
HAL Id: hal-00525505
https://hal.science/hal-00525505

Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kolmogorov Complexity in perspective. Part II:
Classification, Information Processing and Duality

Marie Ferbus-Zanda

To cite this version:
Marie Ferbus-Zanda. Kolmogorov Complexity in perspective. Part II: Classification, Information
Processing and Duality. Synthese, 2010, pp.00. �hal-00525505�

https://hal.science/hal-00525505
https://hal.archives-ouvertes.fr

Kolmogorov Complexity in
perspective

Part II: Classification, Information

Processing and Duality∗

Marie Ferbus-Zanda

LIAFA, CNRS & Université Paris Diderot - Paris 7

Case 7014

75205 Paris Cedex 13 France

Marie.Ferbus@liafa.jussieu.fr

Abstract

We survey diverse approaches to the notion of information: from Shan-
non entropy to Kolmogorov complexity. Two of the main applications of
Kolmogorov complexity are presented: randomness and classification.
The survey is divided in two parts published in a same volume.
Part II is dedicated to the relation between logic and information sys-
tem, within the scope of Kolmogorov algorithmic information theory. We
present a recent application of Kolmogorov complexity: classification us-
ing compression, an idea with provocative implementation by authors such
as Bennett, Vitányi and Cilibrasi. This stresses how Kolmogorov complex-
ity, besides being a foundation to randomness, is also related to classifica-
tion. Another approach to classification is also considered: the so-called
“Google classification”. It uses another original and attractive idea which
is connected to the classification using compression and to Kolmogorov
complexity from a conceptual point of view. We present and unify these
different approaches to classification in terms of Bottom-Up versus Top-
Down operational modes, of which we point the fundamental principles
and the underlying duality. We look at the way these two dual modes
are used in different approaches to information system, particularly the
relational model for database introduced by Codd in the 70’s. This allows
to point out diverse forms of a fundamental duality. These operational
modes are also reinterpreted in the context of the comprehension schema
of axiomatic set theory ZF. This leads us to develop how Kolmogorov’s
complexity is linked to intensionality, abstraction, classification and infor-
mation system.

∗Published in Synthese, 2008-2010. A French version is also available on the Web.

1

Keywords: Logic, Computer Science, Kolmogorov Complexity, Algorith-
mic Information Theory, Compression, Classification, Information Sys-
tem, Database, Bottom-Up versus Top-Down Approach, Intensionality,
Abstraction.

Contents

1 Algorithmic information theory and classification 3

1.1 Definition and representation of the family of objects we want to classify 3
1.2 Comparing the common information content . 4
1.3 Classification . 5
1.4 Normalization . 5
1.5 Compression . 6

2 Classification via compression 6

2.1 The normalized information distance (NID) . 6
2.2 The normalized compression distance (NCD) 8

3 The Google classification 9

3.1 The normalized Google distance (NGD) . 10
3.2 Discussing the method . 11

4 Classification, Bottom-Up versus Top-Down approaches and duality 13

4.1 Bottom-Up versus Top-Down modes . 13
4.2 Information System and Database: a formal approach 19
4.3 Database and bottom-up versus top-down duality 25
4.4 Classification and bottom-up versus top-down duality 27

5 Set theory interpretation of Bottom-Up versus Top-Down duality 27

5.1 The set theoretical comprehension schema . 28
5.2 The probabilistic comprehension schema . 29

6 Information, intensionality , abstraction and Kolmogorov complexity 30

6.1 Classification, database, intensionality, abstraction, semantics and algorithmic
information theory . 30

6.2 Kolmogorov complexity and information theories, semiotics 33
6.3 Algorithmic information theory, representation and abstraction 36

7 Conclusion 37

2

Note. All notations and definitions relative to Kolmogorov complexity are
introduced in Part I 1.

1 Algorithmic information theory and classifi-

cation

Using Andrei Nikolaevich Kolmogorov complexity, striking results have been
obtained on the problem of classification for quite diverse families of objects:
let them be literary texts, music pieces, examination scripts (lax supervised) or,
at a different level, natural languages and natural species (phylogeny).

The authors, mainly Charles Bennett, Paul Vitányi, Rudi Cilibrasi2 have worked
out refined methods which are along the following lines.

1.1 Definition and representation of the family of objects

we want to classify

First we have to define a specific family of objects which we want to classify.

For example, a set of Russian literary texts that we want to group by authors.
In this simple case, all texts are written in their original Russian language.

Another instance, music. In that case, a common translation is required, i.e.,
a normalization of music pieces (representing or, in other words, interpreting
musical partitions) which we want to group by composer. This common repre-
sentation (which has to be tailored for computer programs) is necessary in order
to be able to compare these diverse music pieces. Let us cite Delahaye [14]:

≪ Researchers considered 36 music pieces coded as MIDI (Musical
Instrumental Digital Interface) files. They normalized them by pro-
ducing piano versions and considering them as data files consisting
of long lists of bytes3. Without such a normalization, which is a real
informations extraction, nothing would work [. . .] ≫

An instance at a different level: the 52 main European languages. In that
case one has to choose a canonical object (here a text) and its representations
(here translations) in each one of the different languages (i.e. corpus) that we
consider. For instance, the Universal Declaration of Human Rights and its
translations in these languages, an example which was a basic test for Vitányi’s
method. As concerns natural species (another example developed by Vitányi),

1Ferbus-Zanda M. & Grigorieff S. Kolmogorov Complexity in perspective. Part I: Infor-
mation Theory and Randomness. To appear in Synthese, 2010.
One can also consult [22], [19], [13] et [31] and the pioneer works of Andrei Nikolaevich Kol-
mogorov [28], Gregory Chaitin [3, 5] and Ray Solomonoff [33, 34].

2Jean-Paul Delahaye’s surveys [14, 15] give a clear introduction to these works (let us
acknowledge that they were very helpful for us).

3A byte is a sequence of 8 binary digits. It can also be seen as a number between 0 and
255.

3

the canonical object will be a DNA sequence.

What has to be done is to select, define and normalize a family of objects or a
corpus that we want to classify.

Normalization of a family of objects is a complex problem, and it may be also
the case for the definition of such a family. Roughly speaking, one can partition
the types of considered objects in different classes :

• Well defined families of objects to be classified. Normalization of these
objects (rather of their representations) can then be done without loss of
information. This is the case of literary texts.

• The family to be classified can be finite though unknown, possibly without
a priori bound on its size. Such is the case with informations on the Web
(cf. classification using Google, section 3).

• There are some cases where such a normalization is difficult to work out
if not impossible. It may be the case for painting, drawing, photography,
art-house cinema, etc.

1.2 Comparing the common information content

Finally, one gets a family of words in the same alphabet which represent the
objects that we want to compare and measure the common information con-
tent4 (observe that we can reduce to a binary alphabet). Our goal is to compare
and, if possible, to measure the common information content.

This comparison is done by defining a distance for the pairs of such (binary)
words with the following intuition:

The more common information is shared by two words, the closer
they are and the shorter is their distance. Conversely, the less com-
mon information existing between two words, the more they are
independent and non correlated, and greater is their distance.
Two identical words have a null distance. Two totally independent
words (for example, words representing two events as 100 random
coin tosses) have a distance of about 1 (for a normalized distance
bounded by 1).

Observe that the authors, in their approach of classification of information,
follow the ideas pioneered by Claude Shannon and Kolmogorov to define a
quantitative measure of information content of words, i.e. a measure of their
randomness (in exactly the same way as a volume or a surface gets a numerical
measure).

4The notion of information content of an object is detailed in Part I. According to Kol-
mogorov, this is, by definition, the algorithmic complexity of that object.

4

1.3 Classification

We now have to associate a classification to the objects or corpus defined in
section 1.1 using the numerical measures based on the distances introduced in
section 1.2. This step is presently the least formally defined. The authors give
representations of the obtained classifications using tables, trees, graphs, etc.

This is indeed more a visualization, i.e. a graphic representation, of the ob-
tained classification than a formal classification. Here the authors have no pow-
erful mathematical framework such as the relational model for databases elab-
orated by Edgar F. Codd in the 70’s [10, 11] and its (recent) extension to object
database with trees. Codd’s approach is currently one of the sole mathematical
formal approaches (if not the only one) to the notion of information structural-
ization. In this way, one can say that structuring a class of informations or
(representations of) objects (from the “real world” as computer scientists call
it) amounts to a relational database which is itself a perfectly defined math-
ematical object. Moreover one can question this database and extract “new”
informations via queries which can be written in a formal language (namely
Codd’s relational algebra). Also, notice that this extremely original theoretical
approach is the one which is implemented in all database softwares since the
80’s and is used everywhere there is some mention of databases.

