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Abstract—This paper proposes a data-driven method to 
determine concurrent parts in Discrete Event Systems (DES). 
The aim is to improve the results of black-box identification 
methods without considering any system information except of 
observed data. In order to allow an analysis of the collected 
data, the impact of concurrency on the exhibited system data is 
determined by two criteria. We propose to use an optimization 
algorithm that isolates concurrent parts of the system by 
minimizing concurrency expressed by the two proposed criteria 
within the determined subsystems. A lab-size application shows 
the potential of the method for real-world manufacturing 
systems. The aim is to deliver optimal identified models for fault 
detection and isolation.  

I. INTRODUCTION 

Increasing the dependability of modern industrial systems 
like manufacturing or production systems is a constant 
concern in the control community. Among others, fault 
detection and isolation (FDI) plays a key role to achieve 
sufficiently reliable systems and to reduce costly downtimes. 
Modern FDI-techniques are often model based. The idea is 
to compare an observed and a modeled system output in 
order to detect faults in the system. For systems that can be 
modeled by Discrete Event Systems (DES) the diagnoser-
approach is a very prominent example for the class of model-
based methods [1]. It uses models that explicitly contain 
faulty system behaviors. As an advantage, this approach is 
capable of giving guarantees concerning the diagnosabilty of 
a system. Since each fault that has to be detected must be 
explicitly modeled, drawbacks are the expensive model 
building process and the inability to detect faults that are not 
part of the model. An approach that tries to avoid these 
drawbacks is presented in [2]. In this approach a fault-free 
system model is used to detect and localize faults. Since the 
model does not contain any faulty system behavior, it is 
possible to obtain the model by identification. The fault 
detection policy of this approach is that each observed 
behavior that is not reproducible by the model is considered 
as a fault. Although diagnosability cannot be guaranteed in 
this approach it has proven to be useful for real-world 
applications like shown in [2].  
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If systems with a high degree of concurrency are 
considered in the identification approach, it can take very 
long to observe a sufficiently complete amount of data that 
yields an appropriate FDI-model. If the model is identified 
on an incomplete data basis, an unacceptable high number of 
false alerts occur during online monitoring [3]. In order to 
deal with an incomplete data base and to avoid false alerts, a 
distributed framework has been proposed in [3]. The main 
idea of this approach is to divide a given system into 
concurrent subsystems and to use a single model for each of 
these subsystems. In [3], appropriate subsystems have been 
defined in a heuristic way. In this paper, we propose an 
approach to automatically divide a system into concurrent 
subsystems using an optimization algorithm that reduces 
concurrency within each subsystem.  

The paper is structured as follows: in section II, the 
distributed framework of [3] is motivated and shortly 
explained. Section III analyses how concurrency is reflected 
in observed system data. The automatic choice of concurrent 
subsystems using an optimization approach is explained in 
section IV. The practical relevance of the proposed method 
is shown section in V. Section VI contains some concluding 
remarks and an outlook. 

II.  DISTRIBUTED IDENTIFICATION 

In this work we consider closed loop DES. The closed 
loop consists of a controller and a plant, which is a typical 
configuration for industrial production systems. The 
identification is based on controller I/O (input/output) 
vectors collected during p different system cycles.  

Definition 1 : The j-th I/O vector in the h-th of p system 
cycles is defined as 1( ) ( ( ), ..., ( ),h su j I j I j=  

1( ), ..., ( ))m hO j O j  with I1, .., Is and O1, .., Om 

{1,0}∈ denoting the considered inputs and outputs of the 

controller of the closed loop system. Inputs and outputs are 
referred to as “I/Os”.   

Definition 2 : If during the h-th system cycle, lh 
I/O vectors have been observed, the sequence is denoted as 

( , , ..., )σ (1) (2) ( )
h h hh hu u u l= . 

Assumption 1 : Each I/O vector is created by a new event 
such that ( ) ( 1) 1≠ + ∀ ≤ <

h h hu uj j j l  . 

This assures that two successive I/O vectors differ in at 
least one I/O value. If each observed I/O vector is considered 
as a letter of an alphabet we can define the set of words with 
length q observed up to the t-th of p different system cycles. 
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A word represents an observed I/O vector sequence.  
Definition 3 : The observed words of length q observed up 

to the t-th system cycle are denoted as 

( ) ( ) ( )( )
1

,
Obs

1 1

, 1 , ..., 1
il qt

q t
i i i

i j

W u j u j u j q
− +

= =

=
 

+ + − 
 
∪ ∪   

With this definition it is possible to describe the behavior 
of a system by the language built on the basis of the observed 
words. 

