
HAL Id: hal-00525588
https://hal.science/hal-00525588

Submitted on 12 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Black-box identification of discrete event systems with
optimal partitioning of concurrent subsystems

Matthias Roth, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Matthias Roth, Jean-Jacques Lesage, Lothar Litz. Black-box identification of discrete event systems
with optimal partitioning of concurrent subsystems. 2010 American Control Conference (ACC2010),
Jun 2010, Baltimore, United States. pp.2601-2606. �hal-00525588�

https://hal.science/hal-00525588
https://hal.archives-ouvertes.fr

Abstract—This paper proposes a data-driven method to
determine concurrent parts in Discrete Event Systems (DES).
The aim is to improve the results of black-box identification
methods without considering any system information except of
observed data. In order to allow an analysis of the collected
data, the impact of concurrency on the exhibited system data is
determined by two criteria. We propose to use an optimization
algorithm that isolates concurrent parts of the system by
minimizing concurrency expressed by the two proposed criteria
within the determined subsystems. A lab-size application shows
the potential of the method for real-world manufacturing
systems. The aim is to deliver optimal identified models for fault
detection and isolation.

I. INTRODUCTION

Increasing the dependability of modern industrial systems
like manufacturing or production systems is a constant
concern in the control community. Among others, fault
detection and isolation (FDI) plays a key role to achieve
sufficiently reliable systems and to reduce costly downtimes.
Modern FDI-techniques are often model based. The idea is
to compare an observed and a modeled system output in
order to detect faults in the system. For systems that can be
modeled by Discrete Event Systems (DES) the diagnoser-
approach is a very prominent example for the class of model-
based methods [1]. It uses models that explicitly contain
faulty system behaviors. As an advantage, this approach is
capable of giving guarantees concerning the diagnosabilty of
a system. Since each fault that has to be detected must be
explicitly modeled, drawbacks are the expensive model
building process and the inability to detect faults that are not
part of the model. An approach that tries to avoid these
drawbacks is presented in [2]. In this approach a fault-free
system model is used to detect and localize faults. Since the
model does not contain any faulty system behavior, it is
possible to obtain the model by identification. The fault
detection policy of this approach is that each observed
behavior that is not reproducible by the model is considered
as a fault. Although diagnosability cannot be guaranteed in
this approach it has proven to be useful for real-world
applications like shown in [2].

This work was supported by a grant from “Région Ile de France”
Matthias Roth is with the Institute of Automatic Control at the

University of Kaiserslautern, Germany, and the LURPA, Ecole Normale
Supérieure de Cachan, France. (mroth@eit.uni-kl.de)

J.-J. Lesage is with the LURPA at the Ecole Normale Supérieure de
Cachan, F - 94235 Cachan Cedex, France (lesage@lurpa.ens-cachan.fr)

L. Litz is the head of the Institute of Automatic Control at the University
of Kaiserslautern, D – 67653 Kaiserslautern, Germany (litz@eit.uni-kl.de)

If systems with a high degree of concurrency are
considered in the identification approach, it can take very
long to observe a sufficiently complete amount of data that
yields an appropriate FDI-model. If the model is identified
on an incomplete data basis, an unacceptable high number of
false alerts occur during online monitoring [3]. In order to
deal with an incomplete data base and to avoid false alerts, a
distributed framework has been proposed in [3]. The main
idea of this approach is to divide a given system into
concurrent subsystems and to use a single model for each of
these subsystems. In [3], appropriate subsystems have been
defined in a heuristic way. In this paper, we propose an
approach to automatically divide a system into concurrent
subsystems using an optimization algorithm that reduces
concurrency within each subsystem.

The paper is structured as follows: in section II, the
distributed framework of [3] is motivated and shortly
explained. Section III analyses how concurrency is reflected
in observed system data. The automatic choice of concurrent
subsystems using an optimization approach is explained in
section IV. The practical relevance of the proposed method
is shown section in V. Section VI contains some concluding
remarks and an outlook.

