, an ex-
periment processes as follows. A subject, looking at a screen, encounters two kinds of
events:

1. In “GO” events, a green dot is displayed in the middle of thescreen. This signal
triggers the anticipation of the subject. Four seconds later, the dot becomes red,
prompting the subject to press a button as soon as possible.

6 We thank the authors for sharing their data with us.
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2. In “NOGO ” events, a yellow dot is displayed in the middle ofthe screen. The
subject has been instructed to do nothing in this situation.When, four seconds
later, the dot becomes red, the subject does not react.

The data gather recordings on two subjects, in20 experimental sessions, each being
composed of10 trials. For each subject, we have thus200 examples. The 64 EEG
signals are available from time0 to 3.25 s, in the anticipation phase, before the event
appears (at4 s). This results in64× 21 = 1344 linear kernels.

Available knowledge on the problem identifies the central role of the electrode CZ .
More generally, the channels located in the central region of the scalp are expected to
be relevant for classification, contrary to the one at the periphery. Complying with that
knowledge, Garipelli et al. (to appear) use Linear Discriminant Analysis (LDA) on CZ
to estimate the predictability of anticipation.

5.2.2 Results

We compare the results obtained with LDA to the ones achievedby CKL. The param-
eterC is estimated by 10-fold cross-validation, which is also used to estimate the test
error rate. This procedure is slightly biased, but since allthe methods share this bias,
the comparison should be fair. Considering the high variability between folds, we did
not go through a thorough double cross-validation procedure. The reported standard
deviations are likely be irrepresentative of the variability with respect to changes in the
training set, due to the known bias of the variance estimators in K-fold cross-validation
(Bengio and Grandvalet 2004).

Tables 4 and 5 reports the average performances for CKL1/2, CKL1 and MKL
in terms of accuracy, channel and kernel selection, and training time. The accuracy
achieved by a SVM, trained with the mean of the1344 kernels, is also reported.

Concerning Subject 1, all SVMs perform slightly better thanLDA. In this experi-
ment, CKL1/2 is much less sparse, in the number of kernels and channels, than MKL
or CKL1. The latter only retains9 channels for classifying.

Subject1 Error rate (%) # Channels # Kernels Time (s)

LDA 25.0± 1.2 CZ 21 –

SVM 21.0± 1.0 64 1344 0.3

CKL1/2 22.0± 1.0 50 988 20.7

CKL1 23.0± 1.3 9 37 6.24

MKL 24.0± 1.5 29 58 23.1

Table 4 –Average cross-validation score with standard deviations for Subject 1, for SVMs with
different kernel learning strategies on the BCI dataset (CNV paradigm). The number of channels
and kernels correspond to the predictor trained on the wholedata set.

For Subject 2, both versions of CKL considerably improve upon LDA. Although
CKL1/2 selects most of the kernels, it is sparser than MKL in terms ofgroups. CKL1,
with only 6 channels achieves the lowest error rate. With regard to training times,
the overhead compared to SVMs is comparable to the previous experiment. MKL and
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Subject2 Error rate (%) # Channels # Kernels Time (s)

LDA 36.5± 0.9 CZ 21 –

SVM 29.0± 1.3 64 1344 0.4

CKL1/2 27.0± 1.2 44 800 16.7

CKL1 23.0± 1.1 6 35 8.6

MKL 33.0± 1.3 51 112 20.0

Table 5 –Average cross-validation score with standard deviations for Subject 2, for SVMs with
different kernel learning strategies on the BCI dataset (CNV paradigm). The number of channels
and kernels correspond to the predictor trained on the wholedata set.

CKL1/2 require approximately the same time, and CKL1, which provides very sparse
results is about twice faster.

Results concerning interpretation are obtained with the whole dataset. Figure 8
shows the relevance of the electrodes, for both subject, as computed in (13) for the
P300 speller problem. The three versions of CKL highlight the central region of the
brain. However, CKL1 discards most peripheric channels, whereas CKL1/2 and MKL
locate numerous relevant electrodes out of the central area. For the first subject, CZ is
estimated to be relevant by all methods. The results for the second subject are some-
what puzzling, since the contribution of CZ is much lower than the one of FZ . This
shift may be due to an inappropriate positioning of the measurement device on the
scalp.