Definition 4 : The observed language of length n is 

,

1

n
n i p
Obs Obs

i

L W
=

=∪  with p denoting the number of observed 

system cycles. 
In this work, we assume that nObsL  has been observed 

during fault-free system cycles and thus is finite. Based on 
the observed language nObsL  it is possible to identify a 

monolithic automaton. The algorithm in [4] allows 
constructing an automaton on the basis of observed words of 
the parametric length k. The identified automaton is able to 
produce the observed language of the system and is k+1-
complete ( 1 1k k

Obs IdentL L+ +=  with 1k
IdentL +  denoting the language of 

the identified automaton) [5]. Since for real systems with a 
high degree of concurrency it is by experience not possible 
to observe all fault-free words (I/O vector sequences) within 
a reasonable time, the cardinality of the word set typically 
evolves like shown in Fig. 1. The solid line that represents a 
system with a low degree of concurrency converges to a 
stable level after a short time. The dashed line does not stop 
growing. This indicates that the system language has not yet 
been completely observed and that new words will occur 
when the observation is continued. If a k+1-complete 
automaton is identified on such an incomplete data base, it 
will not be capable of reproducing the expected new fault-
free I/O-vector sequences of length k+1 if they have not been 
observed before. This effect leads to false alerts using the 
fault detection policy that each non-reproducible behavior is 
considered as a fault.  
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Fig. 1: Evolution of the number of observed words of length n over system 
cycles h 

 

In order to avoid an unacceptably high number of false 
alerts, in [3] a distributed framework has been proposed. The 
idea is to divide a system in concurrent subsystems. For a 
properly chosen subsystem the observed language cardinality 
typically converges to a stable level within a short time due 
to the reduced concurrency in the subsystem. Hence, it is 
possible to identify a partial automaton for each subsystem 
that does not lead to false alerts when observing the 
according subsystem. In [3] it has been shown that there 

exist faults that cannot be detected by a single partial 
automaton. In order to detect faults that lead to a forbidden 
combined behavior of the partial automata, the framework 
depicted in Fig. 2 has been introduced. An upper structure 
consisting of the so called Permissive Observed Cross 
Product (POCP) and a given tolerance specification allows 
restricting the combined behavior of the partial automata 
such that even faults leading to a forbidden automata 
network behavior can be detected. Algorithms to construct 
the POCP and guidelines to design the tolerance 
specification are given in [3].  
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Fig. 2: Distributed framework from [3] 
 

In [3] the necessary system partitioning has been 
performed in a heuristic way. The I/Os of the I/O vector have 
been assigned to different subsystems considering the 
physical system structure. This approach is usually not 
possible if black-box identification is performed. An 
approximation of the number of possible partitions is given 
by the Stirling number of the second kind [6]: 

0

1
( , ) (-1) ( - )

!

n
i m

i

n
S m n n i

in =

 
=  

 
∑  with m denoting the 

number of I/Os and n denoting the number of non-empty 
partitions. In the case of 30 I/Os and three partitions (three 
subsystems and three identified partial automata), this leads 

to 142.06 10⋅  possible solutions. Only a small number of 
these solutions lead to subsystems with reduced concurrency 
which allows a complete observation of the according 
subsystem language in short time. Assigning I/Os to 
appropriate subsystems is an NP-complete combinatorial 
problem. To facilitate finding such a partitioning, the rest of 
the paper introduces an automatic way to assign I/Os to 
concurrent subsystems by a heuristic optimization technique.  

III.  MANIFESTATION OF CONCURRENCY IN THE OBSERVED 

SYSTEM LANGUAGE 

A. General considerations 

In section II it has been lined out that we are interested in 
finding subsystems with a low degree of concurrency in 
order to avoid false alerts using the identified models for 
FDI. The concurrency we are dealing with is strongly 



  

connected to the non-determinism of the physical plant in the 
considered closed loop DES. Due to temporal non-
determinism, a physical action in the plant does not always 
take exactly the same time to finish. If several actions are 
performed in a parallel way, this non-determinism leads to 
several possible combined outcomes: in one system cycle a 
given action can finish faster than another parallel action and 
vice versa. This leads to numerous possible evolutions. Since 
we do not explicitly consider the timed behavior, its 
variations are only of interest if several actions are 
performed in a parallel way, which is considered as a 
concurrent behavior. 