II. DISTRIBUTED IDENTIFICATION

In this work we consider closed loop DES. The closed
loop consists of a controller and a plant, which is a typical
configuration for industrial production systems. The
identification is based on controller I/O (input/output)
vectors collected during p different system cycles.

Definition 1 : The j-th I/O vector in the h-th of p system
cycles is defined as 1() ((), ..., (),h su j I j I j=

1(), ..., ())m hO j O j with I1, .., Is and O1, .., Om

{1,0}∈ denoting the considered inputs and outputs of the

controller of the closed loop system. Inputs and outputs are
referred to as “I/Os”.

Definition 2 : If during the h-th system cycle, lh
I/O vectors have been observed, the sequence is denoted as

(, , ...,)σ (1) (2) ()
h h hh hu u u l= .

Assumption 1 : Each I/O vector is created by a new event
such that () (1) 1≠ + ∀ ≤ <

h h hu uj j j l .

This assures that two successive I/O vectors differ in at
least one I/O value. If each observed I/O vector is considered
as a letter of an alphabet we can define the set of words with
length q observed up to the t-th of p different system cycles.

Black-box identification of discrete event systems with optimal
partitioning of concurrent subsystems

Matthias Roth, Jean-Jacques Lesage, Member, IEEE, and Lothar Litz, Member, IEEE

A word represents an observed I/O vector sequence.
Definition 3 : The observed words of length q observed up

to the t-th system cycle are denoted as

() () ()()
1

,
Obs

1 1

, 1 , ..., 1
il qt

q t
i i i

i j

W u j u j u j q
− +

= =

=
 

+ + − 
 
∪ ∪

With this definition it is possible to describe the behavior
of a system by the language built on the basis of the observed
words.

Definition 4 : The observed language of length n is

,

1

n
n i p
Obs Obs

i

L W
=

=∪ with p denoting the number of observed

system cycles.
In this work, we assume that nObsL has been observed

during fault-free system cycles and thus is finite. Based on
the observed language nObsL it is possible to identify a

monolithic automaton. The algorithm in [4] allows
constructing an automaton on the basis of observed words of
the parametric length k. The identified automaton is able to
produce the observed language of the system and is k+1-
complete (1 1k k

Obs IdentL L+ += with 1k
IdentL + denoting the language of

the identified automaton) [5]. Since for real systems with a
high degree of concurrency it is by experience not possible
to observe all fault-free words (I/O vector sequences) within
a reasonable time, the cardinality of the word set typically
evolves like shown in Fig. 1. The solid line that represents a
system with a low degree of concurrency converges to a
stable level after a short time. The dashed line does not stop
growing. This indicates that the system language has not yet
been completely observed and that new words will occur
when the observation is continued. If a k+1-complete
automaton is identified on such an incomplete data base, it
will not be capable of reproducing the expected new fault-
free I/O-vector sequences of length k+1 if they have not been
observed before. This effect leads to false alerts using the
fault detection policy that each non-reproducible behavior is
considered as a fault.

W Obs

n,t

t

Low concurrency

High concurrency

W Obs

n,t

t

Low concurrency

High concurrency

Fig. 1: Evolution of the number of observed words of length n over system
cycles h

In order to avoid an unacceptably high number of false
alerts, in [3] a distributed framework has been proposed. The
idea is to divide a system in concurrent subsystems. For a
properly chosen subsystem the observed language cardinality
typically converges to a stable level within a short time due
to the reduced concurrency in the subsystem. Hence, it is
possible to identify a partial automaton for each subsystem
that does not lead to false alerts when observing the
according subsystem. In [3] it has been shown that there

exist faults that cannot be detected by a single partial
automaton. In order to detect faults that lead to a forbidden
combined behavior of the partial automata, the framework
depicted in Fig. 2 has been introduced. An upper structure
consisting of the so called Permissive Observed Cross
Product (POCP) and a given tolerance specification allows
restricting the combined behavior of the partial automata
such that even faults leading to a forbidden automata
network behavior can be detected. Algorithms to construct
the POCP and guidelines to design the tolerance
specification are given in [3].

