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Abstract

We report on the quantum yield of excitation energy transfer in non-covalently bound nan-

otube/porphyrin compounds. Evidence for energy transfer is gained from photoluminescence exci-

tation experiments. We perform a quantitative evaluation of the transfer quantum yield in the case

of (6,5) nanotubes through three independent methods : quantitative PLE measurements, evalu-

ation of the luminescence quenching of the donor (porphyrin) and ultrafast transient absorption

measurements. The latter shows a tremendous increase of the porphyrin recovery rate upon incor-

poration in the compound. All these measurements consistently lead to an exceptional quantum

yield efficiency: 1-10−3 ≤ η ≤ 1-10−5.

∗Electronic address: lauret@lpqm.ens-cachan.fr
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Functionalization of single-wall carbon nanotubes (SWNTs) is a rapidly developing field

in view of applications such as biology imaging [1] or optoelectronics [2–4]. In particular, the

coupling of dye molecules with nanotubes is of great interest regarding possible photovoltäıc

and other optoelectronic applications [2, 3, 5]. The general motivation is to combine the

exceptional transport properties of carbon nanotubes with the versatility of the optical

properties of the chromophores. In this context, it is of particular importance to preserve

the intrinsic properties of carbon nanotubes such as their high mobility. Therefore usual

covalent chemistry, which leads to deep defects formation due to local destruction of the

π-electronic system, should be avoided. In contrast, the use of non-covalent chemistry (such

as π-stacking interaction) has proven to be compatible with high quality transport and

optical properties of the nanotubes [6–8]. On the other hand it usually leads to poorly

stable compounds [6–8]. Recently, an original method based on micelle encapsulation of

the nanotube/molecule compound has been demonstrated that allows both stability and

minimal perturbation to the nanotube properties [8]. Depending on the band alignment,

this coupling can lead to either charge transfer (CT) or excitation energy transfer (EET).

In view of applications, it is important to show that although the compound stability relies

on weak interactions, it is possible to have an efficient coupling between the nanotube and

the organic molecule.

In this Letter, we study SWNT/porphyrin compounds which are known for showing EET

[6–8] and we perform a quantitative investigation of the strength of this coupling in the case

of (6,5) nanotubes by measuring the quantum yield and the dynamics of the energy transfer.

Photoluminescence (PL) experiments conducted on carbon nanotube/porphyrin compounds

show unambiguous evidence for EET : the emission of light on the near infra-red (NIR)

transitions of the nanotube is strongly enhanced when the excitation is in resonance with

absorption lines of the porphyrin molecule. Concomitantly, the fluorescence of the porphyrin

is strongly suppressed. In the time domain, the complex shows a reduction by several

orders of magnitude of the porphyrin ground state recovery time. Those three independent

measurements consistently lead to an exceptional EET quantum yield comprised between

1-10−3 and 1-10−5.

Purified CoMoCAT nanotubes (SouthWest Nanotechnologies, SG65) containing mainly

the (6,5) chirality were functionalized with base-free tetraphenyl porphyrin (TPP) by means

of the micelle swelling method (see [8] for details). The output of a monochromator illumi-
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nated by a UV-VIS Xenon lamp served as a tunable light source for the photoluminescence

excitation experiments (PLE). A step of 10 nm is used for the excitation in the PLE map.

The ultrafast pump/probe experiments were conducted in a degenerate configuration at

2.952 eV and 2.831 eV with a frequency doubled mode-locked Ti:Saphire laser which deliv-

ers ∼80 fs pulses at a 86 MHz repetition rate.

FIG. 1: Optical absorption spectra of a water suspension of nanotube in micelles (blue) and of

a water suspension of nanotube/porphyrin compounds (grey). Optical absorption spectrum of a

micellar suspension of porphyrins rescaled for clarity (black).

Carbon nanotubes display NIR absorption from S11 excitons (around 1.2 eV) and visible

absorption from S22 excitons near 2 eV (Figure 1, blue line). For the SWNT/TPP com-

pounds (Figure 1, grey line), these lines are red-shifted of about 20 meV as discussed in

[6–8]. The main absorption line of the compound (the so-called Soret absorption band of

the porphyrin) is observed at 2.831 eV. It corresponds to ground state absorption to the

second electronic excited state of the porphyrin in the compound. The shoulder at 2.952 eV

is a signature of residual free porphyrins embedded in micelles (to be compared to free por-

phyrin absorption spectrum, black line in Fig. 1) [8]. The transitions to the first electronic

excited states (Q bands, around 2 eV) are barely visible in the compound since they are

much weaker and further overlap with the S22 excitonic absorption of the nanotubes.

