Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions

Abstract : We study the eigenpairs of a model Schrödinger operator with a quadratic potential and Neumann boundary conditions on a half-plane. The potential is degenerate in the sense that it reaches its minimum all along a line which makes the angle \theta with the boundary of the half-plane. We show that the first eigenfunctions satisfy localization properties related to the distance to the minimum line of the potential. We investigate the densification of the eigenvalues below the essential spectrum in the limit \theta \to 0 and we prove full asymptotic expansion for these eigenvalues and their associated eigenvectors. We conclude the paper by numerical experiments obtained by a finite element method. The numerical results confirm and enlighten the theoretical approach.
Type de document :
Article dans une revue
Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 63 (2), pp.203-231. 〈10.1007/s00033-011-0163-y〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00527643
Contributeur : Monique Dauge <>
Soumis le : samedi 18 juin 2011 - 18:48:05
Dernière modification le : vendredi 16 novembre 2018 - 01:35:39
Document(s) archivé(s) le : dimanche 4 décembre 2016 - 07:07:11

Fichier

BDPR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Virginie Bonnaillie-Noël, Monique Dauge, Nicolas Popoff, Nicolas Raymond. Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions. Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2012, 63 (2), pp.203-231. 〈10.1007/s00033-011-0163-y〉. 〈hal-00527643v4〉

Partager

Métriques

Consultations de la notice

587

Téléchargements de fichiers

240