Cross product

Observed cross product

Permissive observed cross product

Tolerance specification

OK - F

Partial automaton 1 Partial automaton 2

…
Partial automaton n

,..,
1 1

0 1

− −   
   − −   
   
      
   

0 1
,..,

1 1

− −   
   
   
   
      − −   

1 0

0 1
,..,

   
   
   
   − −
      − −   

Fault detection:

forbidden network
behavior

Fault detection:

partial observation
not reproducible

S Y S T E MS Y S T E M

Cross product

Observed cross product

Permissive observed cross product

Tolerance specification

OK - F

Partial automaton 1 Partial automaton 2

…
Partial automaton n

,..,
1 1

0 1

− −   
   − −   
   
      
   

0 1
,..,

1 1

− −   
   
   
   
      − −   

1 0

0 1
,..,

   
   
   
   − −
      − −   

Fault detection:

forbidden network
behavior

Fault detection:

partial observation
not reproducible

S Y S T E MS Y S T E M

Fig. 2: Distributed framework from [3]

In [3] the necessary system partitioning has been
performed in a heuristic way. The I/Os of the I/O vector have
been assigned to different subsystems considering the
physical system structure. This approach is usually not
possible if black-box identification is performed. An
approximation of the number of possible partitions is given
by the Stirling number of the second kind [6]:

0

1
(,) (-1) (-)

!

n
i m

i

n
S m n n i

in =

 
=  

 
∑ with m denoting the

number of I/Os and n denoting the number of non-empty
partitions. In the case of 30 I/Os and three partitions (three
subsystems and three identified partial automata), this leads

to 142.06 10⋅ possible solutions. Only a small number of
these solutions lead to subsystems with reduced concurrency
which allows a complete observation of the according
subsystem language in short time. Assigning I/Os to
appropriate subsystems is an NP-complete combinatorial
problem. To facilitate finding such a partitioning, the rest of
the paper introduces an automatic way to assign I/Os to
concurrent subsystems by a heuristic optimization technique.

III. MANIFESTATION OF CONCURRENCY IN THE OBSERVED

SYSTEM LANGUAGE

A. General considerations

In section II it has been lined out that we are interested in
finding subsystems with a low degree of concurrency in
order to avoid false alerts using the identified models for
FDI. The concurrency we are dealing with is strongly

connected to the non-determinism of the physical plant in the
considered closed loop DES. Due to temporal non-
determinism, a physical action in the plant does not always
take exactly the same time to finish. If several actions are
performed in a parallel way, this non-determinism leads to
several possible combined outcomes: in one system cycle a
given action can finish faster than another parallel action and
vice versa. This leads to numerous possible evolutions. Since
we do not explicitly consider the timed behavior, its
variations are only of interest if several actions are
performed in a parallel way, which is considered as a
concurrent behavior.

Since we want to spot concurrent behavior in the
considered system using a black-box identification approach
the only available information is the data that has been
collected when observing different system evolutions.
Hence, it must be analyzed how concurrency is reflected in
the observed data. In the next two subsections, we present
two phenomena that can be observed when analyzing the
observed data and that are strongly related to concurrency.

B. Language growth

A first phenomenon that occurs due to concurrency has
already been mentioned in section II. If a concurrent system
is observed, the growth of the observed language cardinality
is related to the degree of concurrency. Fig. 1 shows typical
cardinality evolutions for systems with low and with high
concurrency. The reason for the language growth can be seen
in Fig. 3. If we represent the behavior of the concurrent
system to be identified by a Petri net with two concurrent
sequences there is only a limited number of possible
evolutions to “move” the tokens through the net (left Petri
net). If the system is represented by a Petri net with more
parallel branches (right Petri net), then there are more
possible system evolutions. Hence, it takes longer until the
system language is completely observed which makes the
cardinality converging to a stable level.

