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ABSTRACT

Multimedia scenarios have multimedia content and inter-

active events associated with computer programs. Inter-

active Scores (IS) is a formalism to represent such sce-

narios by temporal objects, temporal relations (TRs) and

interactive events. IS describe TRs, but IS cannot repre-

sent TRs together with conditional branching. We propose

a model for conditional branching timed IS in the Non-

deterministic Timed Concurrent Constraint (ntcc) calculus.

We ran a prototype of our model in Ntccrt (a real-time ca-

pable interpreter for ntcc) and the response time was ac-

ceptable for real-time interaction. An advantage of ntcc

over Max/MSP or Petri Nets is that conditions and global

constraints are represented declaratively.

1. INTRODUCTION

Interactive multimedia deals with the design of scenarios

where multimedia content and interactive events can be as-

sociated with computer programs. Designers usually cre-

ate multimedia for their scenarios, then they bind them

to external interactive events or programs. Max/MSP and

Pure Data (Pd) [1] are often used to program interactive

scenarios. However, we claim for the need of a general

model to (i) control synthesis based on human gestures and

to (ii) declare relations among multimedia objects (e.g.,

partial-order relations for their execution).

Interactive Scores (IS) is a formalism for the design of

scenarios represented by temporal objects (TOs), temporal

relations (TRs) and interactive events. Examples of TOs

are videos and sounds. TOs can be triggered by interactive

events (usually launched by the user) and several TOs can

be active simultaneously. A TO can contain other TOs.

The hierarchy allows us to control the start or end of a TO

by controlling the start or end of its parent. Moreover, TRs

provide a partial order for the execution of the TOs: TRs

can be used to express precedence between objects.

IS have been subject of study since the beginning of

the century [2], [3]. IS were originally developed for in-

teractive music scores. Recently, the model was extended

by Allombert, Desainte-Catherine, Larralde and Assayag

in [4]. Hence IS can describe any kind of TOs, Allombert
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et al.’s model has inspired two applications: iScore [5] to

compose and perform Electroacoustic music and Virage [6]

to control live spectacles and interactive museums.

IS are successful to describe TRs, but IS have not been

used to represent TRs together with conditional branching.

Conditional branching is used in programming to describe

control structures such as if/else and switch/case. It pro-

vides a mechanism to choose the state of a program de-

pending on a condition and its current state.

Using conditional branching, a designer can create sce-

narios with loops and choices (as in programming). The

user and the system can take decisions during performance

with the degree of freedom described by the designer –

while the system maintains the TRs of the scenario.

The designer can express under which conditions a loop

ends; for instance, when the user changes the value of a

certain variable, the loop stops; or the system non-deter-

ministically chooses to stop.

Unfortunately, there is neither a theoretical model nor a

special-purpose application to support conditional branch-

ing in interactive multimedia. In this work, we propose

a model for conditional-branching timed IS in the Non-

deterministic Timed Concurrent Constraint (ntcc) [7] cal-

culus. In our model we combine TRs, conditional branch-

ing and discrete interactive events in a single model. We

ran a prototype of the model over Ntccrt [8], a real-time

capable interpreter for ntcc.

In a previous work [9], we showed how we can repre-

sent a multimedia installation with loops and choice 1 , and

the pure timed IS model [4] into our model.

1.1 Related work on interactive multimedia

A similar approach to ours was followed by Olarte and

Rueda in [10]. They propose a model for IS in a calculus

similar to ntcc; however, they only modeled TRs. They

verified critical properties on the system. The key point

of their model is that the user can change the hierarchical

structure of the score during performance.

Another system dealing with a hierarchical structure is

Maquettes of OpenMusic [11]. However, OpenMusic is a

software for composition and not real-time interaction.

Another kind of systems capable of real-time interac-

tion are score following systems (see [12]). Such systems

track the performance of a real instrument and they may

play multimedia associated to certain notes of the piece.

However, to use these systems it is necessary to play a real

1 http://www.gmea.net/activite/creation/2007_
2008/pPerez.htm
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instrument; whereas to use IS, the user only has to con-

trol some parameters of the piece, such as the start and end

dates of the TOs.