Figure 2a) displays the PLE map of the nanotube suspension. One spot predominates

in this map. The semi-empirical formula of Bachilo et al. allows to assign this spot to
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the (6,5) family [9]. Additional faint spots are present that correspond to weakly abundant

chiral families. The PLE map of the nanotube/porphyrin compound suspension is shown in

Figure 2b). The spot corresponding to (6,5) nanotubes is red-shifted both in excitation and

emission energies. This shift results from a dielectric screening of the excitonic transition by

the porphyrin molecules [10]. Compared to the PLE map of nanotubes, additional spots are

visible along the vertical dashed line for excitation energies of 2.805 and 2.357 eV. The spot

at (x=1.240 eV, y=2.805 eV) corresponds to absorption on the Soret-band and emission

by nanotubes. This brings evidence for excitation energy transfer from the porphyrin to

the nanotube: when photons are absorbed by the porphyrin molecules, the luminescence

of the nanotube is enhanced [6–8]. We assign the PLE feature at an excitation energy of

2.357 eV to EET upon absorption on the porphyrin higher Q band, red shifted of about

50 meV in comparison with free porphyrins. The other Q bands could not be evidenced

in PLE measurements, most probably because of spectral overlap with the nanotubes S22

transitions. Nevertheless, the observation of the 2.357 eV PLE feature means that the EET

occurs at least partially through the Q bands of the porphyrin molecules.

(a)

(b)

Soret

Q band

S22

(6, 5)

FIG. 2: PLE maps of a) the nanotube suspension; b) the nanotube/porphyrin compound suspension.

The yellow dashed line corresponds to a PLE line-cut.
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Importantly, the intensity of the intrinsic PLE peak on the S22 transition of (6,5) nan-

otubes is on the same order than the PLE peak through EET from the Soret band (upper

and lower peaks along the PLE line-cut in Fig. 2b). This allows quantitative investigation

of the transfer yield. The PLE peak amplitude of nanotubes is related to their absorption

cross-section σS22 (1.1 ± 0.1×10−12 cm2.µm−1) for (6,5) nanotubes [11], since it is well es-

tablished that the internal conversion from S22 to S11 is ultrafast and efficient [12, 13]. On

the other hand, the PLE peak at 2.805 eV (EET) is related to the absorption cross-section

of the porphyrin (σTPP = 7× 10−16 cm2) [14], the surface coverage of the nanotube by TPP

molecules (α) and the transfer yield (η). The equal amplitude of the two PLE peaks leads

to the following relationship:

σTPP ×N × η = σS22 with N = α SNT

STPP

where STPP ' 1.22 nm2 is the surface of one TPP molecule and SNT is the wall surface per

micron length of a (6,5) nanotube. We find that ηα = 0.95 ± 0.10. The synthesis process

ensuring that the coverage is close to one [8], we deduce that the transfer yield must also be

on the order of one.

Another independent manner for evaluating this quantum efficiency is given by the

quenching of the luminescence of the donor. Figure 3a) shows the visible luminescence

of free porphyrins (black curve) and of the complex (grey curve) with the same porphyrin

concentration and incident power. Both spectra display identical bands at 1.719 eV and

1.900 eV but the photoluminescence of the complex is reduced by a factor 750 for the

complex. However, the position of the lines in the compound shows that the residual lu-

minescence actually arises from left after porphyrin rather than from the compound itself

since the bands of the latter should be red shifted by ∼ 50 meV. This assignment is fur-

ther confirmed by PLE measurements: again the excitation spectrum of this residual PL

(Figure 3b)) is identical to the one of free porphyrin whereas the redshift of the Soret band

is of 120 meV for the compounds (See Figure 1). When looking specifically for PL of the

compound by tuning the excitation at 2,818 eV, we cannot detect any signal within our

detectivity which is limited by the tail emission of free porphyrin. Assuming that any signal

from the compound would be detected if of intensity comparable to this tail emission, we

deduce Id−a

Id
≤ 9.10−4 where Id−a (resp. Id) is the integrated PL intensity of the donor in

presence (resp. absence) of the acceptor. Since the quantum efficiency of the EET process
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FIG. 3: a) Photoluminescence spectra of free porphyrins (black curve) and of the nan-

otube/porphyrin compounds (grey curve) excited on their respective Soret band. b) Normalized

PLE detected 1.722 eV in free porphyrins (black curve) and in the nanotube/porphyrin compound

(grey curve). c) Relative change of transmission as a function of the time delay for pump and probe

in resonance with the Soret band of the free porphyrins (black curve) or in resonance with the Soret

band of the compounds (grey curve). Green and blue dashed lines are bi- and mono-exponential fits

respectively.

can be written:

η = 1− Id−a

Id

we can give a lower bound of η : η ≥ 1− 10−3.

