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Abstract 
 
Due to the large dimensions of offshore wind farms, their electricity production must be known well in advance to allow an 
efficient integration of wind energy into the European electricity grid. For this purpose short-term wind power prediction 
systems which are already in operation for onshore sites have to be adapted to offshore conditions, which has been a major 
objective of the EU-project ANEMOS. The paper presents the offshore results of the project partners in a cumulative way. 
In general, it has been found that the accuracies of wind speed predictions for the offshore sites Horns Rev and FiNO1 are 
similar or better than for single onshore sites considering that the mean producible power is twice as high as onshore. A 
weighted combination of two forecast sources leads to reduced errors. A regional forecast of the aggregated power output of 
all projected sites in the German Bight with a total capacity of 25 GW benefits from spatial smoothing effects by an error 
reduction factor of 0.73, showing an RMSE of 3GW. An aggregated forecast for the sum of on- and offshore production in 
Germany with a total capacity of 50GW would benefit from an error reduction factor of 0.43, leading to an RMSE of 3.5 
GW. The project partners also investigated the most important parameters which influence the wind speed profile offshore. A 
new air-sea-interaction model for calculating marine wind speed profiles was developed, i.e. the theory of inertially coupled 
wind profiles (ICWP). Evaluation with Horns Rev and FINO1 data showed good agreement, especially regarding wind 
shears. 
Next, emphasis was given on modelling spatio-temporal characteristics in large offshore farms. New approaches were 
developed to model wakes behind such farms. Wake losses are anticipated to be at least 5-10% of power output. Wind speed 
recovery can be predicted to occur between 2 and 15 km downwind of such farms according to the model type chosen. Also, 
a comparison of mesoscale model results with WAsP predictions was performed to quantify gradients of wind speed over 
large wind farms. Moreover, the contribution of satellite data in offshore prediction was studied. For the complex situation in 
the Strait of Gibraltar, a semi-empirical model was developed. Finally, various physical and statistical (i.e. neural networks) 
models were calibrated on power data from two offshore wind farms: Tunoe and Middelgrunden in Denmark. 
 
1. Introduction 
 
For offshore sites, the special meteorological 
characteristics of the marine boundary layer must be 
considered to predict the correct wind speed at the hub 
height of the wind turbines. Compared to the situation 
over land the situation offshore is different in three ways: 
the non-linear wind-wave interaction causes a variable, 
but low surface roughness, the large heat capacity of the 
water changes the spatio-temporal characteristics of 
thermal stratification, and internal boundary layers due to 
the land-sea discontinuity modify the atmospheric flow. 
 

Figure 1 shows the positions of investigated sites in the 
North and Baltic Sea 
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2. University of Oldenburg: Offshore 
Forecast Accuracies and Wind Speed 
Profiles 
 
The investigations focused on the following topics: 
1. Are offshore wind power forecasts going to be as 
accurate as the state of the art onshore? 
2. Has the spatial smoothing of forecast errors the same 
size as onshore? 
3. How can the vertical wind profile be modelled in 
different meteorological conditions in order to forecast 
the wind speed at hub height? 
The following results are described in detail in [2.1], [2.2] 
and [2.3]. 
 
Investigated Forecasts 
To estimate the future performance of wind power 
forecasts for offshore sites, we evaluated the accuracy of 
numerical wind speed forecasts with observations in the 
North and Baltic Sea. The numerical weather predictions 
(NWP) were provided by the German weather service 
(DWD, 7km horizontal resolution) and by the ECMWF 
(40km resolution). Since existing wind power production 
data from North Sea sites is not available for public 
research, we used wind speed observations from several 
meteorological stations at the coast line and from two 
lightships in the German Bight (Figure 1). All 
investigated periods and sites revealed similar wind 
conditions and similar forecast accuracies. 
The measurements from the meteorological masts at 
Horns Rev (62m high) and FINO1 (103m) were also 
transformed to wind power with typical power curves of 
Multi-Mega-Watt-turbines. The mean wind speed at 
FiNO1, at 103m height is 9.8m/s in 2004, the mean 
producible power is 51% of the installed capacity. 
 
Forecast Accuracy 
We found that the accuracies of wind speed and wind 
power predictions provided by the European Centre for 
Medium-Range Weather Forecasts, ECMWF and the 
German weather service DWD for all investigated 
offshore sites are similar or better than for single onshore 
sites, considering that the mean producible power is twice 
as high as onshore. 
 

 
Fig. 2.1: Error parameters of ECMWF forecasts 
transformed to Power at FiNO1, 103m height, complete 
year 2004. 