Fig. 3: Sketches of Petri nets with different degrees of concurrency

Following Definition 3 it is directly clear that
, , 1−⊇n t n t

Obs ObsW W . Hence, if , , 1| | | | 0−− >n t n t
Obs ObsW W (word set

observed up to cycle t is larger than the word set up to cycle
t-1) then some new words that have not been seen before
must have been observed in the t-th system cycle.

C. Branching Degree

The second phenomenon is related to the structure of an
automaton identified on the basis of observed system data.
To facilitate the understanding of this phenomenon we
shortly review the monolithic identification procedure from
[4]. Suppose the following three fault-free system evolutions

have been observed.

1

1 0 0

0 1 1
, ,

0 0 1

1 1 0

σ

      
      
      =
      
            
      

, 2

1 1 0

0 0 1
, ,

0 1 1

1 0 0

σ

      
      
      =
      
            
      

, 3

1 0

0 1
,

0 1

1 0

σ

    
    
    =
    
        
    

The identification algorithm of [4] with k=1 basically
consists of associating each I/O vector to an automaton state
and to connect states containing I/O vectors that have been
observed successively. The result is a non-deterministic
autonomous automaton with output (NDAAO):

Definition 5 : 0(NDAAO , , , , x)X r λ= Ω with X

denoting a finite set of states, Ω the output alphabet,

: 2r X → X the non-deterministic transition relation,
: Xλ →Ω the output function and 0x the initial state.

The result of the monolithic identification can be seen in
Fig. 4 on the left side. The automaton is able to reproduce
each of the observed sequences. It can be seen that the initial
state has three leaving transitions that are necessary to
reproduce the different observed following behaviors. In the
example we assume that the global system consists of two
concurrent subsystems: The first subsystem consists of the
first two I/Os of the I/O vector and the second system consist
of the other two I/Os. Since the changes in value of I/Os
belonging to different subsystems happen concurrently, three
following behaviors of the first state are possible. In one
following behavior the first subsystem leads to earlier I/O
changes (1σ). In the next case, the second subsystem evolves

faster (2σ) and in the third case the two systems evolve

simultaneously (3σ).

1

0

 
 
 
 −
 

− 

0

1

 
 
 
 −
 

− 

0

1

− 
 − 
 
 
 

1

0

− 
 − 
 
 
 

0

1

1

0

 
 
 
 
 
 

0

1

0

1

 
 
 
 
 
 1

0

0

1

 
 
 
 
 
  1

0

1

0

 
 
 
 
 
 

1

0

 
 
 
 −
 

− 

1

0

 
 
 
 −
 

− 

0

1

 
 
 
 −
 

− 

0

1

 
 
 
 −
 

− 

0

1

− 
 − 
 
 
 

1

0

− 
 − 
 
 
 

1

0

− 
 − 
 
 
 

0

1

1

0

 
 
 
 
 
 

0

1

1

0

 
 
 
 
 
 

0

1

0

1

 
 
 
 
 
 

0

1

0

1

 
 
 
 
 
 1

0

0

1

 
 
 
 
 
 

1

0

0

1

 
 
 
 
 
  1

0

1

0

 
 
 
 
 
 

1

0

1

0

 
 
 
 
 
 

Fig. 4: Result of the monolithic and distributed identification

If the I/Os of each single subsystem are considered
separately, the identified partial automata are much simpler
as depicted on the right side of Fig. 4. The global output of
the partial automata can be calculated by combining the two
partial outputs such that “-“-symbols in one partial
automaton are overwritten by I/O values from the other
partial automaton [3].

