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Abstract.23

5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a 24

representative molecule of a novel class of highly active in vitro inhibitors of the 25

replication of Classical swine fever virus (CSFV). We recently demonstrated in a 26

proof of concept study that the molecule has a marked effect on viral replication in 27

CSFV-infected pigs. Here, the effect of antiviral treatment on virus transmission to 28

untreated sentinel pigs was studied. Therefore, BPIP-treated pigs (n=4), intra-29

muscularly infected with CSFV, were placed into contact with untreated sentinel pigs 30

(n=4). Efficient transmission of CSFV from four untreated seeder pigs to four 31

untreated sentinels was observed. In contrast, only two out of four sentinel animals in 32

contact with BPIP-treated seeder animals developed a short transient infection, of 33

which one was likely the result of sentinel to sentinel transmission. A significant 34

lower viral genome load was measured in tonsils of sentinels in contact with BPIP 35

treated seeder animals compared to the positive control group (p=0.015). Although no 36

significant difference (p=0.126) in the time of onset of viraemia could be detected 37

between the groups of contact animals, a tendency towards the reduction of virus 38

transmission was observed. Since sentinel animals were left untreated in this 39

exploratory trial, the study can be regarded as a worst case scenario and gives 40

therefore an underestimation of the potential efficacy of the activity of BPIP on virus 41

transmission.42
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Body text43

Classical swine fever (CSFV), Bovine viral diarrhea virus (BVDV) and Border 44

disease virus (BDV) belong to the family of Flaviviridae, genus pestivirus (van 45

Regenmortel et al., 2000) and can, in case of an outbreak, result in major economical 46

consequences for the affected region (Domenech et al., 2006). In particular CSFV has 47

been responsible for major economic losses (Greiser-Wilke et al., 2007). Currently, 48

CSF outbreaks are controlled by a stamping-out policy and pre-emptive eradication of 49

neighbouring herds. These measures proved efficient, but the slaughter of large 50

numbers of often healthy, uninfected pigs is increasingly criticized by the public 51

opinion (van Oirschot, 2003; Le Potier et al., 2006).52

As an alternative/additional control strategy, the use of an antiviral treatment for the 53

containment of outbreaks of infectious diseases of livestock like foot-and-mouth 54

disease and CSF has been proposed (Goris et al., 2008; Vrancken et al., 2008). For 55

CSFV, we previously reported on the in vitro inhibition of viral replication by BPIP, a 56

representative of a new class of imidazopyridines, specifically targeting the viral57

RNA-dependent RNA-polymerase (Vrancken et al., 2008). Subsequent in vivo studies 58

revealed that BPIP was able to significantly reduce the viral load in CSF-infected pigs59

(Vrancken et al., 2009). It was the purpose of this study to assess the effect of BPIP 60

treatment on the transmission of CSFV from infected pigs to untreated, naive pigs.61

An animal experiment was designed, according to the French legislation on animal 62

experimentation, and carried out at the high containment facilities at the Agence 63

Française de Sécurité Sanitaire des Aliments (AFSSA Ploufragan, France). Groups of 64

four, twenty nine-week old, Specific Pathogen Free (SPF) Large White pigs (ca. 30 65

kg) of mixed sex, originating from protected breeding facilities at AFSSA Ploufragan, 66

were held in isolation units. One group of four SPF pigs received BPIP containing 67
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feed at 75 mg/kg/day for a period of 15 consecutive days. BPIP synthesis and 68

formulation was carried out as described earlier (Puerstinger et al., 2006; Vrancken et 69

al., 2009). A positive and negative control group was held in a separate isolation unit 70

and received normal feed. One day after the first administration of BPIP, the animals 71

of the BPIP-treated and positive control group were infected intramuscularly with 4 72

ml of 104.5 TCID50/ml of the CSFV field-isolate Wingene (subgroup 2.3, 73

Vanderhallen et al., 1999). Two days post infection (dpi) four untreated sentinel 74

animals were placed in an adjacent pen allowing nose to nose contact between 75

infected and sentinel pigs.76

All experimentally infected animals (BPIP-treated and untreated seeder pigs) were 77

clinically observed on a daily basis until 33 dpi and all sentinel animals until 40 dpi. 78