Consequently, the question is how are we to interpret in a formal way tables
or trees in classification via compression and more particularly how are we to
formally extract informations from this classification?

Though valuable, the classification obtained by this method (of classification
via compression) is rudimentary and non formal. This is somewhat analogous,
for instance, to the classification of words in a dictionary of synonyms. We
face a complex problem on which we shall return in section 4. Nevertheless,
Vitányi & al. obtained by these methods a classification tree for the 52 Eu-
ropean languages which is the one revealed by linguists, a remarkable success.
They also obtained phylogenetic trees classifying natural species which are in
accordance with those obtained by paleontologists. These trees represent par-
enthood relations between natural species and are obtained via DNA sequence
comparisons.

1.4 Normalization

An important problem remains when using a distance as in section 1.3. To
obtain a classification, we have to consider the amount of information contained
in the considered objects. Let us cite Cilibrasi [7]:

≪ Large objects (in the sense of long strings) that differ by a tiny
part are intuitively closer than tiny objects that differ by the same
amount. For example, two whole mitochondrial genomes of 18, 000
bases that differ by 9, 000 are very different, while two whole nuclear
genomes of 3 × 109 bases that differ by only 9, 000 bases are very
similar. ≫

5

As we shall see later, this problem is relatively easy to solve using a normaliza-
tion of distances. Notice that this is a different way of normalization that the
one proposed in section 1.1.

1.5 Compression

Finally, all these methods rely on Kolmogorov complexity which is, as we know,
a non computable function (cf. for example [22]).

The remarkable idea introduced by Vitányi is the following:

• Consider the Kolmogorov complexity of an object as the ultimate, ideal
and optimal value of the compression of the representation of that object.

• Compute approximations of this ideal compression using usual efficient
compression algorithms, implemented with compressors such as gzip, bzip2,
PPM, etc. which are of common use with computers.

Observe that the quality and fastness of such compressors is largely due to heavy
use of statistical tools. For example, PPM (Prediction by Partial Matching)
uses a pleasing mix of statistical5 models arranged by trees, suffix trees or suffix
arrays.

We remark that the efficiency of these tools is of course due to several dozens
of years of research in data compression. And as time goes on, they improve
and better approximate Kolmogorov complexity. Replacing the “pure” but non
computable Kolmogorov complexity by a banal compression algorithm such as
gzip is quite a daring step taken by Vitányi.

2 Classification via compression

2.1 The normalized information distance (NID)

We now formalize the notions described above. The basic idea is to measure
the information content shared by two binary words representing some objects
in a family we want to classify.

The first such tentative goes back to the 90’s [2]: Bennett and al. define a notion
of information distance between two words x, y as the size of the shortest
program which maps x to y and y to x. This notion relies on the idea of
reversible computation. A possible formal definition for such a distance is

ID’ (x, y) = least |p| such that U(p, x) = y and U(p, y) = x

where U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is optimal for the conditional complexity
K(|) (cf. Part I).
We shall mainly work with the following alternative definition:

ID (x, y) = max{K(x|y),K(y|x)}

5We come back in section 4 below on information processing with statistics.

6

The intuition for these definitions is that the shortest program which computes
x from y and y from x takes into account all similarities between x and y.

Observe that the two definitions do not coincide (even up to logarithmic terms)
but lead to similar developments and efficient applications.

Note. In the definition of ID, we can consider K to be plain Kolmogorov
complexity or its prefix version (denoted H below). In fact, this does not matter
for a simple reason: all properties involving this distance will be true up to
a O(log(|x|), log(|y|)) term and the difference between K(z|t) and H(z|t) is
bounded by 2 log(|z|). For conceptual simplicity, we stick to plain Kolmogorov
complexity.

ID’ and ID satisfy the axioms of a distance up to a logarithmic term.

The strict axioms for a distance d are






d(x, x) = 0 (identity)
d(x, y) = d(y, x) (symmetry)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Theorem.
The up to a log term distance axioms which are satisfied by ID’ and ID are
as follows:







d(x, x) = O(1) (1)
d(x, y) = d(y, x) (2)
d(x, z) ≤ d(x, y) + d(y, z) +O(log(d(x, y) + d(y, z))) (3)

Proof. We only treat the case of ID. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

be such that f(p, x) = x for all p, x. The invariance theorem insures that
K(x|x) ≤ Kf (x|x) + O(1). Now, taking p to be the empty word, we see
that Kf (x|x) = 0. Thus, ID(x, x) = O(1).
Equality ID(x, y) = ID(y, x) is obvious.
Let now p, p′, q, q′ be shortest programs such that U(p, y) = x, U(p′, x) =
y, U(q, z) = y, U(q′, y) = z. Thus, K(x|y) = |p|, K(y|x) = |p′|, K(y|z) =
|q|, K(z|y) = |q′|. Consider the injective computable function 〈 〉 :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ (cf. Proposition 1.6 in Part I) which is such
that |〈r, s〉| = |r|+ |s| +O(log |r|). Let ϕ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be
such that ϕ(〈r, s〉, x) = U(s, U(r, x)). Then

ϕ(〈q, p〉, z) = U(p, U(q, z)) = U(p, y) = x

ϕ(〈p′, q′〉, x) = U(q′, U(p′, x)) = U(q′, y) = z

so that, applying the invariance theorem, we get

K(x|z) ≤ Kϕ(x|z) +O(1) ≤ |〈q, p〉|+O(1)
= |q|+ |p|+O(log(|q|)) = K(y|z) +K(x|y) +O(log(K(y|z)))

7

and, similarly, K(z|x) ≤ K(y|x) +K(z|y) +O(log(K(z|y))). Thus,

max(K(x|z),K(z|x)) ≤ max(K(y|z) +K(x|y) +O(log(K(y|z))),

K(y|x) +K(z|y) +O(log(K(z|y))))

≤ max(K(x|y),K(y|x)) + max(K(y|z),K(z|y))

+O(log(max(K(y|z),K(z|y))))

Which means ID(x, z) ≤ ID(x, y) + ID(y, z) +O(log(ID(y, z))), a slightly
stronger result than (3).

It turns out that such approximations of the axioms are enough for the devel-
opment of the theory.
To avoid scale distortion, as said in section 1.4, distance ID is normalized to
NID (normalized information distance) as follows:

NID (x, y) =
ID (x, y)

max(K(x),K(y))

The remaining problem is that this distance is not computable since K is not.
Here comes Vitányi’s daring idea:

Consider NID as an ideal distance which is to be approximated by
replacing the Kolmogorov function K by computable approxima-
tions obtained via compression algorithms.

2.2 The normalized compression distance (NCD)

The approximation of K(x) by C(x) where Γ is a compressor6, does not suffice.
We also have to approximate the conditional Kolmogorov complexity K(x|y).
Vitanyi chooses the following approximation:

Γ(y|x) = Γ(xy)− Γ(x)

The authors explain as follows their intuition:

To compress the word xy (x concatenated to y)

• The compressor first compresses x.

• Then it compresses y but skips all information from y which was already
in x.

Thus, the output is not a compression of y but a compression of y with all x
information removed, i.e. this output is a conditional compression of y knowing
x.

Now, the assumption that in the compression of the word xy the compressor
first compresses x is questionable: how does the compressor recovers x in xy?

6A formal definition of compressors is given in Part I.

8

One can argue positively in case x and y are random (i.e. incompressible) and
in trivial case x = y. And between these two extreme cases? But it works. The
miracle of modeling? Or something not completely understood?

With this approximation, plus the assumption that Γ(xy) = Γ(yx) (also ques-
tionable: it depends on the used compressor) we get the following approximation
of NID, called the normalized compression distance, NCD :

NCD (x, y) =
max (Γ(x|y) , Γ(y|x))

max (Γ(x) , Γ(y))

=
max (Γ(yx)− Γ(y) , Γ(xy)− Γ(x))

max (Γ(x) , Γ(y))

=
Γ(xy)−min (Γ(x) , Γ(y))

max (Γ(x) , Γ(y))

Remark that clustering according to NCD and, more generally, classification
via compression, is a black box 7 as noticed by Delahaye [15]: words are grouped
together according to features that are not explicitly known to us except if we
had already a previous idea. Moreover, there is no reasonable hope that the
analysis of the computation done by the compressor gives some light on the
obtained clusters.

For example, what makes a text by Tolstoi so characteristic? What differen-
tiates the styles of Tolstoi and Dostoievski? But it works, Russian texts are
grouped by authors by a compressor which ignores everything about Russian
literature. . .

When dealing with some classification obtained by compression, one should
have some idea about this classification: this is semantics whereas the compres-
sor is purely syntactical and does not “understand” anything”. Thus one cannot
hope some help in understanding (interpretation) of the obtained classification
(cf. section 4). This is very much as with machines which, given some formal
deduction system, are able to prove quite complex statements. But these theo-
rems are proved with no explicit semantical idea, how are we to interpret them?
No hope that the machine gives any hint, at least in the present context.