Since we want to spot concurrent behavior in the 
considered system using a black-box identification approach 
the only available information is the data that has been 
collected when observing different system evolutions. 
Hence, it must be analyzed how concurrency is reflected in 
the observed data. In the next two subsections, we present 
two phenomena that can be observed when analyzing the 
observed data and that are strongly related to concurrency. 

B. Language growth 

A first phenomenon that occurs due to concurrency has 
already been mentioned in section II. If a concurrent system 
is observed, the growth of the observed language cardinality 
is related to the degree of concurrency. Fig. 1 shows typical 
cardinality evolutions for systems with low and with high 
concurrency. The reason for the language growth can be seen 
in Fig. 3. If we represent the behavior of the concurrent 
system to be identified by a Petri net with two concurrent 
sequences there is only a limited number of possible 
evolutions to “move” the tokens through the net (left Petri 
net). If the system is represented by a Petri net with more 
parallel branches (right Petri net), then there are more 
possible system evolutions. Hence, it takes longer until the 
system language is completely observed which makes the 
cardinality converging to a stable level. 

 

 
Fig. 3: Sketches of Petri nets with different degrees of concurrency 

 

Following Definition 3 it is directly clear that 
, , 1−⊇n t n t

Obs ObsW W . Hence, if  , , 1| | | | 0−− >n t n t
Obs ObsW W  (word set 

observed up to cycle t is larger than the word set up to cycle 
t-1) then some new words that have not been seen before 
must have been observed in the t-th system cycle.  

C. Branching Degree 

The second phenomenon is related to the structure of an 
automaton identified on the basis of observed system data. 
To facilitate the understanding of this phenomenon we 
shortly review the monolithic identification procedure from 
[4]. Suppose the following three fault-free system evolutions 

have been observed.  
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The identification algorithm of [4] with k=1 basically 
consists of associating each I/O vector to an automaton state 
and to connect states containing I/O vectors that have been 
observed successively. The result is a non-deterministic 
autonomous automaton with output (NDAAO): 

Definition 5 : 0(NDAAO , , , , x )X r λ= Ω  with X  

denoting a finite set of states, Ω  the output alphabet, 

: 2r X → X  the non-deterministic transition relation, 
: Xλ →Ω  the output function and 0x  the initial state. 

The result of the monolithic identification can be seen in 
Fig. 4 on the left side. The automaton is able to reproduce 
each of the observed sequences. It can be seen that the initial 
state has three leaving transitions that are necessary to 
reproduce the different observed following behaviors. In the 
example we assume that the global system consists of two 
concurrent subsystems: The first subsystem consists of the 
first two I/Os of the I/O vector and the second system consist 
of the other two I/Os. Since the changes in value of I/Os 
belonging to different subsystems happen concurrently, three 
following behaviors of the first state are possible. In one 
following behavior the first subsystem leads to earlier I/O 
changes ( 1σ ). In the next case, the second subsystem evolves 

faster ( 2σ ) and in the third case the two systems evolve 

simultaneously ( 3σ ).  
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Fig. 4: Result of the monolithic and distributed identification 

 

If the I/Os of each single subsystem are considered 
separately, the identified partial automata are much simpler 
as depicted on the right side of Fig. 4. The global output of 
the partial automata can be calculated by combining the two 
partial outputs such that “-“-symbols in one partial 
automaton are overwritten by I/O values from the other 
partial automaton [3]. 

Initial states of the partial automata have only one leaving 
transition representing one following behavior. This is a 
result of the reduced concurrency in the single subsystems. 
This observation shows that an identified automaton reflects 
concurrency of the considered system by the number of 
direct following states in the automaton. More generally, the 
identification of a monolithic automaton can be seen as an 
approximation of the reachability graph of a Petri net 
representing the considered system. If a system has a low 



  

degree of concurrency, the reachability graph does not have 
many states with several leaving transitions. In the next 
section we give a criterion how this “branching degree” of an 
NDAAO can be quantified.  

IV.  DETERMINATION OF CONCURRENT SUBSYSTEMS USING 

AN OPTIMIZATION METHOD 

A. Optimization approach 

In section III it has been shown that concurrency has 
certain effects on the collected data or on models identified 
using this data. The idea of the optimization approach is to 
quantify these effects and to develop appropriate 
optimization criteria in order to find optimal subsystems that 
have a minimal degree of internal concurrency.  