Although it was found that ECMWF forecasts have a 
higher accuracy than DWD forecasts, a weighted 
combination of the two forecast sources leads to reduced 
errors: A combined power prediction for a single site in 
the North Sea with a hub height of 100m shows a relative 
root mean square error of 16% of the rated power for a 
look-ahead time of 36h. (Fig 2.2) 
 
Forecasts of 25GW Wind Power in the North Sea 
Previous investigations for onshore wind power have 
shown that a regional forecast has lower errors than a 
forecast for a single site. The relative prediction error for 
the aggregated power output of many wind farms in a 
region decreases for increasing region size as single 
errors are less correlated, a general effect in NWP. This 
reduction occurs even when the number of wind farms in 
the regions stays constant. How strong is the effect for 
offshore predictions? 
To evaluate ECMWF forecasts at 22 projected sites in the 
German Bight (Figure 2.3), we used the regional weather 
analysis from DWD as a substitute for onsite 
observations. The spatial decay of the correlation of 
forecast errors has the same strength as onshore. (Fig 2.4) 
 

 
Fig. 2.2: RMSE of power forecasts based on DWD, 
ECMWF and their combination at FiNO1, at 103m 
height, complete year 2004. 
 

 
Fig. 2.3: Red areas mark the sites for all offshore 
projects in the German Bight with official applications. 
Source: www.bsh.de.  



 
Fig. 2.4: Scatter dots: Correlation between the forecast 
errors at two out of 22 offshore sites vs. their distance in 
km. Lines: Binned values. Blue: forecast time 12h, 
Green: 36h, Pink: 48h. 
 
 
Aggregated 25GW Forecasts 
The regional forecast for a total capacity of 25GW in the 
German Bight shows an RMSE of 9-17%, credited to 
spatial smoothing effects that reduce the error by a factor 
of 0.73 compared to a single site. Hence, a combined 
regional forecast for all offshore sites would show an 
RMSE of 12% at 36h forecast time, i.e. an absolute 
RMSE of 3GW. 
What is the respective spatial error smoothing for the sum 
of onshore and offshore wind farms in Germany? We 
calculated an aggregated forecast for a situation with 
25GW installed offshore capacity and 25GW onshore for 
the year 2004. As a reference, we used the sum of the 
offshore wind power time series calculated from the 
weather analysis and the real German onshore wind 
power production time series from 2004 that was scaled 
from 17GW to 25GW. The resulting RMSE ranges from 
5% to 10% (Figure 2.5), i.e. the area size of 800km leads 
to an error reduction factor of 0.43 for a total installed 
capacity of 50GW. 
 
 

 
Fig. 2.5: RMSE of ECMWF wind power forecasts. Thin 
lines: all single 22 sites. Red triangles: Average of single 
sites. Pink stars: Aggregated 25GW offshore forecast. 
Green circles: Aggregated 50GW on-&offshore forecast. 

Description of the vertical wind speed profiles in 
offshore conditions 
Fig. 2.6 and 2.7 illustrate that measured wind shears and 
profiles deviate from those produced by weather forecast 
models. This effect can be detected for all different 
weather situations and indicates the need for a more 
detailed description of the marine boundary layer [2.1, 
2.2]. 

 
 
Fig. 2.6: Mean measured and predicted wind profiles at 
Horns Rev; average of winter period, log. scale. 
 

 
Fig. 2.7: Mean measured sea sector (190° - 250°) wind 
profile at FINO1 in 2004 compared to the mean output of 
two mesoscale models for the same wind directions: 
DWD-Lokalmodel and MM5-Simulation.Linear scale. 

 
For an improved simulation of the vertical wind speed 
profiles, we developed a new analytic model of marine 
wind velocity profiles.  
In our new air-sea-interaction model called ICWP 
(Inertially Coupled Wind Profiles, Fig. 2.8), we couple 
the Ekman layer profile of the atmosphere to the wave 
field via a Monin-Obukhov corrected logarithmic wind 
profile in between [2.2]. 
 

 
Fig. 2.8: Scheme of the vertical wind profile used in the 
ICWP model. 



In particular, the flux of momentum through the Ekman 
layers of the atmosphere and the sea is described by a 
common wave boundary layer. The good agreement 
between our theoretical profiles and observations at 
Horns Rev and FINO1 support the basic assumption of 
our model that the atmospheric Ekman layer begins at 10 
to 30m height above the sea surface (Fig. 2.9, 2.10). 
With this approach, it is possible to refine the vertical 
resolution of NWP profiles in a better way than with 
standard formulas. 
 

 
Fig. 2.9:  Mean measured “open sea” sector (135° - 
360°) wind profile at Horns Rev compared to mean of 
ICWPs and average offshore WAsP profile. Period 
10/2001-04/2002. 
 