A model for multimedia interaction that does not re-

quire a real instrument uses Hidden Markov Models to

model probabilistic installations [13]. The system tracks

human motion and it responds to human performance with

chords and pitches depending on the knowledge of previ-

ous training. However, the system requires intensive train-

ing and it is not a tool for composition.

In the domain of composition of interactive music, there

are applications such as Ableton Live 2 . Using Live, a com-

poser can write loops and a musician can control different

parameters of the piece during performance. Live is com-

monly used for Electronic and Electroacoustic music. Un-

fortunately, the means of interaction and the synchroniza-

tion patterns provided by Live are limited.

1.1.1 Formalisms for Interactive Multimedia

To handle complex synchronization patterns and to predict

the behavior of interactive scenarios, formalisms such as

ntcc and Hierarchical Time Stream Petri Networks (HT-

SPN) [14] and have been used to model IS [15, 4].

In HTSPN we can express a variety of TRs, but it is

not easy to represent global constraints (e.g., the number

of TOs playing simultaneously). Instead, ntcc synchro-

nizes processes through a common constraint store, thus

global constraints are explicitly represented in such store.

We chose ntcc because we can easily represent time, con-

straints, choice, and we can verify the model.

Another formalism for defining declaratively partial or-

ders of musical processes and audio is Tempo [16]. How-

ever, Tempo does not allow us to express choice (when

multiple conditions hold), simultaneity and weak time-outs

(e.g., perform an action if the condition cannot be deduced).

A key aspect is that there is a real-time capable interpreter

and automatic verification for Tempo.

At present, there is not an automatic verifier for ntcc.

In the declarative view, ntcc processes can be interpreted

as linear temporal logic formulae. Ntcc includes an in-

ference system in this logic to verify properties of ntcc

models. This inference procedure was proved to be of

exponential time complexity [17]. Nevertheless, we be-

lieve practical automatic verification could be envisioned

for useful subsets of ntcc via model checking (see [18]).

Automated verification for IS will provide information

about the correctness of the system to computer scientists.

It will also provide important properties about the scenario

to its designers and users. It will be possible to verify the

absence of deadlocks, and also that certain TOs will be

played during performance. This kind of properties cannot

be verified in applications with no formal semantics.

1.2 Structure of the paper

The remainder of this paper is structured as follows. Sec-

tion 2 explains ntcc and Ntccrt. Section 3 states our

model for conditional-branching timed IS. Section 4 shows

the ntcc definitions of our model. Section 5 explains our

2 http://www.ableton.com/live/

implementation using Pd and Ntccrt. Finally, section 6

gives some concluding remarks and future work.

2. THE NTCC PROCESS CALCULUS

A family of process calculi is Concurrent Constraint Pro-

gramming (ccp) [19], where a system is modeled in terms

of variables and constraints over some variables. The con-

straints are contained in a common store. There are also

agents that reason about the system variables, based on par-

tial information (by the means of constraints).

Formally, ccp is based upon the idea of a constraint

system (CS). A constraint system includes a set of (basic)

constraints and a relation (i.e., entailment relation |=) to

deduce a constraint with the information supplied by other

constraints.

A ccp system usually includes several CSs for differ-

ent variable types. There are CSs for variable types such

as sets, trees, graphs and natural numbers. A CS providing

arithmetic relations over natural numbers is known as Fi-

nite Domain (FD). As an example, using a FD CS, we can

deduce pitch 6= 60 from the constraints pitch > 40 and

pitch < 59.

Although we can choose an appropriate CS to model

any problem, in ccp it is not possible to delete nor change

information accumulated in the store. For that reason it

is difficult to perceive a notion of discrete time, useful to

model reactive systems communicating with an external

environment (e.g., users, lights, sensors and speakers).

Ntcc introduces to ccp the notion of discrete time as

a sequence of time units. Each time unit starts with a store

(possibly empty) supplied by the environment, and ntcc

executes all the processes scheduled for that time unit. In

contrast to ccp, in ntccwe can model variables changing

values over time. A variable x can take different values at

each time unit. To model that in ccp, we have to create a

new variable xi each time we change the value of x.

2.1 Ntcc in multimedia interaction

In this section we give some examples on how the com-

putational agents of ntcc can be used with a FD CS. A

summary of the agents semantics can be found in Table 1.