Initial states of the partial automata have only one leaving
transition representing one following behavior. This is a
result of the reduced concurrency in the single subsystems.
This observation shows that an identified automaton reflects
concurrency of the considered system by the number of
direct following states in the automaton. More generally, the
identification of a monolithic automaton can be seen as an
approximation of the reachability graph of a Petri net
representing the considered system. If a system has a low

degree of concurrency, the reachability graph does not have
many states with several leaving transitions. In the next
section we give a criterion how this “branching degree” of an
NDAAO can be quantified.

IV. DETERMINATION OF CONCURRENT SUBSYSTEMS USING

AN OPTIMIZATION METHOD

A. Optimization approach

In section III it has been shown that concurrency has
certain effects on the collected data or on models identified
using this data. The idea of the optimization approach is to
quantify these effects and to develop appropriate
optimization criteria in order to find optimal subsystems that
have a minimal degree of internal concurrency.

As shown in section II, partitioning the controller I/Os into
appropriate subsystems is a combinatorial problem. An
optimization technique that is well suited for solving this
class of problems is simulated annealing [7]. It is a
metaheuristic optimization approach inspired by the
annealing process in metallurgy and describes a possible way
to treat NP-complete combinatorial problems in practice.
Slow cooling in metallurgy leads to a crystal structure that
has a low internal energy which is advantageous for material
properties. The optimization algorithm tries to perform a
similar “slow cooling” in order to find a solution with a
minimal metaphorical energy (minimized optimization
criterion). The algorithm is sketched in Fig. 5.

procedure simulated annealing
begin

initialize T
select current solution yc at random

repeat
select a new solution ynew
if eval(yc)>eval(ynew)

then yc�ynew
else if random[0,1)<

then yc�ynew
T�T*coolingRate

until T<Tmin

() ()c neweval y eval y

Te
−

procedure simulated annealing
begin

initialize T
select current solution yc at random

repeat
select a new solution ynew
if eval(yc)>eval(ynew)

then yc�ynew
else if random[0,1)<

then yc�ynew
T�T*coolingRate

until T<Tmin

() ()c neweval y eval y

Te
−

Fig. 5: Structure of simulated annealing according to [7]

It is necessary to parameterize the algorithm with the
starting temperature T, the cooling rate and the minimum
(stop) temperature Tmin. The algorithm must be adapted to
our optimization problem in two points: First, the structure
of a possible solution y must be defined. Second, a method to
select a new solution must be given.

Definition 6 : A solution y is a map that associates each
I/O to one and only one of n subsystems : I/O [1,]y n→ .

With this definition it is assured that each I/O can only be
associated to one subsystem. The algorithm to select a new
solution based on the current solution yc is given in Fig. 6.
First, the algorithm copies the current solution to ynew. Then
it chooses m I/Os randomly. m is another parameter that must
be given to the algorithm. The smaller m, the more similar
the new solution ynew to the old solution is. To each of the
chosen I/Os (consI/Os), the algorithm randomly assigns a

new subsystem. In order to evaluate the quality of a solution,
two optimization criteria are introduced in the next section.

procedure select a new solution
ynew� yc
Choose m I/Os randomly � consI/Os
For each I/O in consI/Os:

repeat
ynew(I/O)=random[1,n]

until ynew(I/O)≠yc(I/O)

procedure select a new solution
ynew� yc
Choose m I/Os randomly � consI/Os
For each I/O in consI/Os:

repeat
ynew(I/O)=random[1,n]

until ynew(I/O)≠yc(I/O)

Fig. 6: Algorithm to choose a new solution

B. Optimization criteria

In order to develop appropriate optimization criteria,
several definitions are necessary. First, the relation of
subsystems, a solution y (Definition 6) and I/O vectors is
defined.

Definition 7 : The i-th subsystem isys is based on partial

I/O vectors , 1() ((), ..., (),=
ih sys su j I j I j 1(), ..., ())m hO j O j

with I1,..,Is and O1,..,Om {1,0, }∈ − where I/Os not belonging

to the i-th subsystem ((I/O) ≠y i) are assigned with “-“.