 
Fig. 2.10: Mean “open sea” wind profiles at FINO1 for 
the undisturbed sector (190° - 250°) and wind speeds 
greater than 4 m/s at 103m height: Obs. compared to 
different profile schemes. Averages of year 2004. 
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3. Overspeed GmbH: Statistical 
characteristics of offshore wind speed and 
prediction time series 

Goals and tasks 
For offshore applications, one goal is to produce forecasts 
for single wind farms which cover a large area. E.g. in 
Germany, a typical size of new offshore wind farms is 80 
turbines. Obviously, some meteorological conditions 
differ significantly between on- and offshore. On the sea, 
the vicinity of the wind farm is characterized by a very 
uniform, almost homogeneous roughness.  Because large 
wind farms are installed on a limited area, gradients of 
power output could be significantly higher than for on-
shore farms.  
Due to the limited possibility of measurements at off-
shore wind farms, we make a detailed analysis of the 
statistical behavior of wind speed measurements and 
predictions. Complementary to the previous section, the 
characteristics of each single time series is in the focus, 
and not the analysis of the forecast error, i.e. the 
difference time series between measured and predicted 
values. 
 
Data basis 
For the analysis, we used the three time series from 
section 2 for the forecast range from 1h to 24h:  
- measured wind speed at the German FINO1 offshore 
platform (cup anemometer, 103m height) (“FINO”) 
- predictions from the German Lokalmodell, nearest grid  
point, 1 hour means, grid size 7x7 km2, (“DWD”) 
- ECMWF predictions, nearest grid point, 3 hourly 
values, interpolated to 1 hour, grid size 40x40 km2 
(“ECMWF”). 
 

Average values 

 FiNO DWD ECMWF 
Average  [m/s] 9.7 9.7 9.6 

Stand. Dev. STD [m/s] 4.8 4.9 4.8 

Table 3.1 Overall statistical values 
 
The global statistical values average and standard 
deviation STD show an astonishing good accordance. 
Also the correlation coefficients (gap = 0) are very high 
(see Reference [2.3]). Please note that there was no 
correction or additional detailed modeling. All values 
were taken directly from the prediction models.  
 
Power Spectra 
Figures 3.1 and 3.2 show the power spectral density  
(PSD) of all three time series, for the whole frequency 
range (Fig 3.1) and the high frequency part only (Fig 
3.2). While FINO and DWD show a very good 
correlation, the ECMWF PSD has much lower values for 
high frequencies. Of course this is not only a “real” 
property of the ECMWF model, but is mainly due to the 
production of the time series from 3 hour sample values 
by interpolation. Nevertheless the “damping” seems to be 
a little bit stronger than it could be explained by this 
procedure.  
 



 Fig. 3.1 Power spectral density of all three time series. 

 
Fig. 3.2: as 3.1, high frequencies only. 
 
A hint is the “natural” time scale of these predictions. 
Depending on grid size, even the single grid point 
prediction values are averages over the according grid 
cell. Taking a grid spacing of 40 km and assuming a 
mean wind speed of 10 m/s, this would lead to a typical 
minimum time scale of 67 minutes. Taking into account 
that the underlying Navier-Stokes equation is of second 
order, the natural grid time scale is two to three times this 
value (depending on the numerical algorithm), i.e. 2 to 3 
hours.  
 
Gradients 
The statistical properties of time series directly reflect in 
the temporal (and spatial) gradients which could occur. 
Figure 3.3 shows the comparison of normalized gradients 
(differences) from hour to hour for the measured and the 
two predicted time series in 10 % steps. It can be clearly 
seen that the ECMWF forecast underestimates the larger 
deviations (and thus has big values for the central +/- 5% 
bin). Figure 3.4 shows the same presentation for power 
output. For this estimation, simply a theoretical power 
curve was applied to the wind speed values (no farm 
effects, no additional smoothing). 

 
Fig. 3.3 Distribution of temporal differences of wind 
speed (time gap: 1 hour), norm. to mean wind speed 

 

 Fig. 3.4: Distribution of differences of power output 
(time gap: 1 hour), normalized to rated power. 

 
Because the power curve is non-linear, basically higher 
gradients would be expected. In fact, the relative 
gradients are smaller. This effect is due to the fact that the 
mean wind off-shore is very high compared to usual land 
wind farm sites (here: approx. 10m/s). This leads to the 
fact that the turbines are operating near their rated wind 
speed (here: 14m/s). So fluctuations to higher wind 
speeds are damped, not amplified. On the other hand side, 
if the wind speed is above rated, a negative fluctuation 
produces no or small gradients.  
 