Agent Meaning

tell (c) Adds c to the current store

when (c) do A If c holds now run A

local (x) in P Runs P with local variable x

A ‖ B Parallel composition

next A Runs A at the next time-unit

unless (c) next A Unless c holds, next run A∑
i∈I when (ci) do Pi Chooses Pi s.t. (ci) holds

*P Delays P indefinitely

!P Executes P each time-unit

Table 1. Semantics of ntcc agents.

• Using tell it is possible to add constraints to the store

such as tell(60 < pitch2 < 100), which means that

pitch2 is an integer between 60 and 100.

http://www.ableton.com/live/


• When can be used to describe how the system re-

acts to different events; for instance, when pitch1 =
C4∧pitch2 = E4∧pitch3 = G4 do tell(CMayor =
true) adds the constraint CMayor = true to the

current store as soon as the pitch sequence C, E, G

has been played.

• Parallel composition (‖) makes it possible to repre-

sent concurrent processes; for instance, tell (pitch1 =
52) ‖ when 48 < pitch1 < 59 do tell (Instrument =
1) tells the store that pitch1 is 52 and concurrently

assigns the instrument to one, since pitch1 is in the

desired interval (see fig. 1).

STORE

tell (pitch1 = 52)

when 48 < pitch1 < 59 do
 tell (instrument = 1)

STORE

when 48 < pitch1 < 59 do
 tell (instrument = 1)

pitch1 = 52

STORE

 tell (instrument = 1)

pitch1 = 52

STORE

pitch1 = 52

instrument = 1

Figure 1. An example of the ntcc agents.

• Next is useful when we want to model variables chang-

ing over time; for instance, when (pitch1 = 60) do

next tell (pitch1 <> 60) means that if pitch1 is

equal to 60 in the current time unit, it will be differ-

ent from 60 in the next time unit.

• Unless is useful to model systems reacting when a

condition is not satisfied or when the condition can-

not be deduced from the store; for instance, unless

(pitch1 = 60) next tell (lastP itch <> 60) reacts

when pitch1 = 60 is false or when pitch1 = 60
cannot be deduced from the store (e.g., pitch1 was

not played in the current time unit).

• Star (*) can be used to delay the end of a process in-

definitely, but not forever; for instance, ∗tell (End =
true). Note that to model Interactive Scores we do

not use the star agent.

• Bang (!) executes a certain process every time unit

after its execution; for instance, !tell (C4 = 60).

• Sum (
∑

) is used to model non-deterministic choices;

for instance,
∑

i∈{48,52,55} when i ∈ PlayedP itches

do tell (pitch = i) chooses a note among those

played previously that belongs to the C major chord.

In ntcc, recursion can be defined (see [17]) with the

form q(x) =def Pq, where q is the process name and Pq

is restricted to call q at most once and such call must be

within the scope of a next. The reason of using next is that

ntcc does not allow recursion within a time unit.

The reader should not confuse a simple definition with a

recursive definition; for instance, Beforei,j =def tell(i ∈
Predecessorj) is a simple definition where the values of i

and j are replaced statically, like a macro in a programming

language. Instead, a recursive definition such as Clock(v)
=def tell(clock = v)‖next Clock(v+1) is like a function

in a programming language.

2.2 Ntccrt: A real-time capable interpreter for ntcc

In the current version of Ntccrt, we can write a ntccmodel

on either Lisp, Openmusic or C++. For a complete imple-

mentation of Interactive Scores, it will be necessary to pro-

duce automatically the corresponding ntcc model based

on a graphical interface similar to Virage.

To execute a ntcc model it is not necessary to develop

an interface because Ntccrt programs can be compiled into

stand-alone programs or as external objects (i.e., a binary

plugins) for Pd or Max (see fig. 2).

OpenMusic
interface

Ntccrt
compiler

Pure Data
external

Max/Msp
external

Common Lisp
interface

C++
interface Stand-alone

program

User

Programmer

Figure 2. Interfaces of Ntccrt.

We can use the message passing API provided by Pd

and Max to communicate any object with the Ntccrt ex-

ternal. We can also control all the available objects for

audio and video processing defined in those languages us-

ing Ntccrt. To synchronize those objects, Ntccrt provides

an important part of Gecode’s constraints [20].