Assumption 2 : Each partial I/O vector , ih sysu is created by

a new event in isys such that , ,() (1)≠ +
i ih sys h sysu j u j .

With Assumption 2 it is assured that two successive partial
I/O vectors differ in at least one I/O value.

The first optimization criterion is a formalization of the
language growth effect described in section III.B. It counts
for each subsystem the newly observed words in each new
system cycle after the first one and multiplies this number
with the square root of the according cycle:

, , 1
1 , ,

2

() (| | | |)−

∀ =
= −∑∑ i i

i

p
n t n t

Obs sys Obs sys
sys t

E y t W W with ,
, i

n t
Obs sysW

denoting the word set of length n up to the t-th system cycle

of subsystem isys (definition of ,
, i

n t
Obs sysW is straight forward

following Definition 3). If there is a high degree of
concurrency in one of the subsystems isys , then the

according language growth will be important and thus lead to

high values of 1()E y . The term t was heuristically chosen

and adds more weight to new words that occur at late system
cycles in order to represent the fact that we want a fast
convergence to stable language cardinality.

The second optimization criterion analyses the structure
of NDAAOs identified for the subsystems. It formalizes the
branching degree introduced in section III.C. As explained in
section III.C, the number of following states in the identified
automaton depends on the concurrency of the considered
system. We now define a measure to express this branching
degree:

Definition 8 : The branching degree BD of the identified

isysNDAAO of subsystem isys is defined by

0 if | () | 1
()

| () | 1 if | () | 1 ∀ ∈

≤
=  − >
∑isys
x X

r x
BD NDAAO

r x r x
.

It counts for each state of the considered NDAAO the
leaving transitions. Only states with more than one leaving
transition contribute to this measure since this represents
possible concurrent behavior. In states with more leaving
transitions, we subtract one from the number of transitions.
This is done since one following transition in a state does not
represent concurrency. In the example of Fig. 4, the
monolithic model has a BD of 2 since only the first state
contributes to the measure and has three leaving transitions.
Each distributed model on the left side of Fig. 4 has a BD of
0 since each state has at most one leaving transition.

Note that the branching degree given in Definition 8 is an
absolute measure and is not normalized to the size of the
automaton. It only considers states that have several possible
following behaviors due to a possible concurrency.
Normalization to the size of the automaton (e.g. state space)
could lead to a situation where the branching degree of two
automata are different even if both automata contain the
same number of states with more than one leaving transition
and thus reflect the same degree of concurrency.

An optimization criterion based on the branching degree

can be given as 2() ()
∀

= ∑ i

i

sys
sys

E y BD NDAAO with

isysNDAAO denoting the automaton identified with the

algorithm of [4] for subsystem isys . The branching degree of

the subsystem NDAAOs are summed up to get a measure for
the concurrency of solution y.

Note, it is possible to have BD>0 and thus 2() 0>E y

although there is no concurrency in the system. If there are
several “decisions” in the system (e.g. large OR small work
piece), it is possible to have several following states of a
given automaton state. Since we only want to minimize BD
we can cope with BDmin>0.

With the definition of the optimization criteria it is now
possible to perform the optimization with the algorithm from
Fig. 5. The function “eval” implements one of the proposed
optimization criteria. In the case of the second criterion, an
own NDAAO for each subsystem has to be identified before
the branching degree can be determined.

V. APPLICATION

A. Case study

The proposed method has been applied to a lab
manufacturing system like shown in Fig. 7. It has 30 binary
controller I/Os. During one production (or system) cycle the
plant treats three work pieces. If the system is to be divided
in subsystems, a heuristic solution is to group I/Os according
to the three machine tools. Within the subsystems shown in
Fig. 7 there are almost no concurrent actions. 62 system
cycles have been observed. It could be seen that the system
language of length 2 does not converge to a stable level [3].
Hence, the proposed distributed approach is to be used to
identify appropriate models to monitor the systems without

false alerts. In order to determine the subsystems based on
the observed data, the proposed optimization approach is
used.