5.2.3 Sanity check for channel selection

Here also, additional experiments are carried out to support the channel and kernel
selection given by CKL, using the scheme described in Section 5.1.3. We consider
two random draws per subject, that correspond, in terms of number of kernels and
channels, to the solutions produced by CKL1/2 and CKL1. This process is repeated
10 times. Table 6 summarizes the performances for these SVMs, as for a SVM trained
with the channel that reaches the highest cross-validationscore. Figure 9 displays the
electrodes used for each method.

Algorithms Error rate (%) # Channels # Kernels

Subject 1
SVM 50 29.1± 1.0 50 988

SVM 9 37.9± 1.1 9 37

SVM CV 25.5± 1.2 C2 21

Subject 2
SVM 44 31.2± 1.1 44 800

SVM 6 36.2± 0.9 6 35

SVM CV 27.5± 0.7 FC1 21

Table 6 –Average cross-validation score with standard deviations for Subjects 1 and 2, for SVMs
(CNV paradigm). SVMCV selects the best channel using a cross-validation procedure, while
SVMx randomly selects a subset ofx channels. The results reported for SVMx are averaged
over 10 repetitions.
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Figure 8 –Electrode relevance for Subject 1 (top) and Subject 2 (bottom), for MKL, CKL1/2 and
CKL1 (CNV paradigm). The darker the color, the higher the relevance. Electrodes in white with
a black circle are discarded (the relevance is exactly zero).

Concerning Subject 1, the first two versions of SVMs perform badly, especially
SVM9 where CZ was chosen only once and CPZ only twice over the 10 repetitions.
The error rate for SVMCV is comparable to the one of LDA, and it selects C2, which
is relevant in all versions of CKL. The error rate of SVMCV is slightly greater than the
one of CKL1/2 or CKL1.

For Subject 2, SVMCV fails compared to CKL1, but reaches the performance of
CKL1/2 with the “outsider” FC1. SVMs with randomly selected kernels behave poorly
again, with regard to CKL.

6 Conclusion

This paper is at the crossroad of kernel learning and variable selection. From the for-
mer viewpoint, we extended multiple kernel learning to takeinto account the group
structure among kernels. From the latter viewpoint, we generalized the hierarchical
penalization frameworks based on mixed norms to kernel classifiers, by considering
penalties in RKHS instead of parameter spaces.

We provide here a smooth variational formulation for arbritrary mixed-norm penal-
ties, enabling to tackle a wide variety of problems. This formulation is not restricted
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Figure 9 –Electrode median relevance for Subject 1 (top) and Subject 2(bottom), for different
SVMs, with channels and kernels randomly selected over 10 repetitions (P300 speller paradigm).
The darker the color, the higher the relevance. Electrodes in white with a black circle are dis-
carded (the relevance is exactly zero). For SVMCV , electrodes in black correspond to the best
channels identified using a cross-validation procedure.

to convex mixed-norms, a property that turns out to be of interest for reaching sparser,
hence more interpretable solutions.

Our approach is embedded, in the sense that the kernel hyper-parameters are op-
timized jointly with the kernel expansion to minimize the hinge loss. It is however
implemented by a simple wrapper algorithm, for which the inner and the outer sub-
problems have the same objective function, and where the inner loop is a standard
SVM problem.

In particular, this implementation allows to use availablesolvers for kernel ma-
chines in the inner loop. Hence, although this paper considered binary classification
problems, our approach can be readily extended to other learning problems, such as
multiclass classification, clustering, regression or ranking.
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A Detailed Derivation of Problem (7)

We rewrite Problem (6) by applying succesively two changes of variable. We first
note that, whenσ1,ℓ or σ2,m is null, then the optimalfm is also null. Hence, we may
applyfm ← σ1,ℓσ2,mfm since this transformation is one-to-one providedσ1,ℓ 6= 0 and

σ2,m 6= 0. We then follow with,σ1,ℓ ← σ
2/p
1,ℓ , σ2,m ← σ

2/q
2,m, ; this yields:







































































min
f1,...,fM

b, ξ, σ1, σ2

1

2

∑

ℓ

1

σp
1,ℓ

∑

m∈Gℓ

1

σq
2,m

‖fm‖
2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1− ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n
∑