3 The Google classification

Though stricto sensu, it does not use Kolmogorov complexity, we now present
another recent approach by Vitányi & Cilibrasi [9] to classification which leads
to a very performing tool.

7 The notion of black box is a scientific concept introduced by Norbert Wiener in 1948:
Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. The
Technology Press, 1948 & 2nd Ed. The MIT Press, 1965. This concept is one of the fun-
damental principles of Cybernetics. It is issued from the multidisciplinary exchanges during
the Macy conferences which were held in New-York, 1942–1953. Indeed, the emergence of
cybernetics and information theory owes much to these conferences.

9

3.1 The normalized Google distance (NGD)

This quite original method is based on the huge data mass, constituted by the
Web and which is accessible with search engines as Google. They allow for basic
queries using a simple keyword or conjunction of keywords. Observe that the
Web (the World Wide Web) is not a formal database: it is merely a crude data
bank, in fact a (gigantic) informal information system since data on the Web
are not structured as data in relational database. It has a rudimentary form of
structuralization based on graphs and graphical user interfaces. Nevertheless, it
is endowed with an object-oriented programming language, namely, Java. What
is remarkable is that there exists a norm for this programming language and,
moreover, this language is Turing-complete (cf. section 4.2). This can explain
the success (and fashion) of Java and of the object approach which is also largely
due to the success of the Web.

Citing Alberto Evangelista et Bjorn Kjos-Hanssen [20], the idea of the method
is as follows:

≪ When the Google search engine is used to search for the word x,
Google displays the number of hits that word x has. The ratio of
this number to the total number of Web pages indexed by Google
represents the probability that word x appears on a Web page [...]
If word y has a higher conditional probability to appear on a Web
page, given that word x also appears on that Web page, than it does
by itself, then it can be concluded that words x and y are related. ≫

Let us cite an example from Cilibrasi and Vitany [8], which we complete with up-
dated figures8. The searches for the index term “horse”, “rider” and “molecule”
respectively return 156, 62.2 and 45.6 million hits. Searches for pairs of words
“horse rider” and “horse molecule” respectively return 2.66 and 1.52 million
hits. These figures stress a stronger relation between the words “horse” and
“rider” than between “horse” and “molecule”.

Another example with famous paintings: “Le déjeuner sur l’Herbe”,“Le Moulin
de la Galette” and “La Joconde”. Let refer them by a, b, c. Google searches
for a, b, c respectively give 446 000, 278 000 and 1 310 000 hits. As for the
searches for the conjunctions a+b, a+c and b+c, they respectively give 13 700,
888 and 603 hits. Clearly, Jean Renoir’s paintings are more often cited together
than each one is with Leonardo da Vinci’s paintings.
In this way, the method regroups paintings by artists, using what is said about
these paintings on the Web. But this does not associate the painters to groups
of paintings (we have to add them “by hand”).

Formally, Cilibrasi and Vitany [8, 9] define the normalized Google distance as
follows:

NGD (x, y) =
max(log Λ(x), log Λ(y))− log Λ(x, y)

logΥ−min(log Λ(x), log Λ(y))

8Point 4, section 3.2 relativizes the obtained results.

10

where Λ(z1, ...zn) is the number of hits for the conjunctive query z1 ∧ ... ∧ zn
(which is z1 ... zn with Google; If n = 1, Λ(z) is the total number of hits for the
query z). Υ is the total number of Web pages that Google indexes.

3.2 Discussing the method

Let us cite some points relative to the use of such a classification method (the
list is not exhaustive):

1) The number of objects in a future classification and that of canonical repre-
sentatives of the different corpora is not chosen in advance nor even boundable
in advance and it is constantly moving. This dynamical and uncontrolled fea-
ture of a definition of a family is a totally new experience, at least for a formal
approach of classification.

2) Domains a priori completely rebel to classification such as the pictorial do-
main a priori no normalization of paintings being possible or if it is this is not
obvious in the present context can now be easily considered. This is also the
case (and for the same reasons) for sculpture, architecture, photography, art-
house cinema, etc. This is so because we are no more dealing with the works
themselves but with a discourse about them (which is the one on the Web). This
speech depends on a “real” language: a natural language or a formal language.
Notice that the notion of “pictorial language” remains a metaphor as long as we
consider that infra verbal communication is not a language in the usual sense.
The discourse which is considered by Google is the one of the keywords and
relations between them, these keywords coming from queries proposed for the
NGD and appearing in the texts of the users of the Web.

Notice that there are some works which can be used for an algorithmic approach
(possibly a normalization) of pictural pieces, art-house films, etc. For instance,
the French psychoanalyst Murielle Gagnebin elaborated a theory of esthetics
and creation, based on psychoanalysis and philosophy. Her meta psychological
model is quite efficient to point out the fundamental psychical mechanisms in-
volved in art pieces. And this is done from the art pieces themselves, excluding
any discursive consideration on these art pieces or on the artists Such a model
could much probably be implemented as an expert system.

3) However, there is a big limitation to the method, namely that one which is
called: the closed world assumption. That can be interpreted as follow: the
world according to Google 9, information according to Google, etc.

If Google finds something, how can one check its pertinence. Else, what does it
mean? How can we define (in a general manner) a notion of pertinence for the
informations found by Google? Sole certainty, that of uncertainty! Moreover,
we notice that when failing to get hits with several keywords, we give up the
original query and modify (we change its semantics) it up to the point Google

9Irving J. The World According to Garp. Modern Library, 1978.

11

gives some “pertinent” answers. That sort of failure is similar to the use of nega-
tion in the Prolog programming language (called negation as failure), which is
much weaker than classical negation and which is connected to the closed world
assumption for databases.

When failing to get hits, it is reasonable to give up the query and accordingly
consider the related conjunction as meaningless. However, one should keep in
mind that this is relative to the closed, and relatively small, world of data on
the Web, the sole world accessible to Google. Also one has not to underestimate
the changing aspect of the informations available on the Web. When succeeding
with a query, the risk is to stop on this succeeding query and

• Forget that previous queries have been tried and have failed.

• Omit going on with some other queries which could possibly lead to more
pertinent answers.

• Given a query, the answers obtained from Google are those found at a given
moment in a kind of snapshot of the Web. But such an instantaneous snap-
shot betrays what is the essence of the Web: to be a continuously moving
information system. All the updates (insertions, deletions, corrections,
etc.) are done in a massively parallel context since Google uses about
700 000 computers as servers! Thus, Google answers to a query are not
at all final answers nor do they constitute an absolute answer. And this
is in contrast with the perfect determinism we are used when computer
programs are run (in this way, Prolog is considerably more “deterministic”
than Google) or with databases (when they are well written...) Also, the
diverse answers given by Google may contradict one another, depending
on the sites Google retained. In particular, one is tempted to stop when
a site is found that gives an answer which seems convenient (indeed, this
is what we do in most cases).

4) So we see some difficulties emerging with the theoretical approach to how
Google deals with information from the Web (and the same for any browser).
For such a reflection, we have chosen an idealistic perspective where Google
searches according to scientific criteria or at least with some transparency (in
particular, on howWeb pages are indexed, or even how many are really indexed).
However let us mention that there are some controversies about the indexing
and consequently on exactness of the results found by Google, in particular,
about the number of occurrences of a given word of all existing Web pages
(even if not dealing with the content of these pages). Indeed, some queries lead
to very surprising results: “Googlean logic” is quite strange (when compared
with Boolean logic). This is shown in a very striking (and completely scientific)
manner by Jean Véronis in his blog10.

10Véronis J. Web : Google perd la boole. (Transl: Web: Googlean logic.) Blog. January
19, 2005 from http://aixtal.blogspot.com/2005/01/web-google-perd-la-boole.html .
See also: http://aixtal.blogspot.com/2005/02/web-le-mystre-des-pages-manquantes-de.html
and http://aixtal.blogspot.com/2005/03/ google-5-milliards-de-sont-partis-en.html , 2005.

12

A highly important task still to be done is to formalize the notion of information
on the Web and the relations ruling the data it contains, as it has been done by
Codd with the relational model for databases in the 70’s. Previous to Codd’s
work, organizing and structuring data and information in a computer and their
accessibility via the notion of query was underlaid by no solid mathematical
foundation and was resting on technical tricks. This is still the case for the data
on the Web. This remarkable innovative approach via Google search is still in
its infancy.

In the next sections, we consider some formalized notions together with not yet
formalized ideas – such as those pointed out in 1.3 – Ongoing work in progress
and some papers are in preparation11.