Ntccrt uses Gecode as its constraint solving library. Ge-

code was carefully designed to support efficiently the Fi-

nite Domain (FD) constraint system. Ntccrt relies on prop-

agation of FD constraints.

3. CONDITIONAL BRANCHING TIMED IS

Points and intervals build up Interactive Scores (IS), thus a

score 3 (i.e., the specification of a scenario) is defined by a

tuple s = 〈P, I〉, where P is a set of points and I is a set

of intervals. A temporal object is just a type of interval.

3.1 Points

Intuitively, a point p is a predecessor of q if there is a rela-

tion p before q. Analogically, a point p is a successor of r

if there is a relation r before p.

A Point is defined by p = 〈bp, bs〉, where bp and bs

represent the behavior of the point. Behavior bp defines

3 We still use the term score for historical reasons.



whether the point waits until all its predecessors transfer

the control to it –Wait for All (WA)– or it only waits for the

first of them –Wait for the First (WF)–. Behavior bs defines

whether the point transfers the control to all its successors

which conditions hold –No CHoice (NCH)– or it chooses

one of them –CHoice (CH)–.

Note that we do not include the set of dates of the point

in previous definition. Beurivé et al. argued in [2] that

the edition of a hierarchical representation of music using

a relative time model requires less variable updates than

using an absolute time model. We argue that it is also true

during the performance of Interactive Scores. Moreover,

in our model it is not easy to know the set of all possible

dates a priori because they depend on the choices that the

user makes during performance.

3.2 Intervals: TCRs and TOs

An interval p before q intuitively means that the system

waits a certain time to transfer the control from p to q if

the condition in the interval holds. In addition, it executes

a process throughout its duration. An interval also has a

nominal duration that may change during the performance.

The nominal duration is computed during the edition of

the scenario using constraint programming (see [15]. For-

mally, an interval is a tuple composed by

• a start point (p1)
• an end point (p2)
• a condition (c)
• a duration (d)
• an interpretation for the condition (b)
• a local constraint (l)
• a process (proc)
• parameters for the process (param)
• children (N)
• local variables (vars)

It is not practical to include all those elements explic-

itly; thus, we have identified two types of intervals. timed

conditional relations (TCRs) have a condition c and an in-

terpretation b, but they do not have children, their local

constraint is true, and their process is silence 4 . Tem-

poral objects (TOs) may have children, local variables and

a local constraint, but their condition is true, and their

interpretation is when (i.e., when the condition is true, it

transfers the control from p1 to p2).

To have a coherent score, we must define a TCR be-

tween the start point of each father and the start point of

at least one of its children. However, it is not required to

connect a child to the end point of its father. Furthermore,

in our model we may define multiple TCRs and TOs be-

tween two points. This does not introduce an incoherence

in the model because the behavior of those intervals (as

any interval) depends on the behavior of the points and the

parameters of the interval.

3.2.1 Timed Conditional Relations (TCRs)

A timed conditional relation (TCR) is defined by r = 〈p1,

p2, c, d, b〉, where p1 and p2 are the points involved in the

4
silence is a process that does nothing.

relation. The condition c determines whether the control

jumps from p1 to p2 (i.e., the control is transferred from p1

to p2). The interpretation of c is b. There are two possible

values for b: (i) when means that if c holds, the control

jumps to p2; and (ii) unless means that if c does not hold

or its value cannot be deduced from the environment (e.g.,

c = a > 0 and −∞ < a < ∞), the control jumps to p2.

A duration is flexible if it can take any value, rigid if it

takes values between two fixed integers and semi-rigid if

it takes values greater than a fixed integer. In our model,

we always respect flexible durations. Our model is based

upon transferring the control from one point to another.

For that reason, it is not always possible to respect rigid

and semirigid durations; for instance, when a point waits

for an event or when it is followed by a choice.

3.2.2 Temporal objects (TOs)

A temporal object (TO) is defined by t = 〈ps, pe, l, d, proc,

param,N, vars〉 where ps is a point that starts a new in-

stance of t and pe ends such instance. A constraint l is

attached to t, it contains local information for t and its

children. The duration is d. A process which executes

throughout the duration of t is proc. The list of parameters

for the process is param. The set of TOs embedded in t is

N , which are called children of t. Finally, vars represents

the local variables defined for the TO that can be used by

t’s children, process and local constraint.