Conclusion 
Even from this basic investigation it can be seen that:  

• the time domain behavior must be analysed  
properly to evaluate how a predicted time series 
shows critical behavior like maximum 
gradients 

• the influence of  the specific power curve is 
very high because off-shore turbines are 
working close to their rated wind speed quite 
frequently. 

For predicting whole wind farms covering areas of 
several hundred square kilometers, it is important to 
analyse the spatial behavior of the predictions 
accordingly. 



4. RISOE: Comparison of different offshore 
effects on wind power forecasts 
 
As large offshore wind farms in the hundred’s of 
megawatt class are developed, a number of special issues 
arise in terms of forecasting power output. As part of 
Anemos wind farm and boundary-layer models were 
reviewed which could be utilised to predict power output 
from turbines within and downwind of large offshore 
wind farms [4.1]. A new model was developed which 
models wakes within wind farms by conserving 
momentum deficit [4.2]. The remainder of the work 
focused on quantifying the impact of corrections to short-
term forecasts of power output from large offshore wind 
farms. The effects considered are: wind speed gradients 
in the coastal zone, vertical wind speed profile 
extrapolation to hub-height and wake effects. On the 
positive side wind speeds offshore in the power 
producing classes appear to be more persistent, with 
lower probability and persistence of calms [4.3]. On the 
other hand, the development of wind farms in coastal 
areas (<50 km to the coast) where wind speed gradients 
and profiles are still developing may mean that additional 
corrections are needed to ‘traditional’ approaches to 
short-term forecasting.  
 
Horizontal wind speed gradients 
These gradients were examined using mesoscale models, 
satellite observations and linearized models [4.4]. At 
distances of more than about 20 km from the coast wind 
speed gradients are unlikely to be important except 
possibly in very stable conditions. Closer to the coast 
gradients were shown to be strongly related to the 
temperature difference between land and sea and to be 
significant even over the area of a 100+ turbine wind 
farm implying that using one central grid point will lead 
to errors in the forecast wind and therefore in power 
output. 
 
Horizontal and vertical temperature gradients 
Both gradients influence the wind resource more strongly 
offshore because ambient turbulence is lower than it is 
over most land surfaces [4.5]. The stability climate at a 
particular site seems to be strongly synoptic with a 
smaller influence of the fetch (defined here as the 
distance to the coastline) assuming the wind farm is 
placed beyond 10 km from the nearest coast [4.6]. As 
shown in Figure 4.1 (based on data from Nysted) the 
wind speed profile takes much longer time/distance to 
reach equilibrium in stable than near-neutral or unstable 
cases. A new method of calculating stability using the 
wind shear instead of using heat flux or accurately 
measured temperature gradients was developed and 
shown to be adequate, unless there are strong horizontal 
wind speed gradients (usually in short distances to land 
where conditions are not at equilibrium) [4.4]. In this 
case the method fails because the large wind shear 
implies stable conditions. At Horns Rev (Figure 4.2), the 
measured wind speed profile implies wind speed profiles 
become linear above heights of about 50 m which might 
suggest that the constant flux layer theory is inadequate 
[4.7]. 
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Figure 4.1. Ratio of wind speeds at 50 m to those at 10 m 
height for different fetches and stability conditions. 
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Figure 4.2. Comparison of normalised wind speed 
profiles at Horns Rev. 
 
Sea surface roughness 
The role of changing roughness offshore is thought to be 
minor. Even quite large changes in a low roughness make 
a very small difference to the extrapolation of wind 
speeds from 10 m to turbine hub-heights as shown in 
Figure 4.3. Clearly using data from the measured or 
modelled height closest to hub-height is preferable and 
will result in the lowest errors. Wind speeds may also be 
extrapolated from a model layer e.g. at 100 m down to 
turbine hub-heights. In some circumstances (e.g. using 
buoy data from 2m height) the choice of roughness length 
will have a profound impact on the predicted wind speed. 
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Figure 4.3. Wind speed extrapolation factor based on a 
logarithmic profile for different heights and roughnesses. 
 
Stability correction at Middelgrunden  
Use of the prediction with the stability correction at 
Middelgrunden gives slightly higher power output than 
the use of the logarithmic prediction (Figure 4.4). In 
order to evaluate the short-term forecasts over 48 hours, 
the power output is calculated using the 10m forecast 
wind speed and either the log. profile or the stability 
corrected profile where the stability correction is 
calculated for hour zero and then applied to the 
subsequent 48 hours. A bias of 0.5 m/s was added to the 
HIRLAM 10 wind speed from which both were 
calculated. As shown use of the stability correction gives 
only a minor improvement.  
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Figure 4.4.  48 hour observed and predicted power 
output for a turbine at Middelgrunden (average of 351 
test runs). 
 