4 Classification, Bottom-Up versus Top-Down

approaches and duality

4.1 Bottom-Up versus Top-Down modes

These approaches to classification via compression and Google search (relative
to information appearing on the Web in the second case), are incredibly origi-
nal and present a huge interest. With the phenomenal expansion of computer
science, nets and the Web, information has a kind of new status. So that these
approaches (which are indeed based on what they are able to make explicit)
help us to grasp this entirely new status of information as it is now with such a
world of machines.

Whereas classification via the relational model for databases has a neat for-
malization, we have stressed above how difficult it is to formally define the
classification obtained by compression or via Google. Of course, one could base
a such formalization on trees and graphs. But with such structures, the way in-
formation is recovered is rather poorly formalized. This is in fact what happens
with the organization of files in an operating system since none of them uses
any database (let it be Unix, Linux, MacOs, Windows and their variants).

It seems to us that one should reconsider these different approaches to the no-
tion of classification in terms of two fundamental modes to define mathematical
and computer science objects which are also found in the execution of computer
programs. These two main approaches to define mathematical and computer
science objects are:

• Iterative definitions (based on set theoretical union)

• Inductive (or recursive) definitions (based on set theoretical intersection).

For instance, one can define propositional formulas, terms and first-order logic
formulas following any one of these two ways.

11In particular [25], [26] et Ferbus-Zanda M. Logic, Information System and Metamorphosis
of a Fundamental Duality. In preparation.

13

Recall that Stephen Kleene’s presentation12 of partial recursive functions is
based on three (meta) operations: composition , primitive recursion and mini-
mization.

• Iterative definitions are connected to minimization (and to the notion of
successor). We can describe these type of definitions as “Bottom-Up ”
characterizations.

• Inductive definitions are connected to primitive recursion (and to the no-
tion of predecessor). We can describe these type of definitions as “Top-
Down ” characterizations.

Notice that composition is related to both characterizations, the bottom-up and
top-down ones. We gave, in Part I, formalizations of randomness for infinite ob-
jects which follow these two bottom-up and top-down approaches (cf. Part I,
section 5.1 and 5.2). These two modes are also found in the execution of com-
puter programs:

• Execution in the iterative mode is called Bottom-Up .

• Execution in the recursive mode is called Top-Down .

This last mode requires the use of a stack which goes on growing and decreasing
and into which results of intermediate computations are pushed until getting to
the “basic cases”, i.e. the initial steps of the inductive definition of the program
which is executed. To execute an iterative program, all data necessary for its
execution are at disposal without need of any stack. From the computer scientist
point of view, these two execution modes are really far apart. Notice that the
execution mode (iterative or recursive) follows the definition mode (iterative or
recursive) of the program to be executed. Nevertheless, in some cases, recursive
programs may be executed in an iterative way avoiding any stack13.

In the same way, one observes that there are two modes – let us also call them
Bottom-Up and Top-Down – that are used in the approach to classification of
information and/or objects (of the real world) which are formally represented
as words or more generally as texts14 or even as sets of words, in some alphabet
(which can, as usual, be supposed to be binary).

12Kleene formally and completely characterizes the notion of recursive function (also called
computable function), by adding the minimization schema (1936) to the composition and
recursion schemas – these two last schemas characterize the primitive recursive functions
which constitute a proper subclass of the class of computable functions: the Ackermann
function (1928) is computable but not primitive recursive. From a programming point of
view, the minimization schema corresponds to the while loop (while F(x) do P where F(x)

is a Boolean valued property and P is a program). Cf. also Note 23 or the book by Shoenfield J.
Recursion theory, Lectures Notes in Logic, (new edition) 2001.

13This is the case for tail-recursion definitions. In some programming languages such as
LISP such tail-recursion programs are generally executed (when the programs executor is well
written) in an iterative way. Tail-recursion programs represent a limit case between iterative
programs and recursive programs.

14Depending on how much abstraction is wanted (or how much refinement is wanted),
a text will be represented by a binary word (the blank spaces separating words being also

14

• In the Bottom-Up mode, one enters into information details. Otherwise
said, one accesses the content of texts, i.e. the words representing the
diverse informations and/or objects that one wants to classify (and the
meaning of these words and/or texts). Texts, families of words, etc. are
grasped from the inside and their meaning is essential.

• In the Top-Down mode, one does not access the content of texts in the
above way. Texts are, in fact, handled from the outside, that is “from the
top and down” 15. To say things otherwise, one uses a kind of “oracle” to
grasp texts and families of words, i.e. means that are exterior to the the
understanding of text and the content of words.

Let us illustrate this with an example: the use of keywords to structure families
of texts. One then uses both bottom-up and top-down modes to classify texts
in the following way:

1) It is usual to follow a bottom-up approach in the choice of keywords. Par-
ticular words in texts are chosen in consideration of the content of texts and
their meaning and in order to facilitate future searches. More precisely, some
words will be considered as keywords and will be declared as. This is typically
the case with scientific papers where keywords are chosen by the author, the
journal editor, the librarian, etc. in view of future classification. Of course, this
supposes that the texts have already been read (and understood).

Observe that translating a text into a natural language to another one (as, for
example, this paper from French to English) requires such a reading and (sub-
tle) understanding of the text16.

One can also choose keywords for a text using totally different criteria. For
instance, rather than reading the text itself, one can read and understand an
outline or the table of contents and this is also a bottom-up mode. One can also
look at an index (if it exists some): a limit case which follows a top-down mode.
Indeed, no understanding of the words is required to select keywords (though,
of course, it does not harm to understand them), one only consider which words
are mentioned in the index and their relative importance (which a good index
makes clear). Without index, one can also count occurrences of words in a text:
this is precisely what Google does in its searches. In practice, both bottom-up
and top-down modes are often used together (mix mode).

encoded as special characters) or by a sequence of binary strings (each word in the text being
represented by a string in the sequence). It is also possible to consider sequences or sets of
texts and to mix such sequences and/or sets In this paper, we mostly consider encodings of
texts with binary words (in particular, for the examples) and not sequences of binary words,
and we consider sets of such texts.

15It is one way of seeing things! The one reflected by the Anglo-Saxon terminology ”top-
down”. What is essential is that texts are apprehended from the outside, in opposition to
apprehension from the inside.

16With a purely syntactic automatic translator, such as the one in Google, one can get
results like the following one: “Alonzo Church” translated as “Église d’Alonzo” (i.e. church
in Alonzo)!

15

Whatever method is chosen, the choice of keywords generally assumes (though
it is not always the case) a preliminary knowledge or some general idea of the
wanted classification for which the keywords are chosen. This knowledge is a
very abstract form of semantics 17, which can evolve through time as new texts
are being read. Generally, the person who writes the text is not the one who
has this knowledge, this is rather the person who “manages” the classification.

2) Whatever approach was used, once the keywords have been chosen and stored
in some way, they give a kind of classification for this text considered among
the other ones which have been treated in a similar way. Using given keywords,
one can look for all texts which have been assigned such keywords. Clearly, a
notion of query emerges from the so used keywords. In an extended concept
of keyword – and this is exactly how Google works – one can look for all texts
containing these keywords (i.e. with these keywords in their contents), with no
need to define any keyword for texts.

Observe that searching using keywords – and this is a fundamental point – is
a top-down approach to texts and to their classification. A set of keywords (a
“conjunction” of keywords) is a form of question to some oracle, so as to grasp
texts from the outside, without reading nor understanding them. Using such a
set of keywords, one can select some texts among a family of texts which can
be really big, even gigantic in the case of the Web. The selected texts can then
possibly be read and be understood (at least better understood). One can also
group them with other texts having some common keywords and thus get a
classification of texts.

3) With the Google approach to classification, things are similar: the choice of
keywords for queries to Google (which are in fact conjunctions of keywords) can
be done in two ways.

• In a bottom-up mode this choice comes from the reading and understand-
ing of the content of the Web.

• In a top-down mode this choice is based on criteria totally exterior to the
content of the Web though it is hard not to be somewhat influenced by
previous readings from the Web. . .

17 Let us mention that a new concept emerged: that of thesaurus which is somehow an
abstract semantics related to classification. A thesaurus is a particular type of documentary
language (yet a new concept) which, for a given domain, lists along a graph words and
their different relations: synonymy, metaphor, hierarchy, analogy, comparison, etc. Thus, a
thesaurus is a kind of normalized and classified vocabulary for a particular domain. Otherwise
said, the words a thesaurus contains, constitute an hierarchical dictionary of keywords for the
considered domain. One can possibly add definitions of words or consider the classification of
words (according to the future usage of the thesaurus) to be sufficient. It is a remarkable tool.
First used for disciplines around documentation and for large databanks, it is now used almost
everywhere. To build a thesaurus, one follows a bottom-up or a top-down mode or mixes both
modes, exactly like in the case of keywords. More details on the notion of thesaurus in the
section devoted to databases (cf. section 4.2).