3.3 Example: A loop controlled by a condition

The following example (see fig. 3) describes a score with

a loop. During the execution, the system plays a silence of

one second. After the silence, it plays the sound B during

three seconds and simultaneously it turns on the lights D

for one second. After the sound B, it plays a silence of

one second, then it plays video C. If the variable finish

becomes true, it ends the scenario after playing the video

C; otherwise, it jumps back to the beginning of the first

silence after playing the video C.

To define the score of this scenario, we define a local

boolean variable finish in A, and we use it as the condi-

tion for some TCRs. Note that the silence between D and

C lasts one second in the score, but during execution it is

longer because of the behavior of the points.

The points have the following behavior. The end point

of C (ec) is enabled for choice, and the other points transfer

the control to all their successors. The start point of C (sc)

waits for all its predecessors to transfer the control to it,

and all the other points wait for the first predecessor that

transfers the control to them.

Formally, the points are defined

sa = ea = sb = eb = sd = ed = 〈{WF,NCH}〉
sc = 〈{WA, NCH}〉
ec = 〈{WF,CH}〉
P = {sa, ea, sb, eb, sc, ec, sd, ed}

As an example, ec Waits for the first predecessor (WF) and

makes a choice (CH).



B

A

C

when

 finish

unless finish

∆B = 3
∆C = 2

d=1

d=0

d=0

d=1
D

d=1

d=1

∆D = 1

Figure 3. A score with a user-controlled loop.

The TOs are defined by

A = 〈sa, ea, d ∈ [0,∞), d, sil., ∅, {B, C,D}, {finish}〉
B = 〈sb, eb,true, 3, playSoundB, ∅, ∅, ∅〉
C = 〈sc, ec,true, 2, P layV ideoC, ∅, ∅, ∅〉
D = 〈sd, ed,true, 1, TurnOnLightsD, ∅, ∅, ∅〉
T = {A, B,C, D}

As an example, A is composed by points sa and ea, it has

a flexible duration, its process is silence, its children are B,

C and D and its local variable is finish.

In what follows we present the TCRs

TCR =
{〈sa, sb,true, 1, when〉, 〈sa, sd,true, 1, when〉,
〈eb, sc,true, 1, when〉, 〈ed, sc,true, 1, when〉,
〈ec, sa,¬finish, 0, when〉, 〈ec, ea, finish, 0, when〉}

As an example, the first one is a TCR between points sa

and sb, its condition is true, its interpretation is when

and its duration is one.

Finally, I is the set of intervals composed by the TOs

and the TCRs and S is the score.

I = T
⋃

TCR S = {P, I}

3.4 Limitations: Rigid durations and choice

In some cases (e.g., fig. 3), we can respect rigid durations

of TOs during performance. Unfortunately, there is not a

generic way to compute the value of a rigid duration in

a score with conditional branching. The problem is that

choices do not allow us to predict the duration of a TO’s

successor; therefore, it is not possible to determinate a pri-

ori the duration of all the TOs.

Figure 4 shows a scenario where we cannot respect rigid

durations. T2, T4 and T5 have fixed durations, but T1 can

take different values between ∆min and ∆max. Since there

is no way to predict whether T2 or T5 will be chosen after

the execution of T1, we cannot compute a coherent dura-

tion for T1 before the choice.

T1 T2

Choose either

T2 or T5
T3

T4

T5

∆4

∆2

∆5

[∆min,∆max]

Figure 4. Limitation of rigid durations.

4. OUR NTCC MODEL OF IS

In this section we define our ntcc model. We define pro-

cesses for some combinations of the behaviors of a point.

The definition of an interval can be used for both timed

conditional relations and temporal objects. To represent

intervals we create a graph with the predecessors and suc-

cessors of each point using the variables Predec and Succ.

For simplicity, we do not include hierarchy, we only model

the interpretation when, we can only declare a single inter-

val between two points, and we can only execute a single

instance of an interval at the same time.

4.1 Points: Three combinations of behaviors

We only include three type of points: points that choose

among their successors (ChoicePoint), points that trans-

fer the control to all their successors (JumpToAllPoint),

and points that wait for all their predecessors to transfer

the control to them (WaitForAllPoint). The first two

types of points wait for the first predecessor that transfers

the control to them to be active.