 

Wakes 
Wakes within a large offshore wind farm are predicted to 
cause power losses of the order 10% [4.8]. This depends 
on many factors such as the turbine orientation and 
spacing, wind climate and turbine type. However, most 
wake models were developed for single wakes and there 
are substantial differences between the wake losses 
predicted for single wakes [4.9], [4.10] although the best 
results in terms of model agreement and model agreement 
with limited data sets is at moderate turbulence and 
moderate wind speeds. Prediction of multiple wakes 
likely requires feedback between wake and boundary-
layer development [4.11]. However, what remains to be 
done here is to assess whether a look-up table of wake 
losses by wind speed/direction is as accurate as use of a 
simple wake model in a short-term forecasting context. 
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5. Ecole des Mines: Contribution of satellite-
radar information for offshore forecasts 
 
The most interesting satellite data for this objective of the 
ANEMOS project are coming from radar sensors. These 
sensors are active sensors, carrying their own power 
source. This allows them to acquire data at any time of 
the day, with any kind of weather. The sensors of interest 
in the framework of the project are the scatterometers and 
the synthetic aperture radars (SAR). The benefits of these 
sensors for wind prediction were analysed during the 
project. 
From empirical models, the CMODs, it is possible to 
obtain spatially distributed wind speeds and directions 
from these sensors. The quality of the data was evaluated 
and uncertainties computed for the creation of wind 
parameter maps based on this data set (Ben Ticha and 
Ranchin, 2006). 
These wind data extracted from the satellites are the basis 
of the proposed methodology for use of satellite data in 
wind predictions. 
 
Methodology 
We try to take advantage of all the available data in order 
to construct a distribution map of wind patterns according 
to the wind prediction provided by the Numerical 
Weather Prediction (NWP). In other words, we try to 
construct a catalogue of wind field distribution, which 
can be used to propose a map according to the wind 
prediction provided by the meteorological models. Figure 
5.1 proposes such an example. In order to propose a 
spatial distribution of the wind patterns according to the 
NWP, it is necessary to construct a catalogue of these 
patterns in the area of interest. This is done by processing 
the available archive of SAR images in the area of the 
offshore case study. The NCEP/NCAR reanalysis data1 is 
used for construction of the catalogue of typical wind 
situations. The SAR images are first processed in order to 
deliver the wind patterns. Considering the meteorological 
situation at the acquisition time (coming from the 
NCEP/NCAR data) of the SAR images, the wind patterns 
are classified. The classification allows linking a specific 
NWP to a specific wind pattern distribution coming from 
SAR. The construction of the catalogue of the wind 
patterns will allow the computation of quality parameters 
based on the probability distribution function (pdf) of the 
NWP case. Figure 5.2 presents the flowchart for the 
preparation and exploitation of the SAR information for 
prediction. Figure 5.3 proposes an example of the 
different wind situations encounters in the area of 
interest. For each typical wind situations, a wind pattern 
is associated and a wind pattern distribution proposed for 
the area of interest. 
 
 
Reference 
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resource assessment using satellite data: uncertainties 
estimation. Proceedings of the European Wind Energy 
Conference EWEC, Athens, 2006. 

                                                 
1 NCEP/NCAR Global Reanalysis Products: 
http://dss.ucar.edu/datasets/ds090.0/ 

 
Figure 5.1. Example of a specific wind pattern derived 
from satellite data at Arklow Bank, Irish Sea, 19th April 
2003. 
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Figure 5.2 Flowchart of preparation and exploitation of 
SAR images in offshore prediction. 
 

 
Figure 5.3 Typical wind situations derived from the 
NCEP/NCAR data set 
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6. CIEMAT: The Tarifa model for the Strait 
of Gibraltar 
 
CIEMAT has developed a semi-empirical model that is 
valid for the Strait of Gibraltar, although the method can 
be applied to any other place. 
The Strait of Gibraltar is a very important place regarding 
wind energy, because of its great potential and installed 
power (onshore by now), but it is also the place where the 
highest errors in wind prediction take place. Thus, the 
importance of finding a model that improves the current 
predictions (i.e. Hirlam or ECMWF) is evident. 