16

In general, both bottom-up and top-down modes are mixed for the choice of
keywords.

Whatever approach was used, once the keywords have been chosen, one has at
disposal a kind of oracle to grasp the Web. Otherwise said, the Google query
written with these keywords will select texts from the Web – and also hyper-
texts or multimedia data: pages from the Web – with a top-down operational
mode. Such selected texts can then be read, classified, etc. Thus, Google as
a web search engine behaves as an oracle, which given some query (keywords),
returns a set of web sites. The way Google works, as for the oracles, is totally
invisible to the user.

One can also surf the Web along a bottom-up mode, that is give up query and
go from one page to another one via the links hypertext. Indeed, those links
are the main originality of the Web. From a theoretical point of view, they
are very interesting since they convey a form of semantics. Thus, the notion of
keywords (and more generally of words) appears to be a limit concept between
syntax and semantics. In general surfing is done via both approaches: bottom-
up with hypertext links and top-down with queries. As before, the choice of
the keywords submitted to Google in view of a classification is also a form of
semantics. Observe that in a top-down approach for the choice of keywords,
one can however choose them randomly , then use some counting (with statis-
tical tools) to get classifications of the selected texts. Such random choices are
particularly interesting when there is a huge quantity of texts, which is the case
with the Web. However, it is doubtful that such an approach to classification
– if fundamentally random – can give significant results. Nevertheless, it can be
coupled with a more “deterministic” approach.

Let us go back to the title of this section: Bottom-Up versus Top-Down modes.
It is reasonable to question: why are there two possible modes in the definition
of mathematical and computer science objects and in the runs of computer pro-
grams? De Facto, these two modes do exist and they are the fundamental modes
which have emerged from the works of the diverse researchers in computability
theory in the XX th century. We have seen that these two modes could also
be considered in the approach to classification of information and we gave an
example with keywords. We have also seen how the use of Google to search the
Web was relevant to these approaches.

This shows that these bottom-up and top-down modes are not particular to clas-
sification: they concern, in fact, any information processing hence any, more or
less abstract theory of information. This also concerns all disciplines which deal
in some way with the notion of representation or definition , or description , etc.
This includes logic, Kolmogorov complexity and computer science, semiotics and
also all sciences of cognition: as we detail in [26], information processing by the
human brain could fundamentally be structured around these two operational
modes. In any case, this is quite an interesting approach to cognition which is
much enlightened by the evolution of mathematical logic and computer science.

17

In this paper, we shall look at these bottom-up and top-down modes in two
types of situations (concerning classification) which generalize what we said
about keywords. Namely,

• The logical formalization of information systems via databases (section 4.2).

• The set theoretical approach to the notion of grouping, based on the
Zermelo-Fraenkel (ZF) axiomatic set theory. We shall particularly look
at the comprehension schema in ZF (section 5).

These reflections will help to understand the role played by the Kolmogorov
complexity in information classification and more precisely in the notion of
grouping of informations. We will have to reconsider the notions of intension-
ality, abstraction semantics and representation in this context (cf section 6).

Also notice that the existence of two such modes for the definitions of math-
ematical and computer science objects, functions and programs and for the
execution of these programs, is quite interesting. The fact that we find these
two modes for the various forms of the information processing and different
disciplines, of the information processing indicates that this observation is a
fascinating scientific project. Clearly these two modes, so complementary , form
a duality relation , a kind of correspondence between two distinct ways of pro-
cessing which are somewhat distinct and also similar18. More precisely, we have
seen that the bottom-up approach (on which are based the iterative definitions),
results from the notion of set theoretical union whereas the top-down approach
(on which are based the inductive definitions), results from the notion of set
theoretical intersection. It is therefore quite natural to revisit these approaches
in the framework of Boolean algebras, a theory where the notion of duality is
typical, so we do in [25].

Other fundamental dualities for logic and computer science are also developed
in those papers. Especially, duality syntax versus semantics and also duality
functional versus relational 19 which concerns, among others, the relation be-
tween algorithms and (functional) programming on the one hand and discrete
information system and their formalizations20 on the other hand. Recall that

18The abstract notion of isomorphism in mathematics is a form of duality. Some dualities
are not reduced to isomorphisms. Typically, Boolean algebras with the complement operation
(in addition to additive and multiplicative operations) contain an internal duality and are
the basis of deep dualities such as Stone duality which links the Boolean algebras family and
some topological spaces. The complement operation confronts us to many problems and deap
results. . .

19Since Gottlob Frege invention, at the end of the 19th century, of the mathematical logic
and the formalization of the mathematical language that results from it, mathematicians
have de facto to deal with two distinct categories of mathematical symbols: the function
symbols and relational symbols (or predicate symbols) in complement of symbols representing
objects. To each of these two large classes of symbols respectively correspond algorithms and
information systems.

20The information systems in which we highlight a type of programming that we named
relational programming in a research report: Ferbus-Zanda M. La méthode de résolution et

18

the essential part of discrete information system is the organization (the struc-
turalization) of information, whatever is their nature (admitting a discrete rep-
resentation), with the objective of an easily extracting particular informations.
Clearly, information system are linked to classification. Thus, we believe it is
interesting to present them in this paper. We shall articulate this presentation
around the bottom-up versuss top-down duality, which is in this way illustrated.

4.2 Information System and Database: a formal approach

First let us point out that : databases (DB) are to information systems what are
computer programs to the intuitive notion of algorithm: a formal, mathematical
presentation and the ability of an also formal processing. Indeed, algorithms and
information systems are generally expressed in a natural language (in a more or
less clear way) and assume implicit content (which can be important) and also
unspoken comment (which may be quite a problem). Recall that algorithms
and information systems have existed since Ancient Times21. In both cases,
this formal expression is essentially done in the framework of mathematical
logic. Observe that programming and algorithms are particularly related to
lambda calculus whereas databases and consequently information system are
particularly related to set theory.

As concerns programs and algorithms, let us mention the remarkable work of
Yuri Gurevich [16]. He introduced a notion of Abstract State Machines (ASM),
which is based on model theory (in logic) and is a mathematical foundation of
the notion of algorithm which is as much as possible refined. Not only does
he captures the notion of algorithm, but he also formalizes their operational
mode. More precisely, Gurevich deals with operational semantics, i.e. the way
algorithms and programs are executed, (the outcome is the programming of
an interpreter and/or compiler and of an executor of programs). This highly
constructive operational point of view completes what is called denotational
semantics and which deals with what algorithms and programs compute 22.

This is, in fact, the way Gurevich states his thesis:

≪ ASMs capture the step by step of the execution of sequential
algorithms. ≫

For Gurevich, any given algorithm (in particular, any computer program) “is” a
particular ASM which is going to mimic his functioning. This allows to consider

le langage Prolog (The resolution method and the language Prolog). Rapport LITP, No-
8676, 1986. We present in this paper the link between functional programming and relational
programming.

21Some exhaustive descriptions of algorithms about trading and taxes date from Babylonia
(2000 BC to 200 AC). Information systems really emerged with mecanography (end of XIX th
century) and the development of computer science. However, there are far earlier examples
of what we could now call information systems since they show a neat organization and

presentation of data on a particular subject : for instance, the Roman census.
22Observe that these semantics correspond respectively to Arend Heyting’s semantics and

Alfred Tarski’s semantics.

19

an algorithm as a formal object (namely, an ASM). Gurevich’s thesis extends
Church-Turing’s thesis23 (at least for sequential algorithms): indeed, Gurevich
thesis proves it. More precisely, Church-Turing thesis is about denotational se-
mantics (the diverse computation models which have been imagined are pairwise
equivalent: we say they are Turing-complete). Gurevich extends this thesis to
operational semantics: ASM are a computation model which is algorithmically
complet (cf. also section 7 and [24]). What is really remarkable with ASMs
is how their formalization is simple and natural, which, in general, is not the
case with the other approaches to operational semantics of computer programs.
We come back to ASMs (and their relation with Kolmogorov complexity and
classification) in the conclusion.

As concerns, information system (which is an intuitive notion) and their model-
ing via database (which is a formal approach), we shall see that, historically and
conceptually, things were not as simple as they were with programming and the
formulation of theoretical models for computability – which, indeed, occurred
at a time when there was no computers. In the case of information systems, it
was all the opposite.

Recall that the first formalization of the representation and treatment of data,
(that is what is now called an information system) is Codd’s relational model
for databases (1970) [10]. What was quite original with Codd’s approach is the
idea that there were mathematics which should “manage” information in com-
puters. Though this may seem quite obvious now, up to the time Codd created
his theoretical model (a time where programs were written on punched cards),
that was not the case: computer files were stored in a great mess24.