Points are modeled using Finite Domain constraints; for

instance, to know if at least one point has transferred the

control to the point i, we ask to the store if the boolean

or (
∨

j∈P ) constraint applied to the relation Arrived(i, j)
can be deduced from the store (where P is the set of iden-

tifiers for each point).

When all the expected predecessors transfer the con-

trol to the point i, we say that the point is active (i.e.,

ActivePointsi holds). Analogaly, when a point i trans-

fers the control to a point j, we add the constraint

ControlTranferred(j, i).

In order to represent the choice between points a and

b, we use the variable finish in the Σ process. Note that

when c1 do P1 +when c2 do P2 is equivalent to
∑

i∈{1,2}

when ci do Pi, and whenever c do P is equivalent to

!when c do P .

ChoicePointi,a,b
def
=

whenever
∨

j∈P

Arrived(i, j) do (tell (ActivePointsi)

‖ when finish do tell (ControlTransferred(a, i))



+when ¬finish do tell (ControlTransferred(b, i)))

The following definition uses the agent
∏

to transfer

the control to all the successors of the point i. The agent∏
represents the parallel composition in a compact way.

ToAlli
def
=

tell (ActivePointsi)
‖
∏

j∈P when Succs(i, j) do

tell (ControlTransferred(j, i)))

Using the definition ToAlli, we define the two points

that transfer the control to all its successors.

JumpToAllPointi
def
=

whenever
∨

j∈P Arrived(i, j) do ToAlli

To wait for all the predecessors, we ask the store if the

constraint Arrived = Predec holds.

WaitForAllPointi
def
=

whenever ∀j, Arrived(i, j) = Predec(i, j) do ToAlli

4.2 Intervals: TCRs and TOs

Intervals are modeled by two recursive definitions. These

definitions model both TOs and TCRs because intervals

only change the value of an ActivePoints variable, thus

they only control the start and end of their processes.

Process I waits until at least one point transfers the con-

trol to its start point i, and at least one point has been cho-

sen by another point to transfer the control to its destination

j. When such conditions hold, it waits until the duration

of the interval is over 5 , then it transfers the control from

point i to j. It also adds a constraint on the corresponding

set of predecessors and successors.

Ii,j,d
def
= !(tell (Predec(j, i)) ‖ tell (Succ(i, j)))

‖whenever
∨

k∈P ControlTransferred(j, k)
∧

∨
k∈P Arrived(i, k) do(

nextd(tell(Arrived(j, i)) ‖PredecessorsWait(i, j)))

PredecessorsWait adds the constraint Arrived(j, i)
until the time unit after the point j becomes active. This

definition maintains the coherence of WaitForAll points.

PredecessorsWaiti,j
def
= unless ActivePointsj next

(PredecessorsWaiti,j‖ tell (Arrived(j, i)))

4.3 The example 3.3 on ntcc

The example presented on figure 3 can be easily modeled

in ntcc. User is a process representing a user that tells

to the store that finish is not true during the first n time

units, then it tells that finish is true. Note that an advan-

tage of ntcc is that the constraint i ≥ n can be easily

replaced by more complex ones; for instance, it can be re-

placed by i ≥ n ∧ c. Constraint c can be, for instance,

“there are only three active points at this moment in the

5 nextd is a process next nested d times (next(next(next...).

score” (i.e., |{x ∈ ActivePoints | x = 1}| = 3).

Usern(i)
def
= when i ≥ n do tell (finish)
‖unless i ≥ n next tell (¬finish)
‖next Usern(i + 1)

TCRs
def
= Isd,ed,1

‖Isa,sb,1‖Ied,sc,1‖Isb,eb,3‖Ieb,sc,1‖Isc,ec,2‖Iec,sa,0

‖Iec,ea,0‖Inull,sa,0‖Isa,sd,1‖ tell (Arrived(sa, start))

Points
def
= ChoicePointec,ea,sa

‖WaitForAllPointsc

‖
∏

i∈{sa,ea,sb,eb,sd,ed}
JumpToAllPointi

Systemn
def
= Usern(0)‖TCRs‖Points

5. IMPLEMENTATION IN NTCCRT AND PD

We implemented the previous example in Ntccrt and Pure

Data (Pd) (fig. 5). We replaced the User process with a

user input for the variable finish. We generated a Ntccrt

external (i.e., a binary plugin) for Pd with our ntccmodel.