ℓ

dℓ σ1,ℓ ≤ 1 , σ1,ℓ ≥ 0 ℓ = 1, . . . , L

∑

m

σ2,m ≤ 1 , σ2,m ≥ 0 m = 1, . . . , M ,

then, we proceed to another change of variable, that is,σm = σp
1,ℓ σq

2,m, and Prob-
lem (6) is equivalent to the following optimization problemin f1, . . . , fM , b, ξ, σ1, σ:






























































min
f1,...,fM

b,ξ,σ1,σ

1

2

∑

m

1

σm
‖fm‖

2
Hm

+ C
∑

i

ξi

s. t. yi

(

∑

m

fm(xi) + b

)

≥ 1− ξi , ξi ≥ 0 i = 1, . . . , n

∑

ℓ

dℓ σ1,ℓ ≤ 1 , σ1,ℓ ≥ 0 ℓ = 1, . . . , L

∑

ℓ

σ
−p/q
1,ℓ

∑

m∈Gℓ

σ1/q
m ≤ 1 , σm ≥ 0 m = 1, . . . , M .

(14a)

(14b)

(14c)

(14d)

We now use the fact that, in the formulation above, the first-order necessary optimality
conditions establish a functional link betweenσ1 andσ. This link is derived from the
Karush-Kuhn-Tucker necessary optimality conditions of Problem (14), computed from
the associated Lagrange functionL:

∂L

∂σ1,ℓ
= λ1dℓ − λ2

p

q
σ
−(p+q)/q
1,ℓ

∑

m∈Gℓ

σ1/q
m − η1,ℓ (15)

∂L

∂σm
= −

‖fm‖
2
Hm

σ2
m

λ1dℓ + λ2
1

q
σ
−p/q
1,ℓ σ(1−q)/q

m − η2,m (16)

whereλ1 andλ2 are the Lagrange parameters related to the norm constraints(14c) and
(14d) respectively whileη1,ℓ andη2,m are associated to the positivity ofσ1,ℓ andσm.

From (16), one sees that, except for the trivial case where
∑

m ‖fm‖
2
Hm

= 0,
λ2 6= 0 at the optimum. Then, one easily derives from (15) that, at the optimum,
qλ1 = pλ2.
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Finally, combining Equation (15) and the ones stating that the norm con-
straints (14c) and (14d) are saturated, after some algebra,we get that the optimal
(σ⋆, σ⋆

1) satisfies

∑

ℓ

σ⋆
1,ℓ

−p/q
∑

m∈Gℓ

σ⋆
m

1/q =
∑

ℓ

d
p/(p+q)
ℓ

(

∑

m∈Gℓ

σ⋆
m

1/q
)q/(p+q)

.

Plugging this optimality condition into Problem (14), we get Problem (7).

B Proof of Proposition 2

The proof of Proposition 2 can be decomposed into three steps. We first derive the
optimality conditions forσm, from which we express a relationship betweenσm and
fm at stationnary points. Since the stationnary points are local minima of the convex
objective function, the minima of (7) are minima of (8). Finally, this expression infm

is plugged in the original objective function.
The Lagrangian associated to Problem (7) is

L =
1

2

∑

m

1

σm
‖fm‖

2
Hm

+ C
∑

i

ξi −
∑

i

αi

[

yi

(

∑

m

fm(xi) + b

)

+ ξi − 1

]

−
∑

i

ηiξi + λ

[

∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ1/q
m

)q
)1/(p+q)

− 1

]

−
∑

m

µmσm ,

whereηi andµm are the Lagrange parameters respectively related to the positivity of
ηi andσm, andλ is the Lagrange parameter pertaining to the norm constraint(7c). The
first-order necessary optimality condition∂L/∂σm = 0 reads

−
‖fm‖

2
Hm

2σ2
m

+
λ

p + q
σ(1−q)/q

m

(

d−1
ℓ

∑

m∈Gℓ

σ1/q
m

)−p/(p+q)

− µm = 0 .