As shown in section II, partitioning the controller I/Os into 
appropriate subsystems is a combinatorial problem. An 
optimization technique that is well suited for solving this 
class of problems is simulated annealing [7]. It is a 
metaheuristic optimization approach inspired by the 
annealing process in metallurgy and describes a possible way 
to treat NP-complete combinatorial problems in practice. 
Slow cooling in metallurgy leads to a crystal structure that 
has a low internal energy which is advantageous for material 
properties. The optimization algorithm tries to perform a 
similar “slow cooling” in order to find a solution with a 
minimal metaphorical energy (minimized optimization 
criterion). The algorithm is sketched in Fig. 5.  

 

procedure simulated annealing
begin

initialize T
select current solution yc at random

repeat
select a new solution ynew
if eval(yc)>eval(ynew)

then yc�ynew
else if random[0,1)<

then yc�ynew
T�T*coolingRate

until T<Tmin

( ) ( )c neweval y eval y
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Fig. 5: Structure of simulated annealing according to [7] 

 

It is necessary to parameterize the algorithm with the 
starting temperature T, the cooling rate and the minimum 
(stop) temperature Tmin. The algorithm must be adapted to 
our optimization problem in two points: First, the structure 
of a possible solution y must be defined. Second, a method to 
select a new solution must be given.  

Definition 6 : A solution y is a map that associates each 
I/O to one and only one of n subsystems : I/O [1, ]y n→ . 

With this definition it is assured that each I/O can only be 
associated to one subsystem. The algorithm to select a new 
solution based on the current solution yc is given in Fig. 6. 
First, the algorithm copies the current solution to ynew. Then 
it chooses m I/Os randomly. m is another parameter that must 
be given to the algorithm. The smaller m, the more similar 
the new solution ynew to the old solution is. To each of the 
chosen I/Os (consI/Os), the algorithm randomly assigns a 

new subsystem. In order to evaluate the quality of a solution, 
two optimization criteria are introduced in the next section. 

 

procedure select a new solution
ynew� yc
Choose m I/Os randomly � consI/Os
For each I/O in consI/Os:

repeat
ynew(I/O)=random[1,n]

until ynew(I/O)≠yc(I/O)

procedure select a new solution
ynew� yc
Choose m I/Os randomly � consI/Os
For each I/O in consI/Os:

repeat
ynew(I/O)=random[1,n]

until ynew(I/O)≠yc(I/O)

 
Fig. 6: Algorithm to choose a new solution 

B. Optimization criteria 

In order to develop appropriate optimization criteria, 
several definitions are necessary. First, the relation of 
subsystems, a solution y (Definition 6) and I/O vectors is 
defined.  

Definition 7 : The i-th subsystem isys  is based on partial 

I/O vectors , 1( ) ( ( ), ..., ( ),=
ih sys su j I j I j 1( ), ..., ( ))m hO j O j  

with I1,..,Is and O1,..,Om {1,0, }∈ −  where I/Os not belonging 

to the i-th subsystem ((I/O) ≠y i ) are assigned with “-“.  

Assumption 2 : Each partial I/O vector , ih sysu  is created by 

a new event in isys  such that , ,( ) ( 1)≠ +
i ih sys h sysu j u j . 

With Assumption 2 it is assured that two successive partial 
I/O vectors differ in at least one I/O value. 

The first optimization criterion  is a formalization of the 
language growth effect described in section III.B. It counts 
for each subsystem the newly observed words in each new 
system cycle after the first one and multiplies this number 
with the square root of the according cycle: 

, , 1
1 , ,

2

( ) (| | | |)−

∀ =
= −∑∑ i i

i

p
n t n t

Obs sys Obs sys
sys t

E y t W W  with ,
, i

n t
Obs sysW  

denoting the word set of length n up to the t-th system cycle 

of subsystem isys  (definition of ,
, i

n t
Obs sysW  is straight forward 

following Definition 3). If there is a high degree of 
concurrency in one of the subsystems isys , then the 

according language growth will be important and thus lead to 

high values of 1( )E y . The term t  was heuristically chosen 

and adds more weight to new words that occur at late system 
cycles in order to represent the fact that we want a fast 
convergence to stable language cardinality. 