 

 
Fig. 6.1. Comparison of  2x2 km (top) and 50x50 km 
(bottom) resolution topographies of the Strait of 
Gibraltar  

 
One of the reasons because the ECMWF global model 
does not give good enough wind predictions at the Strait 
is the model resolution. In Figure 6.1 the quasi-real 
topography of the Strait (2x2 km) is compared with the 

topography used by the ECMWF model (approximately 
50x50 km). It is easy to understand the impossibility of 
reproducing the flow across the Strait (there is not even a 
channel!). In fact this global model sometimes predicts 
strong meridian component winds that actually are not 
observed at the Strait.  
After having analysed very carefully the wind regime at 
the Strait [6.1, 6.2], it has been concluded that there is a 
direct relation between the low-level meteorological 
patterns (represented by significant atmospheric variable 
fields) and the surface wind across the Strait, and this 
relation is not always the usual one. For instance, there 
are times when the wind is isobaric and other times when 
it is transisobaric. This fact suggested using a tool that 
could take into account this relation. Therefore the 
Perfect Prognosis (P.P.) technique has been chosen. 
This method uses multivariate regression analysis in 
order to get an equation that show this relation between 
the surface wind speed (dependent variable) and other 
atmospheric independent variables Vi (predictors) derived 
from the operational ECMWF model analysis: 
 

WIND SPEED= C0 + C1V1 + C2V2 + C3V3 + ... CnVn 

 
Thus, the objective is finding the best predictors Vi 
(explaining most of the observed variance) and the 
corresponding coefficients Ci of the multiple regression 
equation. In this case, a backward stepwise method has 
been chosen. The empirical wind speed data used in this 
work have been collected from the meteorological station 
in Tarifa (Spain), just near the coast (Fig 6.2) during the 
1995-97 years. The independent variables used come 
from the ECMWF reanalysis (ERA data) for the same 
period.  
They can be individual atmospheric variables at diverse 
p-levels or appropriate combinations of them, taking into 
account previous knowledge about the qualitative relation 
between these variables and the resultant local-scale 
wind. The ERA data used correspond to different nodes 
of a 0.5°x 0.5° lat-lon grid mesh in the vicinity of Tarifa 
station, as Figure 6.2 shows.  
Taking into account the previous knowledge of the wind 
regime at the Strait, 10 sub-groups or cases were 
considered: four corresponding to the easterly winds for 
the 4 seasons, four to the westerly winds for the 4 seasons 
and two for the easterly and westerly “calms” (v< 1 m/s). 
 
Fig. 6.2. Map of the Strait of Gibraltar with the nodes of 
the ECMWF model grid mesh. The location of the Tarifa 
meteorological station corresponds to the 642 node. 



 

EASTERLIES WESTERLIES Calms  

Spring Summer Autumn Winter Spring Summer Autumn Winter Easterlies Westerlies

N. of samples 518 434 465 278 411 454 442 565 173 214 

Adjusted R2 .72 .74 .72 .79 .62 .54 .54 .67 .50 .35 

Standard error of 
estimates 2.41 2.17 2.04 2.21 2.26 2.40 2.38 2.43 2.40 2.18 

 
Table 6.1: Statistical regression results, including the 
number of samples, the adjusted R2 and the standard 
error of estimates values for each one of the ten 
considered cases. 
 
Table 6.1 shows the number of samples, the multiple 
determination coefficient corrected by freedom degrees 
(R2) and the standard error of estimates for each one of 
the 10 considered cases. 
 
In order to validate the Tarifa model, the ECMWF model 
forecasting daily data at 24h, 36h and 48h horizons for 
the whole 1997 year were considered. The regression 
equations obtained from the P.P. technique were applied 

to forecasts, and wind estimations were compared to 
observed values at the Tarifa station. 
Table 6.3 shows the mean square errors of wind 
predictions from the ECMWF model before and after the 
Tarifa model was applied. These have been calculated for 
different wind speed intervals and for the three horizon 
predictions (24h, 36h and 48h). The number of data 
corresponding to each case is also included. It can be 
seen that the ECMWF model wind speed prediction 
errors are much higher than the Tarifa model ones. 
It can be concluded that the Tarifa model is an adequate 
downscaling technique which greatly reduces the errors 
in wind forecasting at the Strait of Gibraltar. 
 
 

Horizon SPEED 
INTERVALS 

1-5 m/s 
/U1000/>1 

5-10 m/s 10-15 m/s > 15 m/s TOTAL CALMS 
/U1000/<1 

Mean square 
error (m/s) 

1.99 3.00 2.79 3.28 2.94 4.25 24h 

Number of 
samples 

20 136 103 55 314 40 

Mean square 
error (m/s) 

2.32 3.44 3.27 4.14 3.25 3.66 36h 

Number of 
samples 

60 114 89 50 313 40 

Mean square 
error (m/s) 

2.55 3.20 3.99 3.47 3.39 3.50 48h 

Number of 
samples 

19 141 97 56 313 39 

 
Horizon SPEED 

INTERVALS 
1-5 m/s 

/U1000/>1 
5-10 m/s 10-15 m/s > 15 m/s TOTAL CALMS 

/U1000/<1 
Mean square 
error (m/s) 

7.07 8.36 7.16 -- 7.53 4.77 24h 

Number of 
samples 

200 101 13 0 314 40 

Mean square 
error (m/s) 