As all the Lagrange parameters are non-negative, except forthe trivial case where, for
all m, σm = 0, the Lagrange parameterλ is non-zero. We then have that, either

σm = 0 and ‖fm‖Hm
= 0 , either

σm =

(

p + q

2λ

)q/(q+1)

‖fm‖
2q/(q+1)
Hm

(

d−1
ℓ

∑

m∈Gℓ

σ1/q
m

)pq/(p+q)(q+1)

. (17)

To uncover the relationship ofσm with ‖fm‖Hm
at the stationnary points, we start
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from (17):

σ1/q
m =

(

p + q

2λ

)1/(q+1)

‖fm‖
2/q+1
Hm

(

d−1
ℓ

∑

m∈Gℓ

σ1/q
m

)p/(p+q)(q+1)

(

∑

m∈Gℓ

σ1/q
m

)q+1

=
p + q

2λ

(

∑

m∈Gℓ

‖fm‖
2/q+1
Hm

)q+1(

d−1
ℓ

∑

m∈Gℓ

σ1/q
m

)p/(p+q)

(

∑

m∈Gℓ

σ1/q
m

)q

=

[

p + q

2λ
d
−p/(p+q)
ℓ

(

∑

m∈Gℓ

‖fm‖
2/q+1
Hm

)(q+1)
](p+q)/(p+q+1)

(18)

As λ 6= 0, the constraint (7c) is saturated. We use this fact to get ridof λ. Denoting
sℓ =

∑

m∈Gℓ

‖fm‖
2/q+1
Hm

, and summing both sides of (18) overℓ, we get

2λ

p + q
=

(

∑

ℓ

d
p/(p+q+1)
ℓ s

(q+1)/(p+q+1)
ℓ

)p+q+1

. (19)

Finally, plugging (18) and (19) in (17), we obtain the relationship

σm = ‖fm‖
2q/(q+1)
Hm

(

d−1
ℓ sℓ

)p/(p+q+1)
(

∑

ℓ

d
p/(p+q+1)
ℓ s

(q+1)/(p+q+1)
ℓ

)−(p+q)

.

Note that this equation also holds forσm = 0. It is now sufficient to replaceσm by this
expression in the objective function of Problem (7) to obtain the claimed equivalence
with Problem (8) in Proposition 2.

C Overview of Notations and Symbols

Data
X observation domain
n number of training examples
i, j indices, often running over{1, . . . , n}
xi observations inX
yi class labels in{−1, 1}

Kernels
H feature space
Φ feature map,Φ : X → H
K reproducing kernelK : X × X → R

〈·, ·〉
H

scalar product inH; if f(·) =
∞
∑

i=1

αiK(xi, ·) andg(·) =
∞
∑

j=1

αjK(xj , ·),

then〈f, g〉
H

=
∞
∑

i=1

∞
∑

j=1

αiαjK(xi, xj)

‖ · ‖H norm induced by the scalar product inH, ‖f‖H =
√

〈f, f〉
H

K kernel matrixKij = K(xi, xj)
αi expansion coefficients or Lagrange multipliers
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SVM-related
f function, fromX to R

b constant offset (or threshold) inR
ξi slack variables inR (constrained to be non-negative)
ξ vector of all slack variables inRn

C regularization parameter in front of the empirical risk term
ηi Lagrange multiplier related to the positivity ofξi

MKL and CKL-related
K set of admissible kernels
M number of kernels
m kernel index, often running over{1, . . . , M}
L number of groups for CKL
ℓ group index, running over{1, . . . , L}
Gℓ set of indices for groupℓ, Gℓ ⊆ {1, . . . , M}
dℓ cardinality ofGℓ

Hm mth feature space
Km reproducing kernel for themth feature space
σm weight of themth kernel in the kernel combination
σ vector of kernel weights inRM

Kσ equivalent kernelKσ =
M
∑

m=1
σmKm

σ1,ℓ weight of theℓth group in the kernel combination
σ1 vector of group weights inRL

σ2,m weight of themth kernel in the group-kernel combination
σ2 vector of kernel weights inRM

Miscellaneous
R set of reals
A⊤ transposed of matrixA (ditto for vectors)

sign sign function, fromR to {−1, 1}, sign(x) =

{

−1 if x < 0

0 if x ≥ 0

ℓ(p, q) mixed(p, q)-norm, theℓ(p, q) norm ofσ is

(

∑

ℓ

(

∑

m∈Gℓ

σp
m

)q/p
)1/q
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