One of the most fundamental and unprecedented feature of Codd’s relational
model is the formalization of the notion of query . He founded this notion on
a new calculus: relational algebra which is a kind of combinatory logic with
operators acting on tables25 joined together: classical set theoretic operations
(union, intersection, cartesian product and projections) and also new operations:

23 Church-Turing thesis states that ”Every process or computation which can be done

with a machine in a purely mechanical way, i.e. all what is computable with a machine,

can be done with a Turing machine ” (1936). Thus, this thesis asserts that the intuitive
notion of effective computability coincides with a formal mathematical notion: computability
with Turing machines. This thesis was first stated by Alonzo Church (1932) with the model
of λ-calculus (Church thesis) which appeared at that time far more “theoretical” than Alan
Turing machines, cf. the note 55. We shall look at the Kleene computability model of recursive
function (1936) in section 4.1. A first (complete) formal definition of recursive function was
found by Jacques Herbrand and formalized by Kurt Gödel (1932).

24Multics was the first important operating system to store files as nodes in a tree (in fact a
graph). Created in 1965, it has been progressively replaced since 1980 by Unix . Derived from
Multics, it includes a new feature: multiple users management. Now, all operating systems
are based on Unix. Multics was a turning point in the problem of data storage: until now, one
speaks of hierarchical model and net model. But, in fact, these “models” have been recognized
as models only after Codd introduced the relational model! Finally, observe that the graph
structure of the Web also comes from the organization of files with Multics.

25This combinatory logic has much to do with the programming language Cobol created in
1959.

20

selection and join. It turns out that the join operator is really a fundamental
one in logic. Codd also develops a normalization theory to handle the very
difficult problem of removing redundancies in information systems.

Surprising as it is, though Codd worked in an IBM research center, he had to
fight very hard26 to impose his views. The first implementation of his model was
not done by IBM but by Oracle , at that time a very small company27, which saw
its exceptional interest and implemented it in 1980. It is only a few years later
that IBM also implemented Codd’s model. Now, all existing DBMS (database
management systems) are based on Codd’s relational model. Let us mention
that databases are still largely underrated though it could be so profitable in
many disciplines. But this is clearly not to last very long due to the dissemina-
tion of digital information (with an incredible speed, no one could have expected
a few years ago).

There is another theoretical model for databases: the Entity/Relationship model
due to Peter Pin-Shan S. Chen [6]. This is a formal approach to databases which
essentially relies on Codd’s relational model but is more abstract. In this model,
a database is represented as a graphic which looks like flow charts used in the
60-70s to modelize computer programs. It is the source of the language UML
28, which is a system of graphic notations for modeling. In our opinion, Chen’s
theoretical model is very deep and it should still be the source of many im-
portant works. Databases rested on the Entity/Relationship model deserve to
be called conceptual databases. They constitute an abstract logical extension
of relational databases which should have a fundamental role in the future as
concerns information processing, classification and any algorithmic information
theory.

Object-Oriented Programming Concepts are also inescapable in information pro-
cessing and in the approaches to classification. Let us mention the inheritance
concept in the difficult problem of concurrent access to data, i.e. when the same
data is used by several actors: attributes, processes, systems, users. Another
important concept from Object-Oriented Programming is that of event-driven
programming: a particular value in the execution of a program or particular
data in a database trigger the execution of some (other) program.

Lastly, let us mention another theoretical model for databases: the deductive
model (also called deductive databases). This is also a fundamental model. It
mixes Codd’s relational model and the predicate calculus, bringing intension-
ality (i.e. abstraction) to Codd’s model through the in extenso adjunction of

26The dedication in his last book ([11], 1990) is as follows: ≪ To fellow pilots and aircrew
in the Royal Air Force duriring War II and the dons at Oxford. These people were the source
of my determination to fight for what I believe was right during the ten or more years in
which government, industry, and commerce were strongly opposed to the relational approach
to database management. ≫ .

27Oracle is now a company worthing billions dollars.
28UML (Unified Modelling Language) is a formal language, which is used as a method

for modeling in many topics, in particular, in computer science with databases and Object-
Oriented Conception (OOC) – in fact, this is the source of UML.

21

first-order variables. The query language for deductive database is Datalog. It is
a pity that the existing implementations of Datalog, which work quite well, are
only used in some research labs. Currently, there is no “real” deductive DBMS
(Database Management System) with the same facilities offered by relational
DBMSs. This is quite surprising as information system, with the Web, have
taken such a huge impact.

One can also question why diverse theoretical models, as fundamental as they
are, can coexist with no serious attempt to mix them. Maybe, this is be-
cause database is a very recent discipline, quite probably, this will happen in
the near future. We are working towards this goal with the notion of concep-
tual databases29, using logic as a foundational theoretical basis. Consider the
general problem of classification of information. Database, with the diverse
theoretical models described above, constitute a formal approach to that ques-
tion. Especially with the notion of query which becomes a mathematical notion
(which, moreover, is implemented) far more sophisticated than keywords. In
fact, queries generalize keywords30.

Whichever theoretical model of database is used, a fundamental primitive no-
tion is that of attribute (which can be seen as formal keywords) and different
kinds of set groupings of attributes so as to make up the relational schema of
a database. This constitutes the wanted formal classification of the initially
unorganized data. The relational schema of a database is the structural part
of a database: its morphology. So, in the relational model, a database is struc-
tured in tables . The names of the columns of a table are some attributes for
the database. A line in a table describes an entity (from real world): this entity
is reduced to the values (for that line) of each of the attributes of the table (i.e.
the names of columns). There are relations between the tables of a database,
kind of pointers , which follow some “diagram” relying on the chosen relational
schema of the database.

The content of the tables constitutes the semantics (otherwise said, the current
content) of the database at some particular time. Each table is structured in
columns and can also be seen as a set of lines (the so-called “tuples”). The
number of columns is fixed but the set of lines varies along time. Each line is
a set of values: one value per attribute (recall columns and attributes are the
same thing)31. This notion of line corresponds exactly to that of card in physical
files, (for instance, those used to manage libraries in pre-computer days) or to

29 Ferbus-Zanda M. Logic and Information System: Relational and Conceptual Databases.
In preparation.

30One should rather say that keywords – used with web browsers – constitute very ele-
mentary database queries (of course, database queries are much older than the Web which
emerged only in the 90’s).

31Lines are usually presented as tuples but, conceptually, this is not correct: in Codd’s
relational model there is no order between the lines nor between the columns. Codd insisted
on that point. In fact, conceptually and in practice, this is quite important: queries should
be expressed as conditions (i.e. formulas) in the relational algebra, using names of attributes
and of tables. For example, it means that queries cannot ask for the first or twentieth line (or
column).

22

the content of a punched card (mechanography).

For instance, suppose we have a table about authors of books in a library which
has the following attributes: AuthorSurname, AuthorName, AuthorCountry,
AuthorTimes. The AuthorSurname column will contain names (such as Duras,
Sarraute, Yourcenar, Nothomb, Japp, etc.). A typical line could be
{ AuthorSurname . Duras , AuthorName . Marguerite , AuthorCountry . France ,
AuthorTimes . XX th century} or also the 4-tuple (Duras , Marguerite ,
France , XX th century) since the ordering of values in this tuple makes it
possible not to “explicit” the associated attributes.

Queries allow to access these contents. Note that the content of the tables
evolves through time due to updates of information: adjunction, removal, mod-
ification. A database looks like the set of sheets of a spreadsheet (Excel)
augmented with links between them that are managed through queries (which
spreadsheets cannot do, or in a very rudimentary and complex way).

Thesauruses (cf. note 17) are, in fact, databases. The relational schema of such
a database is the structure of the considered thesaurus, otherwise said, the lay-
out, the architecture of the thesaurus. The diagram of this database (which
is a graphic representation of its relational schema) formally expresses this ar-
chitecture. It is clear that there can be several tables in this database. For
instance, in a thesaurus dedicated to the epistemology of mathematics, there
could be specific tables for mathematical logic, probabilities, algebra, topology,
geometry, functional analysis, differential calculus, integration, etc. and other
tables dedicated to mathematicians (mentioning the concepts they introduced),
to philosophers, to historians of mathematics, etc.

Of course, the choice of such tables is completely subjective. One could structure
the database very differently, considering synonymy, quasi-synonymy, connec-
tivity, analogy, comparison, duality, contrast, etc. among the diverse words of
the thesaurus. The internal organization of a given table (the choice of the
columns i.e. of attributes) depends on what one intends to do with the the-
saurus and on the choices already made for the diverse tables. The contents of
the tables are then constituted by all the words put in the thesaurus.