5.73 8.34 6.54 -- 6.51 2.97 36h 

Number of 
samples 

223 81 9 0 313 40 

Mean square 
error (m/s) 

6.65 8.18 7.14 -- 7.19 5.14 48h 

Number of 
samples 

205 100 8 0 313 39 

 
Table 6.3:  Number of samples and mean square errors 
corresponding to different speed intervals and 
forecasting horizons for the statistical regression model 
(up) and the ECMWF model (down) during the 1997 
year. 
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7. Ecole des Mines: 
Test Case Middelgrunden, Denmark 
 
In this section the case study of the Middelgrunden 
offshore wind farm in Denmark is presented. The wind 
farm, which was built in 2000, is situated a few 
kilometres away from Copenhagen. It contains 20 Bonus 
wind turbines rating 2 MW each.  
The available data are measurements of the average 
hourly power production of the wind farm as well as of 
the wind turbines. To overcome the difficulty of different 
commissioning dates of the wind turbines, the total 
production if scaled to the final total capacity according to 
the number of commissioned wind turbines. 
Hirlam Numerical Weather Predictions (NWPs) from the 
Danish Meteorological Institute are used. They are 
composed of the following data: 10m wind speed, wind 
direction and air density. The NWPs are delivered twice a 
day with a 3 hours resolution and cover a period of 48 
hours. For sake of compatibility with the power 
measurements, the NWP data have been interpolated for 
obtaining a hourly resolution.   
The period of the study ranges from the 9th of February 
2001 to the 15th of October 2002.  

 
7.1 Advanced Statistical Modelling Using Artificial 
Intelligence Based Methods 
For this study the AWPPS (ARMINES Wind Power 
Prediction System) model was used. The core of this 
model consists of a fuzzy neural network (F-NN). The F-
NN is generic and can be trained on appropriate input 
depending on the final use of the model. Regarding 
measurements, only the scaled total production was used 
as input. 
In the F-NN model, Gaussian fuzzy sets Ai are defined 
over the explanatory variables (x1 , …, xn). Fuzzy rules are 
derived linking the input fuzzy sets to the prediction 
output. These fuzzy rules may have the form : 

 
IF x1 is A1 and … and … xn is An THEN  yi=f(x1 , …, xn) 

 
Each rule provides an estimation of the prediction output 
y according to its local “perception” yi of the situation. 
The resulting forecasts are derived from these estimations. 
The advantage of this model compared to conventional 
neural networks is that it permits to model the process of 
interest locally. Local modelling is desired if one is 
forecasting non-stationary processes such as wind 
generation. Special attention is made to develop robust 
algorithms for estimating the models' parameters. 
 
7.2 Results 
The available data have been separated to a learning, 
validation and testing set. The learning set, used for the 
model's parameters estimation, covers a period of about 
5.5 months (up to the 25th of July). The parameters 
estimation was done using appropriate learning rules that 
minimize error while at the same time maximize entropy. 
The validation set covered a period of 3 months (up to the 
26th of October). It was used to take automatically 
decisions on the structure of the model using the cross-
validation method generalized upon the whole prediction 
horizon. Finally, the remaining data of 12 months have 
been used for the final evaluation of the model. The 
results on the testing set are presented below. 

In order to obtain results which are comparable with the 
ones delivered by physical prediction models, the 
evaluation was based on the 00h and the 12h runs of the 
model. The predictions used correspond to the reception 
of the NWPs. 
For validating the results obtained, the persistence model 
has been used as a benchmark. 
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Figure 7.1: Normalized Mean Absolute Error (NMAE) 

 
Figure 7.1 compares the performance of the advanced 
model to that of Persistence on the testing set using the 
Normalised Mean Absolute Error (NMAE). 
Normalization is made on the basis of the nominal 
capacity of the wind farm. The advanced model 
outperforms Persistence for all horizons. The upward 
trend of the prediction errors grows slowly. The 
normalized error only increments by 3.2% between 
horizons 6 and 36. The results are comparable to the ones 
obtained from the offshore Tunø Knob wind farm 
considered in [7.1] for the benchmarking of 8 advanced 
physical and statistical models, regarding the fact that the 
mean produced power at Tunø Knob is higher. 
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Figure 7.2: Normalized Root Mean Square Error NRMSE 
at Middelgrunden 

 
7.3 Conclusion 
The F-NN model of the AWPPS prediction module shows 
an improvement over persistence from the first time step. 
Moreover, the normalized error grows slowly with the 
horizon. The model performed well whatever horizon is 
considered. The mean power production per horizon was 
found very close to the reference power and the power 
cycle. The F-NN model, being generic, permits to test 
alternative configurations that include the horizon as an 
input variable in order to better catch the wind power 



diurnal cycle. Another possibility is to consider a different 
model for each horizon (or ensembles of horizons). 