Subsystem 1 Subsystem 2 Subsystem 3Subsystem 1 Subsystem 2 Subsystem 3

Fig. 7: Considered lab-system with heuristically chosen subsystems

B. Evaluation of the optimization results

To demonstrate that the optimization approach leads to
useful results for real systems, it is necessary to perform an
evaluation. An evaluation is only possible if a “good”
solution is already known like for the system from Fig. 7.
The good solution is to be compared to the automatically
generated ones. Of course, any information concerning good
or bad solutions is not available in general. Here it is only
used to demonstrate the performance of the method. To
decide upon the quality of an automatically generated
solution by comparing it to predefined “good” results, two
similarity criteria are introduced that are necessary to
compare an automatically generated and a given solution:

1. Absolute number of I/Os that are shared by an
automatically generated and a predefined subsystem
(similarity criterion 1).

We count I/Os that are shared by a predefined and an
automatically generated subsystem. The higher this value is,
the more similar both subsystems are. Since this criterion
does not take into account the number of “wrong” I/Os in the
subsystems, we introduce a second similarity criterion:

2. Relative number of I/Os that are shared by an
automatically generated and a predefined subsystem
(similarity criterion 2).

In this criterion we take the value from the first criterion
and divide it by the number of I/Os in the predefined
subsystem.

TABLE 1: EXAMPLE OF THE EVALUATION CRITERIA

0 (0%)2 (67%)1 (33%)III: 7, 8, 9

2 (50%)1 (25%)1 (25%)II: 3, 4, 5, 6

1 (50%)1 (50%)0 (0%)I: 1, 2

C

2, 4, 5

B

1, 3, 7, 8

A

6, 9

0 (0%)2 (67%)1 (33%)III: 7, 8, 9

2 (50%)1 (25%)1 (25%)II: 3, 4, 5, 6

1 (50%)1 (50%)0 (0%)I: 1, 2

C

2, 4, 5

B

1, 3, 7, 8

A

6, 9

Automatically generated
subsystems

Predefined
subsystems

Table 1 shows an example of the similarity criteria. It

shows for example that in the predefined subsystem III there
are three I/Os 7, 8 and 9 and in the automatically determined
subsystem B there are four I/Os 1, 3, 7 and 8. The absolute
number of I/Os that are shared by both subsystems is also
given (2 in the case of III and B). Similarity criterion 2 is
given in brackets (67% in the case of III and B).

The two criteria are used to compare a set of predefined
and automatically determined subsystems. For each

automatically determined subsystem we take the maximum
value of its column in the table. This assures that we
compare it with the most similar predefined subsystem.
Determining the maximum we first consider similarity
criterion 1. If there are more cells with the same value, we
decide upon similarity criterion 2. In the example we get the
comparison pairs A�III, B�III and C�II. The predefined
subsystem I is not compared to any automatically generated
subsystem since each generated solution is more similar to
another predefined one. The first similarity criterion of the
complete setting is calculated by summing up all shared I/Os.
For the example the subsystems A, B, C share 1 (A�III)
plus 2 (B�III) plus 2 (C�II) I/Os equals to 5 I/Os with the
according predefined subsystems. Hence the first similarity
criterion for the setting in table 1 is 5. The second similarity
criterion is determined by calculating the average of the
similarity percentages. For the example we get 33% (A�III)
plus 67% (B�III) plus 50% (C�II) divided by three equals
50%.