The second optimization criterion analyses the structure 
of NDAAOs identified for the subsystems. It formalizes the 
branching degree introduced in section III.C. As explained in 
section III.C, the number of following states in the identified 
automaton depends on the concurrency of the considered 
system. We now define a measure to express this branching 
degree:  

Definition 8 : The branching degree BD of the identified 

isysNDAAO  of subsystem isys  is defined by 

0 if | ( ) | 1 
( )

| ( ) | 1 if | ( ) | 1 ∀ ∈

≤
=  − >
∑isys
x X

r x
BD NDAAO

r x r x
. 



  

It counts for each state of the considered NDAAO the 
leaving transitions. Only states with more than one leaving 
transition contribute to this measure since this represents 
possible concurrent behavior. In states with more leaving 
transitions, we subtract one from the number of transitions.  
This is done since one following transition in a state does not 
represent concurrency. In the example of Fig. 4, the 
monolithic model has a BD of 2 since only the first state 
contributes to the measure and has three leaving transitions. 
Each distributed model on the left side of Fig. 4 has a BD of 
0 since each state has at most one leaving transition.  

Note that the branching degree given in Definition 8 is an 
absolute measure and is not normalized to the size of the 
automaton. It only considers states that have several possible 
following behaviors due to a possible concurrency. 
Normalization to the size of the automaton (e.g. state space)  
could lead to a situation where the branching degree of two 
automata are different even if both automata contain the 
same number of states with more than one leaving transition 
and thus reflect the same degree of concurrency.  

An optimization criterion based on the branching degree 

can be given as 2( ) ( )
∀

= ∑ i

i

sys
sys

E y BD NDAAO  with 

isysNDAAO denoting the automaton identified with the 

algorithm of [4] for subsystem isys . The branching degree of 

the subsystem NDAAOs are summed up to get a measure for 
the concurrency of solution y.  

Note, it is possible to have BD>0 and thus 2( ) 0>E y  

although there is no concurrency in the system. If there are 
several “decisions” in the system (e.g. large OR small work 
piece), it is possible to have several following states of a 
given automaton state. Since we only want to minimize BD 
we can cope with BDmin>0. 

With the definition of the optimization criteria it is now 
possible to perform the optimization with the algorithm from 
Fig. 5. The function “eval” implements one of the proposed 
optimization criteria. In the case of the second criterion, an 
own NDAAO for each subsystem has to be identified before 
the branching degree can be determined. 

V. APPLICATION 

A. Case study 

The proposed method has been applied to a lab 
manufacturing system like shown in Fig. 7. It has 30 binary 
controller I/Os. During one production (or system) cycle the 
plant treats three work pieces. If the system is to be divided 
in subsystems, a heuristic solution is to group I/Os according 
to the three machine tools. Within the subsystems shown in 
Fig. 7 there are almost no concurrent actions. 62 system 
cycles have been observed. It could be seen that the system 
language of length 2 does not converge to a stable level [3]. 
Hence, the proposed distributed approach is to be used to 
identify appropriate models to monitor the systems without 

false alerts. In order to determine the subsystems based on 
the observed data, the proposed optimization approach is 
used. 

Subsystem 1 Subsystem 2 Subsystem 3Subsystem 1 Subsystem 2 Subsystem 3

 
Fig. 7: Considered lab-system with heuristically chosen subsystems 

B. Evaluation of the optimization results 

To demonstrate that the optimization approach leads to 
useful results for real systems, it is necessary to perform an 
evaluation. An evaluation is only possible if a “good” 
solution is already known like for the system from Fig. 7. 
The good solution is to be compared to the automatically 
generated ones. Of course, any information concerning good 
or bad solutions is not available in general. Here it is only 
used to demonstrate the performance of the method. To 
decide upon the quality of an automatically generated 
solution by comparing it to predefined “good” results, two 
similarity criteria are introduced that are necessary to 
compare an automatically generated and a given solution: 

1. Absolute number of I/Os that are shared by an 
automatically generated and a predefined subsystem 
(similarity criterion 1). 

We count I/Os that are shared by a predefined and an 
automatically generated subsystem. The higher this value is, 
the more similar both subsystems are. Since this criterion 
does not take into account the number of “wrong” I/Os in the 
subsystems, we introduce a second similarity criterion: 

2. Relative number of I/Os that are shared by an 
automatically generated and a predefined subsystem 
(similarity criterion 2). 

In this criterion we take the value from the first criterion 
and divide it by the number of I/Os in the predefined 
subsystem.  