During this observation period all animals were blood sampled three (0-18 dpi) or two 79

(19- 40 dpi) times a week. After the observation period, all animals were euthanized 80

and tonsils were sampled. All blood and organ samples were analyzed by means of 81

virus isolation (VI) and real-time RT-PCR (TaqVet PPC, LSI, France) as described 82

earlier (Vrancken et al., 2009). The real-time RT-PCR assay, using β-actin as an 83

internal control, had a limit of detection of 2.2 ± 1.2 equivalent genome copies (EGC).84

Samples with a positive signal but a viral load below 2.2 EGC for a 5 µl reaction were 85

considered as not quantifiable.86

As presented in Fig. 1A, BPIP-treatment had a marked effect on the period of 87

viraemia; three out of four BPIP-treated seeder pigs developed a short transient 88

vireamia of which two animals were only positive for 2 days and one animal for 7 89

days. The remaining animal tested negative in VI during the whole period of 90

observation. In contrast, the untreated seeder pigs (positive control group) tested 91

invariably positive from 5 dpi until death (22 dpi) or 26 dpi. One animal scored 92
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positive until the end of the experiment (33 dpi) (Fig. 1B). Analysis of the blood 93

samples of the sentinel pigs in contact with BPIP-treated seeder pigs revealed one 94

positive animal at 14 dpi and a second as late as 26 dpi. The two remaining animals 95

remained negative during the whole period of observation (Fig. 1A). All sentinel pigs 96

in contact with the untreated seeder group became viraemic on VI between 14 and 19 97

dpi. Three out of four animals remained VI positive in blood during the whole period 98

of observation and one contact pig of this group showed a transient infection between 99

19 and 26 dpi (Fig 1B). The average time until onset of viraemia (VI) in the contact 100

groups was calculated and although a tendency towards later infection could be 101

observed in the sentinel pigs in contact with the BPIP-treated seeder group compared 102

to those in contact with the untreated seeder group (20.00 ± 8.49 days vs. 15.75 ± 2.36 103

days), this difference was not statistically significant (p=0.126 [Cox regression 104

survival analysis]).105

The effect of a BPIP-treatment on viraemia was substantiated by real time RT-PCR 106

analysis where in the BPIP-treated seeder group one animal with a very low level of 107

CSFV-genome was detected at 2 dpi (EGC not quantifiable). Between day 5 and 16 108

post experimental inoculation, all BPIP-treated seeder animals scored positive 109

(log10EGC between 0.55 ± 0.15 and 2.52 ± 0.8). At 16 dpi, three out of four animals 110

tested positive with an average log10EGC of 0.69 ± 0.32. In all four untreated seeder 111

pigs the presence of viral genome was detected throughout the observation period 112

from day 2 post infection until death (22 dpi) or the end of the experiment (33 dpi) 113

with log10EGC between 0.46 ± 0.28 and 6.03 ± 0.98.114

As depicted in Fig. 2, real-time RT-PCR results revealed a significant lower viral 115

genome load in the sentinel group in contact with BPIP-treated seeder pigs than the 116

group in contact with the untreated seeder pigs. In one out of four animals in contact 117
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with BPIP-treated seeder animals detectable levels of viral RNA were observed from118

14 dpi until the end of the study (40 dpi). A second animal became positive between 119

days 26 and 40 post inoculation. As late as 40 dpi, a very low level of viral RNA 120

(log10EGC=0.81) was detected in a third animal and one animal remained negative121

during the whole observation period. In contrast, the group of sentinel pigs in contact 122

with the untreated seeder pigs, viral RNA could be detected in two out of four animals 123

at 14 dpi. A further animal tested positive at 16 dpi and a fourth animal at 19 dpi. All 124

animals remained positive until the end of the experiment (40 dpi).125

At the end of the experiment, infectious virus could be isolated from the tonsils of one 126

animal in contact with BPIP-treated seeder pigs. Three out of four animals in contact 127

with untreated seeder pigs scored positive in VI (Table 1). Real-time RT-PCR 128

analysis revealed that three out of four pigs in contact with BPIP-treated seeder pigs 129