The artificial intelligence approach considered here is 
judged as adequate for modelling large size offshore wind 
farms. In the future, in very large wind farms of several 
tens or hundreds of MW, the challenge will be to capture 
in an adequate way spatio-temporal behaviour. As a 
perspective, and as a function of available data, one could 
consider appropriate model set-ups for large wind farms 
such as clustering-based approaches. Then, the objective 
would be to predict the production of a group of wind 
turbines forming a cluster. A specific model could be 
tuned for each cluster as shown in the following Figure 
7.3.  

 

 
Figure 7.3: Possible model configuration for very large 
offshore wind farms. 
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8. RAL: Application of RAL forecasting 
model to the Middelgrunden offshore wind 
farm 
 
8.1 Introduction 

RAL have developed a wind power forecasting model 
which uses information both from on-line measurements 
of wind farm output power and from numerical weather 
prediction models. The model can be clased as an initial-
(value)-boundary-value model as it uses both ’internal’ 
and ’external’ variables. The structure of the IBV model 
is briefly outlined in Section 8.2 and the performance of 
the model when applied to the Middelgrunden offshore 
wind farm is presented in Section 8.3. 

 
8.2 The Initial-Boundary-Value model 

Model structure 

In the IBV model, the measured sequence of data 
( )kty + is represented in terms of the of the observed 

historical sequence of data, ( )n -t y , and the history of 

external forces acting, ( )m -kt x j + , in terms of 

constant coefficient auto-regressive mapping parameters, 
 g kn, , the response function to external excitations, 

km, j,h , and a stochastic variable ( )ktr +  with  

( ) ( ) ( ) ( )m -kt xh+ n-tyg ktrkty jkm, j,

J

1 j

M

0=m
kn,

N

1n
+∑∑∑++=+

==

    
The optimum values for  g kn,  and km, j,h  are 

estimated by taking moments <y(t)zi(t-k)>, where z and k 
represent generically the range of external variables and 
delays in the model, and solving the resulting matrix 
equation for  g kn,  and km, j,h  by linear least-squares 

regression. 

In the present case, the variable y represents the measured 
wind power output and the variables xj functions of 
external variables such as forecast wind speed, forecast 
wind direction and time of day. Wind power forecasts 
y(t+k) are generated from the measured data y(t) and the 
forecast variables xj using the coefficients  g kn,  and 

km, j,h for each separate forecast horizon k. 

Two different models were applied to the Middelgrunden 
case. In both models, only the most recent power 
measurement y(t) was used, corresponding to an AR(1) 
model. The forecast wind speed was included as a cubic, 
representing an empirical approximation to the wind farm 
power curve : 

∑
=

=
3

0n

n
n3 va(v)P  

In the second model additional terms in the forecast wind 
direction Θ and time of day τ were included as second-
order harmonic series: 



)nsin(s)ncos(c)(H n

2

1n
n2 θθθ += ∑

=

  

and similarly for )(H 2 τ . 

The two IBV models applied to the training data set for 
Middelgrunden (16/10/2001 00:00 - 15/10/2001 23:00) 
were : 
 

• AR(1) + P3(v) 
• AR(1) + P3(v) + H2(Θ) + H2(t) 

 
Forecasts were updated with each new SCADA value, at 
1-hour resolution. The NWP forecast from the Danish 
Meteorological Service HIRLAM model for 10 m was 
used, interpolated from a 3-hour resolution to 1 hour. The 
length L (days) of the out-of-sample data series over 
which the moments <y(t)zi(t-k)> are taken was set to 50 
days. 

8.3 Results 
The results for the AR(1) + P3(v) + H2(Θ) + H2(t) model 
are shown in Fig. 8.1. The performance of the ‘naïve’ or 
‘persistence’ predictor (which predicts y(t+k) = y(t)for all 
k) is shown for comparison. 
 
The performance of the AR(1) + P3(v) + H2(Θ) + H2(t) is 
compared to that of the simpler AR(1) + P3(v) in Fig. 8.2. 
The figure shows the correlation coefficient r2 between 
forecast and observed wind power, as a function of 

horizon, over the evaluation period. The inclusion of 
forecast wind direction and time-of-day as predictors 
gives only a small improvement in model performance, 
consistent with the expectation that an offshore site is 
unlikely to be subject to large local diurnal or 
topographical effects. 
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Figure 8.1 : RMS errors for the IBV and persistence 
models for Middelgrunden. The RMS errors have been 
normalised to the wind farm installed capacity of 40 MW. 
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