 Fig. 8 shows the results of an optimization run using the
criterion “language growth” (E1 in section IV.B) that was
parameterized to deliver three subsystems. The starting
temperature for simulated annealing was 1000 and the
cooling rate was determined such that the optimization stops
after 1000 iterations. New solutions are determined with the
algorithm in Fig. 6 with m=3. For the lab system such an
optimization takes between 15 and 20 minutes on a normal
desktop PC. For some automatically determined solutions
the similarity criteria have been calculated in order to
determine their distance to the predefined solution consisting
of the three subsystems (tools) explained in section V.A. It
can be seen that solutions with good (small) values for E1 are
very similar to the predefined solution. The optimization
delivers a solution consisting of three subsystems with 25
from 30 I/Os correctly assigned (more than 83% similarity).
For the optimization only 30 of 62 system cycles have been
used. In none of the automatically determined subsystems a
new word is observed when considering the remaining 32
system cycles for validation. Hence the subsystems are
suitable to be used in the distributed framework to monitor
the system.

30

40

50

60

70

80

90

10 15 20 25

0

20

40

60

80

100

120
1

9

177

481

790

898
967

E1(y)

Similarity criterion 1

Similarity criterion 2 in %

Iteration number

Fig. 8: Optimization results for E1(y) (language growth)

Fig. 9 shows results using the second optimization

criterion (branching degree, starting temperature 1000, 1000
iterations, m=3). The optimization takes between 20 and 25
minutes since the identification of automata takes longer than
the determination of the language growth. The best solution
is to more than 93% similar to the predefined one. Again,
only 30 of 62 system cycles have been used. The validation
using the remaining collected cycles showed that the
automatically determined solution is also appropriate for
online-monitoring of the lab system.

30

40

50

60

70

80

90

100

0 5 10 15 20 25

0

50

100

150

200

250

1

17E2(y)

Similarity criterion 1

Similarity criterion 2 in %

80

498

625

999

Iteration number

Fig. 9: Optimization results for E2(y) (branching degree)

With the best automatically determined solutions we
performed tests for the lab-system. It showed that false alerts
did not occur. We were also able to detect intentionally built-
in faults using the approach from [3]. Faults at I/Os that have
been assigned to a “wrong” subsystem often led to fault
detection by the upper structure of Fig. 2.

VI. CONCLUSIONS

An approach to divide a DES into concurrent subsystems
based on observed data has been proposed. One of the
parameters for the optimization is the number of subsystems
that are to be build. Current work aims at determining this
number based on observed data and online calculation
constraints from the FDI approach in [3].

REFERENCES

[1] M. Sampath, R. Sengutpa, S. Lafortune, K. Sinnamohideen, D.C.
Teneketzis, “Failure Diagnosis using Discrete-Event Models”, IEEE
Trans. on Control Systems Technology, Vol. 4, No. 2, pp. 105-124,
March 1996.

[2] M. Roth, J.-J. Lesage, L. Litz: “An FDI Method for Manufacturing
Systems Based on an Identified Model”, 13th IFAC Symposium on
Information Control Problems in Manufacturing, INCOM'09,
Moscow (Russia), pp. 1389 - 1394, June 3-5 2009

[3] M. Roth, J.-J. Lesage, L. Litz: “Distributed identification of
concurrent discrete event systems for fault detection purposes”,
European Control Conference 2009, ECC 2009, Budapest
(Hungary), August 23-26 2009

[4] S. Klein, J.-J. Lesage, L. Litz, “Fault detection of Discrete Event
Systems using an identification approach”, 16th IFAC World
Congress, CDROM paper n°02643, 6 pages, Praha(CZ), July 4-8,
2005

[5] T. Moor, J. Raisch, and S. O’Young, “Supervisory control of hybrid
systems via l-complete approximations”, in Proc. of the IEE fourth
Workshop on Discrete Event Systems WODES’98, Cagliari, Italy,
August 1998, pp. 426-431

[6] J.Riordan, An Introduction to Combinatorial Analysis, New York:
Wiely, 1980

[7] Z. Michalewicz, D. B. Fogel: How to Solve It: Modern Heuristics,
New York, Springer-Verlag: 2000

