Représentations galoisiennes p-adiques et (phi,tau)-modules

Abstract : Let p be an odd prime number and K be a p-adic field. In this paper, we develop an analogue of Fontaine's theory of (phi,Gamma)-modules replacing the p-cyclotomic extension by the extension K_infty obtained by adding to K a compatible system of p^n-th roots of a fixed uniformizer pi of K. As a result, we obtain a new classification of p-adic representations of G_K = Gal(Kbar/K) by some (phi, \tau)-modules. We then make a link between the theory of (phi,tau)-modules discussed above and the so-called theory of (phi,N_nabla)$-modules developped by Kisin. As a corollary, we answer a question of Tong Liu: we prove that, if K is a finite extension of Q_p, every representation of G_K of E(u)-finite height is potentially semi-stable.
Document type :
Journal articles
Liste complète des métadonnées
Contributor : Xavier Caruso <>
Submitted on : Sunday, September 30, 2012 - 9:42:22 PM
Last modification on : Friday, November 16, 2018 - 1:23:47 AM
Document(s) archivé(s) le : Monday, December 31, 2012 - 3:55:11 AM


Files produced by the author(s)


  • HAL Id : hal-00528714, version 3
  • ARXIV : 1010.4846


Xavier Caruso. Représentations galoisiennes p-adiques et (phi,tau)-modules. Duke Mathematical Journal, Duke University Press, 2013, 162 (13), pp.2525-2607. ⟨hal-00528714v3⟩



Record views


Files downloads