TABLE 1: EXAMPLE OF THE EVALUATION CRITERIA 

0 (0%)2 (67%)1 (33%)III: 7, 8, 9

2 (50%)1 (25%)1 (25%)II: 3, 4, 5, 6

1 (50%)1 (50%)0 (0%)I: 1, 2

C

2, 4, 5

B

1, 3, 7, 8

A

6, 9

0 (0%)2 (67%)1 (33%)III: 7, 8, 9

2 (50%)1 (25%)1 (25%)II: 3, 4, 5, 6

1 (50%)1 (50%)0 (0%)I: 1, 2

C

2, 4, 5

B

1, 3, 7, 8

A

6, 9

Automatically generated 
subsystems

Predefined 
subsystems

 
Table 1 shows an example of the similarity criteria. It 

shows for example that in the predefined subsystem III there 
are three I/Os 7, 8 and 9 and in the automatically determined 
subsystem B there are four I/Os 1, 3, 7 and 8. The absolute 
number of I/Os that are shared by both subsystems is also 
given (2 in the case of III and B). Similarity criterion 2 is 
given in brackets (67% in the case of III and B).  

The two criteria are used to compare a set of predefined 
and automatically determined subsystems. For each 



  

automatically determined subsystem we take the maximum 
value of its column in the table. This assures that we 
compare it with the most similar predefined subsystem. 
Determining the maximum we first consider similarity 
criterion 1. If there are more cells with the same value, we 
decide upon similarity criterion 2. In the example we get the 
comparison pairs A�III, B�III and C�II. The predefined 
subsystem I is not compared to any automatically generated 
subsystem since each generated solution is more similar to 
another predefined one. The first similarity criterion of the 
complete setting is calculated by summing up all shared I/Os. 
For the example the subsystems A, B, C share 1 (A�III) 
plus 2 (B�III) plus 2 (C�II) I/Os equals to 5 I/Os with the 
according predefined subsystems. Hence the first similarity 
criterion for the setting in table 1 is 5. The second similarity 
criterion is determined by calculating the average of the 
similarity percentages. For the example we get 33% (A�III) 
plus 67% (B�III) plus 50% (C�II) divided by three equals 
50%. 

 Fig. 8 shows the results of an optimization run using the 
criterion “language growth” (E1 in section IV.B) that was 
parameterized to deliver three subsystems. The starting 
temperature for simulated annealing was 1000 and the 
cooling rate was determined such that the optimization stops 
after 1000 iterations. New solutions are determined with the 
algorithm in Fig. 6 with m=3. For the lab system such an 
optimization takes between 15 and 20 minutes on a normal 
desktop PC. For some automatically determined solutions 
the similarity criteria have been calculated in order to 
determine their distance to the predefined solution consisting 
of the three subsystems (tools) explained in section V.A. It 
can be seen that solutions with good (small) values for E1 are 
very similar to the predefined solution. The optimization 
delivers a solution consisting of three subsystems with 25 
from 30 I/Os correctly assigned (more than 83% similarity). 
For the optimization only 30 of 62 system cycles have been 
used. In none of the automatically determined subsystems a 
new word is observed when considering the remaining 32 
system cycles for validation. Hence the subsystems are 
suitable to be used in the distributed framework to monitor 
the system.  
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Fig. 8: Optimization results for E1(y) (language growth) 

 

Fig. 9 shows results using the second optimization 

criterion (branching degree, starting temperature 1000, 1000 
iterations, m=3). The optimization takes between 20 and 25 
minutes since the identification of automata takes longer than 
the determination of the language growth. The best solution 
is to more than 93% similar to the predefined one. Again, 
only 30 of 62 system cycles have been used. The validation 
using the remaining collected cycles showed that the 
automatically determined solution is also appropriate for 
online-monitoring of the lab system. 
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Fig. 9: Optimization results for E2(y) (branching degree) 

 

With the best automatically determined solutions we 
performed tests for the lab-system. It showed that false alerts 
did not occur. We were also able to detect intentionally built-
in faults using the approach from [3]. Faults at I/Os that have 
been assigned to a “wrong” subsystem often led to fault 
detection by the upper structure of Fig. 2.  

VI.  CONCLUSIONS 

An approach to divide a DES into concurrent subsystems 
based on observed data has been proposed. One of the 
parameters for the optimization is the number of subsystems 
that are to be build. Current work aims at determining this 
number based on observed data and online calculation 
constraints from the FDI approach in [3]. 
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