showed a significantly lower viral genome load in the tonsils compared to the sentinel 130

pigs in contact with the untreated seeder animals (p=0.015 [Two tailed students t-test, 131

unequal variances]) (Table 1).132

The VI and real-time RT-PCR results revealed that only one animal developed a short 133

transient infection with an onset comparable to the positive control group (14 dpi), 134

which may be explained by the fact that the BPIP-treated seeder pigs had only a very 135

short period of viraemia. The source of infection of the second VI-positive animal 136

could not be determined in this experimental set-up. A direct infection by contact with 137

the BPIP-treated seeder animals is however unlikely considering the fact that no 138

infectious virus could be isolated from these animals after day 12 pi and that infection 139

of the sentinel could only be demonstrated on VI as late as 26 dpi. Furthermore, 140

because the time interval between the initially infected sentinel pig and the second 141

sentinel pig (12 days), it is reasonable to assume that this infection did not originate 142
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from the seeder pigs, but was most likely due to a secondary transmission from the 143

initially infected contact pig (Ribbens et al., 2004). The same conclusion can likely be 144

drawn for the third animal that, although no infectious virus could be isolated, scored 145

positive on real-time RT-PCR as late as 40 dpi. Although real-time RT-PCR results 146

indicate that a BPIP-treatment resulted in a significant lesser virus transmission 147

towards untreated pigs, it did not result in the observation of a significant later onset 148

of viraemia in the untreated animals in contact with the BPIP-treated seeder group,149

due to the limited power of the experiment (only 4 contact pigs in each group). 150

Additional experiments must therefore be performed to confirm the here observed 151

tendency towards reduction of virus transmission and to determine the statistical 152

significance.153

This exploratory trial can be regarded as a worst-case scenario where both treated and 154

untreated animals were in close contact. Since the aim of an antiviral treatment is not 155

to protect individual animals, but to curb viral spread between herds, all animals 156

within a herd would be treated and therefore the currently obtained results are 157

probably an underestimation of the potential efficacy of an antiviral treatment to 158

reduce virus transmission. Furthermore, both the previously published study of the 159

effect of BPIP on CSFV-viraemia (Vrancken et al., 2009), and the current, were 160

carried out with a lead molecule of this class. Further optimization of the antiviral 161

efficacy could lead to further decrease (if not complete suppression) of the period of 162

viraemia and consequently on virus transmission.163

In conclusion, our preliminary findings indicate a reduction of virus transmission 164

from CSFV-infected BPIP-treated animals to untreated sentinel pigs and further trials 165

with BPIP (or a more potent analogue) will be performed to further confirm the 166

observed trend. 167
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Tables217

Table 1. Virus Isolation (VI) and real-time RT-PCR (expressed as log10(EGC)) results 218

of tonsils of untreated sentinel pigs in contact with BPIP-treated (S1  S4) and 219

untreated (PS1  PS4) animals.220

Animal VI log10(EGC)

S1 + 3.89

S2 - 3.89

S3 - neg

S4 - 3.89

Average: 3.89

PS1 + 7.66

PS2 - 5.26
PS3 + 7.31
PS4 + 6.29

Average: 6.63 ± 1.08221

Viral genome loads of animals in contact with BPIP-treated pigs are significant lower 222

compared to animals in contact with the positive control group (p=0.015).223

224
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225

Legends to the figures226

Fig. 1. Duration of viraemia in blood after infection with CSFV Wingene and 227

transmission to untreated sentinel pigs from A) BPIP-treated/Infected (1 4) to 228

untreated sentinel (S1 S4) animals; B) Untreated/Infected (P1 P4) to untreated 229

sentinel (PS1  PS4) animals. : animal euthanized at 22 days post infection; BPIP-230

treated and untreated seeder animals were euthanized at 33 days post infection, 231

contact sentinel pigs at 40 days post infection232

233

Fig. 2. Mean virus genome load in blood of untreated sentinel animals in contact with 234

BPIP-treated (diamonds; n=4) and untreated (squares; n=4) seeder pigs as determined 235

by means of real-time RT-PCR. Number of animals tested positive at a given time 236

point is shown between brackets. Statistical significance (p-values) is given at each 237

measureable timepoint.238
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