The external has two inputs: one for the clock ticks and

one for the value of finish. The input for the clock ticks

can be connected to a metronome object to have a fixed

duration for every time unit during the performance. The

reader can find a discussion of executing time units with

fixed durations in [8].

The Ntccrt external outputs a boolean value for each

point, indicating whether it is active or not. Using such val-

ues, we can control the start and end of SoundB, V ideoC

and lightsD, which are processes defined in Pd.

Figure 5. Executing Example 3.3 in Pd.

5.1 Results: Performance and usability of Ntccrt

We built automatically Interactive Scores (IS) with a num-

ber of points 6 and relations in the order of 2n, with n from

two to ten (see fig. 6). We ran each score 100 times as a

stand-alone program. The duration of a time unit is deter-

mined by the time taken by Ntccrt to calculate the output,

not by an external clock. The tests were performed on an

6 The exact number of points is 3.2n
− 2.



iMac 2.6 GHz with 2 GB of RAM under Mac OS 10.5.7.

It was compiled with GCC 4.2 and liked to Gecode 3.2.2.

The authors of the Continuator [21] argue that a mul-

timedia interaction system with a response time less than

30 ms is able to interact in real-time with even a very fast

guitar jazz player. Therefore, our results (fig. 7) are ac-

ceptable for real-time interaction with a guitarist for up to

1000 points (around 500 TOs). We conjecture that a re-

sponse time of 20 ms is appropriate to interact with a very

fast percussionist. In that case, we can have up to 400 TOs.

5.1.1 Usability of Ntccrt

We found out intuitive to write ntcc models in Ntccrt, to

someone familiar with ntcc, because it provides a Lisp

interface with a syntax similar to ntcc; for instance,

PredecessorWait is written as

(defproc PredecessorsWait (i j)

(unlessp (v=? (ActivePoint i) j)

(||(call PredecessorsWait i j)

(tell= (ArrivedPoint j i) 1))))

It is slightly harder to write the same definition in C++

class predecessorsWait:public proc{

public:

AskBody* predecessorsWait::operator()(

Space* h, vector<int> intparameters,

vector<variable *> variableparameters)

{return unless(eq(ActivePoint[i][j]),

parallel(call(PredecessorWait,i,j),

tellEqual(ArrivedPoint[i][j],1)));}};

0 1 2 n n+1 n+2 n+3

Jump to all Point

Choice Point

Figure 6. A scalable-size score with 3.2n − 2 points.

6. CONCLUDING REMARKS

We developed a model for multimedia interaction with con-

ditional-branching and temporal relations based on points

and intervals. We implemented it using Ntccrt and Pure

Data (Pd). We conclude from performance results that our

prototype is compatible with real-time interaction for a rea-

sonable amount of points and relations. An existing imple-

mentation of Interactive Scores model is also capable of

real-time and it can easy respect rigid durations, but such

model does not support loops nor choice.
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Figure 7. Performance of the simulation fo the score in

Fig. 6.

For simplicity, in our prototype we do not include hier-

archy, we only model the interpretation when, we can only

declare a single interval between two points, we can pre-

serve rigid durations only in a few cases , and we can only

execute a single instance of an interval at the same time.

An advantage of ntcc with respect to previous mod-

els of Interactive Scores, Pd, Max and Petri Nets is repre-

senting declarative conditions by the means of constraints.

Complex conditions, in particular those with an unknown

number of parameters, are difficult to model in Max or Pd.

To model generic conditions in Max or Pd, we would have

to define each condition either in a new patch or in a pre-

defined library. In Petri nets, we would have to define a net

for each condition.

6.1 Future work

Ntccrt is not yet an interface for composers and designers

of multimedia scenarios. For them is much more intuitive

an interface such as Virage [6]. A graphical interface for

our model should provide the means to specify the score as

done in Example 3.3

Once we have the graphical interface, we plan to model

audio processes in ntcc and replace them in the imple-

mentation by Faust programs [22] which also have formal

semantics. Using Faust, we can gain efficiency and pre-

serve the formal properties of our model (see [23] for a

description of this idea).
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