Without definitions, the thesaurus is a kind of hierarchical dictionary of syn-
onyms, associations, etc., i.e., a structure on keywords. To augment it with
definitions, we insert them as contents of the tables in specific columns. In any
case, let us stress that the relational schema of the associated databases essen-
tially relies on the “association” part of the thesaurus (indeed, its graph) and
not on its “definition” part. Also, observe that it is the power of computers and
databases which makes it possible to build and use such complete thesauruses.
It would unrealistic to try a readable paper version of a dictionary which would
be at the same time a usual dictionary and a synonym dictionary and would
also give definitions32, but any good computer graphical user interface makes it

32 In fact, any such “complete” dictionary is necessarily circular: a word a is defined using
the word b which is itself defined with other words themselves defined in the dictionary. It

23

possible.

Note that what is not explicitly represented as a table can be recovered via some
query. For instance, if we decided a structure by discipline, one can obtain all
synonyms of a given word, whatever be the table of the thesaurus database in
which they have been inserted (according to their associated discipline). This
shows that any particular choice of a structure for the database leads to no
disadvantage as concerns the usage of the database: whatever grouping of in-
formation is wanted, it can be obtained via some appropriate query. This is
“hidden” to most users which have no idea of the internal organization of the
database. In general, one chooses a structure which makes easier the elaboration
of the schema of the database, or an optimized structure to get efficient execu-
tions of queries (recall there are database tables containing millions of lines). Of
course, the synonymy in question is relative to the closed world of the database
formalizing the thesaurus.

The result of a query in relational databases is a view which is structured as a
table. The only difference between a table and a view is that views are stored in
the RAM (random access memory) of the computer (which is a volatile mem-
ory: it disappears when the computer is turned off) whereas “real” tables of the
database represent persistent data which are stored on non-volatile memory:
hard disks, magnetic tapes, etc. Of course, one can nevertheless save a view.

Observe a very interesting phenomenon with this example: the emergence of
the notion of database. Indeed, following the same approach, one can build a
database dedicated to epistemology of physics, of chemistry, of biology, etc. and
group these databases in a unique database in order to get a thesaurus dedi-
cated to epistemology. One can also group epistemology with other disciplines.
Clearly, one has to fix the wanted level of abstraction/refinement to build the
thesaurus (or, more generally, a database) and what is the limit to the con-
sidered subject. This is one of the most difficult problems in modeling. Any
scientific activity goes along a particular answer to that problem.

This example leads to the following observation: in this paper, the notion of
“object” has not been much considered. It is clear that the hierarchical char-
acter on a thesaurus relies on inheritance (a concept from OOC, cf. above).
It seems therefore necessary to add to Codd’s relational model some concepts
of the object oriented approach33, which is what we try to do with conceptual

requires some knowledge external to the dictionary to really grasp the “meaning” of words.
Note that this incompleteness is more or less “hidden”. On the other hand, in a synonym
dictionary, the structure essentially relies on circular definitions. This is less apparent with
paper dictionaries: for a given word, there will be only references to its synonyms. However,
with digital dictionaries, this circularity is really striking: links “carry” the reader to the
diverse synonyms and can be implemented with pointers.

33Codd was strongly opposed to any addition from the object approach to the relational
model. Indeed, the so-called “First Normal Form” (due to Codd) formally forbids the possi-
bility of an attribute structured as a list, a tree or a graph (which is exactly what OOC would
do). When he elaborated his model, this was a reasonable choice: the object approach is quite
destructuring while Codd’s approach was a structuring one. Let us mention that Codd also
opposed Chen’s Entity/Relationship model (nobody’s perfect)!

24

databases34.

If we consider the general case, we observe that the notion of query in databases
is essentially dependent on the structure of the database associated to the re-
lational schema. Database queries are similar to Google queries with one big
difference: queries in relational database are written in a programming language
which is far more sophisticated than conjunctions of keywords allowed in Google
queries. In all implementations35 of Codd’s relational model for databases,
queries are written in the programming language SQL (Structured Query Lan-
guage).

As with keywords, the choice of attributes and that of groups of attributes in
a database is completely subjective: this is semantics and this semantics is for-
malized by the relational schema. Once such choices are done and the relational
schema is fixed, the form of possible queries is somewhat constrained but, nev-
ertheless, it is possible to ask whatever is wanted. This was argued above with
the example of the thesaurus. As for the Web, such a relational schema is ab-
solutely impossible because the Web is so fundamentally dynamic.

Observe that, at any step, we have with databases a precise idea of the structure
we are working on (it is a mathematical object) and extracting information out
of such a structure is done in a rigorous way, using the formal notion of query.

Let us then notice that the result of a query is exhaustive relative to the database
we consider: we get exactly all objects in the base that satisfy the query, no
more no less. Also notice that the information content of a (correctly formal-
ized) database is precisely known at any time and the modifications brought to
the base (adding, removing or changing data) is precisely controlled. Of course,
this is not the case when extracting information from the Web with a search
engine and this is not the case either for large data banks (in biology, medicine,
cartography, etc.) which have no solid mathematical foundation as have re-
lational databases neither in the structuralization of data nor for the queries.
Databanks are indeed databases which are somewhat not well formalized (or
somewhat ill). In other words databanks can be really databases whereas this
is intrinsically impossible for the Web.

4.3 Database and bottom-up versus top-down duality

Let us now look at the elaboration and use of databases in the perspective of
bottom-up et top-down approaches. It turns out that this is much the same as
with keywords and Google queries.

) The choice of the relational schema is done using a bottom-up or top-down op-
erational mode. In general, both modes are used jointly (in fact, alternatively).

34Ibid. Note 29.
35An implementation of Codd’s relational model for databases is a DBMS (DataBase Man-

agement System). Any DBMS includes an interpreter of the language SQL (such an inter-
preter is, in fact, an implementation of Codd’s relational algebra , the fundamental calculus
in this theoretical model).

25

In the bottom-up mode, one uses the expected future content of the database to
build its relational schema (which will structure this content). In the top-down
mode one builds the relational schema on considerations which are external to
the future content. At first glance, using the bottom-up operational mode may
seem paradoxical: to use the content in order to structure it. But this is not
the case.

In practice, to build a relational schema for a given database, one starts from
some sketchy idea of the schema, represents it as some graphic (top-down ap-
proach), then implements it (this is programming work). A kind of prototype
is thus obtained. This being done, one fills the tables of the database with a
few lines (a “set of data”) to test the pertinence of the relational schema, which
may lead to adjust it (bottom-up approach). And this may be repeated. . . Re-
call that the content of a database is precisely what gives the semantics of the
database whereas the construction of the relational schema is morphology (syn-
tax). With such a mix approach, one can build the morphological (syntactic)
part of the database via some access to a part of the semantics of the database.
And vice-versa.

Thus, this approach, so seemingly paradoxical, is not so. In fact, there are two
true difficulties. First, to delimit the scope of the information system which is
to be modeled, and this is done using the given specifications . Second, to choose
the right level of abstraction of each component (attributes, tables,etc.).

2) The choice and programming of queries comes next. And the approach is
bottom-up, top-down and mix: this is similar to what we said about the elabo-
ration of the relational schema. However, for quite complex databases, one may
have to build the schema and the queries more or less simultaneously: we saw
this with the thesaurus.

3) Once the relational schema of a database seems adequate and the main queries
have been written down and programmed (some of them testing the coherence
of the base), one can really fill the database and complete its content. Queries
can be added as wanted. But any modification to the relational schema, even a
seemingly minor one, can cause a great damage when the size of the database
is somewhat huge. For instance, breaking an attribute Artiste into two at-
tributes Composer and Interpreter in a music database.

4) The content of the database can then be grasped through a completely top-
down mode using queries. This is why relational databases are such a break-
through. Huge quantities of data can be accessed from the outside in a com-
pletely rigorous mathematical way. Thus queries can be viewed as questions
to the DBMS in which the query processor really behaves as an oracle (since
its works is invisible to the user). Of course, one can also follow a bottom-up
approach: browse the content of the database to find some wanted information.
Before Codd’s relational model, this was, indeed, the sole possible approach (ex-
cepted mechanography) with the old physical “files” such as index cards in large
libraries: alphabetical (syntactic) sorts caused no problem but sorting such files
according to themes (semantic) was a real headache!

26

4.4 Classification and bottom-up versus top-down duality

Let us summarize. Approaches to classification via keywords or via Google
queries (such as Google classification), databases (whatever theoretical model is
used) have the same intrinsic nature. In the diverse phases of the elaboration,
especially with keywords and queries, one can follow a bottom-up operational
mode or a top-down one (and generally, both modes are used alternatively in a
mix mode). Queries obtained in that way then allow to grasp sets of texts in
a top-down mode (that is with no understanding of the meaning of the texts)
and classify them.