Finally, ultrafast pump/probe experiments allowed us to gain further insight into the

dynamics and therefore into the transfer yield of this EET. In these experiments, both pump

and probe were tuned in resonance with the Soret band of the porphyrin (at 2.952 eV for

the free porphyrin or at 2.831 eV for the compound). Free porphyrin shows a bi-exponential

recovery dynamics (Figure 3c) with a main very slow component (unresolved here) that was

reported to be on the order of 12 ns in previous studies [15]. This component corresponds
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to the ground state recovery. In nanotube/porphyrin compounds, this recovery time is

dramatically reduced down to ∼120 fs. This decrease of the donor life-time is typical of

an efficient donor-acceptor coupling. The ratio τd−a

τd
, where τd (resp. τd−a) is the recovery

time of the free (resp. in compound) porphyrin is on the order of 10−5 and is related to the

efficiency η by:

η = 1− τd−a

τd
= 1− 10−5

In summary, we have reported on efficient and ultrafast excitation energy transfer in

nanotube/porphyrin assemblies. The quenching of the porphyrin luminescence and the

tremendous increase of its relaxation rate show that the efficiency of the EET process is very

high. Cross-estimates of this quantum yield lead to 1 − 10−3 ≤ η ≤ 1 − 10−5. This result

is especially strong for non-covalently bound compounds. This opens avenues for creating

molecular assemblies based on nanotubes that preserve the nanotube intrinsic properties and

nevertheless show efficient coupling to the chromophore for light-harvesting or photovoltäıc

applications.

This work was supported by the GDR-E ”nanotube” (GDRE2756), grant ”C’Nano IdF

EPONAD” from ”Région Ile de France” and ANR grant ”CEDONA”.

[1] Z. Liu, S. Tabakman, S. Sherlock, X. Li, Z. Chen, K. Jiang, S. Fan, and H. Dai, Nano Research

3, 222 (2010).

[2] C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F.

Hauke, A. Hirsch., Nature Chemistry 1, 243 (2009).

[3] S. Campidelli, B. Ballesteros, A. Filoramo, D. Daz Daz, G. de la Torre, T. Torres, G. M.

Aminur Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D.M. Guldi, C. Cioffi, M.

Prato, and J.P. Bourgoin, J. Am. Chem. Soc. 130, 11503 (2008).

[4] M. Alvaro, P. Atienzar, P. de la Cruz, J. L. Delgado, V. Troiani, H. Garcia, F. Langa, A.

Palkar, and L. Echegoyen., J. Am. Chem. Soc. 128, 6626 (2006).

[5] C. Ehli, G. M. Aminur Rahman, N. Jux, D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio,

D. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli, and M. Prato, J. Am. Chem. Soc.

128, 11222 (2006).

7



[6] G. Magadur, J.S. Lauret, V. Alain-Rizzo, C. Voisin, Ph. Roussignol, E. Deleporte, and J.A.

Delaire., ChemPhysChem 9, 1250 (2008).

[7] J.P. Casey, S.M. Bachilo, and R.B. Weisman, Journal of Material Chemistry 18, 1510 (2008).

[8] C. Roquelet, J.S. Lauret, V. Alain-Rizzo, C. Voisin, R. Fleurier, M. Delarue, D. Garrot, A.

Loiseau, Ph. Roussignol, J. A. Delaire, and E. Deleporte, ChemPhysChem 11, 1667 (2010).

[9] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman., Science

298, 2361 (2002).

[10] S. Berger, F. Iglesias, P. Bonnet, C. Voisin, G. Cassabois, J.S. Lauret, C. Delalande, and P.

Roussignol, J. App. Phys. 105, 094323 (2009).

[11] S. Berciaud, L. Cognet and B. Lounis, Phys. Rev. Lett. 101, 077402 (2008).

[12] J.S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, L. Capes, O. Jost, Phys.

Rev. Lett. 90, 057404 (2003).

[13] J. S. Lauret, C. Voisin, S. Berger, G. Cassabois, C. Delalande, Ph. Roussignol, L. Goux-Capes,

A. Filoramo, Phys. Rev. B 72, 113413 (2005).

[14] J. B. Kim, J. J. Leonard and F. R. Longo, J. Am. Chem. Soc. 94, 3986 (1972).

[15] J. S. Baskin, H.Z. Yu and A. H. Zewail, J. Phys. Chem. A 106, 9837 (2002).

8