The approach to classification using compression is entirely relevant to the top-
down mode. Observe that, for the classification using compression, the frame-
work is then purely syntactical, there is no use of any keyword or query which
would convey some semantics (for instance, that given by the chosen identifiers).
Thus, one gets information relative to texts without turning to their semantics:
simply compress and compute.

At first glance, this approach may seem somewhat “miraculous”: one is able to
classify information contained in texts without getting into their contents and
with no need to understand them. On the contrary, in the previous approaches,
one is lead to use a bottom-up mode (though this is not absolutely needed) to
build interesting queries (and the relational schema in a database). Let us recall
what we evoked supra: text compression is a highly theoretical science and a
simple, current-use algorithm such as “gzip” is the result of years of research. Of
course, in classification by compression, texts are not chosen randomly! How-
ever, for the next future, one sees no limit to the usage of the above method to
all information which is on the Web.

Considering the general problem of classifying information, observe that statis-
tics constitute a particular case. Usually, the statistical approach is top-down,
computing correlation factors to group objects and/or informations and get
a structure on them. Indeed, Google and compression algorithm heavily use
statistics. Nevertheless, one can also follow a bottom-up mode with statistics
or even mix these two approaches. This will be seen bellow where we propose a
probabilistic version of the comprehension schema (cf. section 5.2).

5 Set theory interpretation of Bottom-Up ver-

sus Top-Down duality

Let us now look the different approaches to classification in the perspective of
the comprehension schema in Zermelo-Fraenkel set theory ZF. A theory which
can be viewed as one of the first formal mathematical attempts to approach the
notion of classification, sets being the most rudimentary way to group elements.
As a matter of fact, Codd’s relational model for databases relies on (naive) set
theory, which is not so surprising in the search of a formal structuralization
mode.

27

Thus, the bottom-up versus top-down duality that we point in classification
(cf. section 4), can be illustrated by the way the set theoretical comprehension
schema “works”. We also discuss a probabilistic version of the comprehension
schema which among others illustrates the exact versus approximate duality.

5.1 The set theoretical comprehension schema

This is an approach from “pure” mathematics.

It is a global approach, intrinsically deterministic, going along a fundamental
dichotomy:

True/False,
Provable/Inconsistent.

A quest for absoluteness based on certainty. This is reflected in the classical
comprehension schema

∀x ∃y y = {z ∈ x ; P(z)}36

where P is a known property fixed in advance. Thus, the set clustering is done
from a well known property which is defined within this dichotomy. To do such
a grouping and build such a set, we again find ourselves in top-down operational
mode: this set is being constructed from the property P .
More precisely, with a constructivist approach:

• We start with a set x.

• We choose a property P relative to elements of the set x. This can be
done in both bottom-up and top-down modes exactly as in the choice of
keywords for a query or as in the elaboration of a query in a relational
database (cf. section 4.3). Note that the idea of the grouping, i.e. the
choice of this grouping (formalized by the property P) is completely sub-
jective: this is semantics. Nevertheless, we can also get such a property
P in a syntactic way: through a computation (cf. section 6.1).

• Having this property P , we then pick the elements of the set x which
satisfy P .

The comprehension schema37 allows us to consider such a set construction (in
the ZF axiomatic set theory).

If we do not relativize this construction to some fixed set x (or, equivalently,
if we consider a set containing all sets) then we face Russel’s paradox38. Ob-
serve that the solution to this paradox really makes sense: in this approach, one

36More formally: ∀x ∃y ∀z (z ∈ y ←→ (z ∈ x ∧ P(z))).
37One can also constraint in different ways this property P. In particular, to avoid circulari-

ties such as the one met when P contains some universal quantification on sets, hence quantifies
on the set it is supposed to define (this was called impredicativity by Henri Poincaré).

38Russel’s paradox insures that the following extension of the comprehension schema is
contradictory: ∃y y = { z ; P(z) }, i.e. ∃y ∀z (z ∈ y ←→ P(z)). Indeed, consider the
property P such that P(u) if and only if u /∈ u, then we get y ∈ y if and only if y /∈ y.

28

should start from something, and it will be from an existing set of objects to
work with such a property! Indeed, the elaboration of the property P is made
in a mix mode (as with queries in a relational database) then we can start with
a certain idea for the property P (related to what is the set x) then “pick”
some elements in the set x to get a better idea of P , and then pick again some
elements in x and adjust P , and so on.

Once this property has been “set up” (maybe getting it in extenso), one is now
able to group all elements of x which satisfy P . Of course, in the mathemati-
cal literature, no one present such successive approximations to get a property:
the obtained property is given directly! Nevertheless, this is how things are
being done in general. Computer scientists are used to such practice: a modu-
lar approach is used to perfect a database or a program. Of course, so do the
mathematicians quite often.

It is important to note that the grouping, that is, the definition of the set y or its
constitution (though some would rather consider an explicit construction) can
be done in a top-down operational mode which is an intensional mode. Inten-
sionality, (one can also say abstraction) is expressed by that property P . This
property plays the role of a question which leads to an instantiation of compre-
hension schema which really behaves as an oracle. The answer of the oracle is
exactly the set of elements of x satisfying property P . This is the the opposite
(the dual in fact) of an extensional description (which gives the element, one
by one) which is necessarily done in a bottom-up mode.

Knowing in advance the property P is a very particular case which does not
happen in most “real” situations. Below, we develop this aspect by proposing a
“probalistic” comprehension schema. Then we show in section 6, how this prob-
abilistic schema can be generalized using Kolmogorov’s complexity. This brings
us to the relation between the algorithmic information theory and classification
which are the heart of this work.

5.2 The probabilistic comprehension schema

In the probabilistic approach, much more pragmatic than the logical one, uncer-
tainty is taken into consideration, it is bounded and treated mathematically39.

This can be related to a probabilistic version of the comprehension schema
where the truth of P(z) for instances of z is replaced by some limitation of the
degree of uncertainty of the truth of P(z). Formally, together with z, we have to
consider a new parameter in P , namely the event ω of some probability space
Ω and we have to fix some confidence interval I of [0, 1] (representing some
prediction interval). Denoting by µ the probability law on Ω, the probabilistic
comprehension axiom for property P now states

∀x ∃y y = {z ∈ x ; µ({ω ∈ Ω ; P(z, ω)}) ∈ I}

39We refer the reader to William Feller [21] and also Kolmogorov, [27, 29], and Chaitin [4].

29

As was the case with the set theoretical comprehension schema, one gets in a
top-down operational mode to do such a grouping and build such a set from
property P and interval I. This is so even if we allow some degree of uncer-
tainty for the truth or provability of property P(z) (which is then replaced by
µ({ω ∈ Ω ; P(z, ω)}) ∈ I) for particular instances of z.

Once again, this is a precise particular case: though its truth has some un-
certainty, this property is well defined and fixed in advance, together with the
confidence interval I. However, such a schema is closer to many situations met
in the real world. As in the previous case, such a property P (and the confidence
interval I) allow to define the set y in a top-down operational mode, that is to
get an intensional, abstract description of the set y. It is natural to consider as
above, an underlying oracle (the probabilistic comprehension schema), which,
given some property P and interval I, returns the set y with non totally accu-
rate answers (the interval I limiting the inaccuracy). Observe that, as above,
the choice of P and I is relevant to semantics. Remark that there are other
ways to formulate a probabilistic comprehension schema.

As concerns groupings of information relevant to a purely top-down mode (the
grouping itself, the elaboration of a property to do it, the definition of sets of
information), we treat it in the next section 6 about intensionality and Kol-
mogorov complexity.

Let us simply recall (cf. section ??) that classification by compression and some
methods based on statistical inference allow to have such purely top-down ap-
proaches. The particular of Google classification is exactly the same as that of
set theoretical and probabilistic comprehension schemas (for Google, keywords
play the role of a property P) and that of classification via databases, up to one
significant exception: with Google, everything is moving: answers as well as the
keywords proposed in queries.

6 Information, intensionality , abstraction and

Kolmogorov complexity

6.1 Classification, database, intensionality, abstraction, se-

mantics and algorithmic information theory

We stressed in section 4 the importance of the Web expansion and the huge
interest of classification by compression and Google classification. The Web can
be seen as a gigantic expert system: first, it is a huge information system (this
is the network aspect, software and hardware, between machines and servers),
second, machines are used and programmed by human beings (their brains)
with far more intelligence than what is done in the syntactic world of machines
which can only compute.

Classification by compression (and Google classification) will surely be more
and more used with information on the Web. The same is true with statistical

30

inference methods. In some sense, all these approaches are tightly correlated
and, as any approach to classification (cf. section ?? and section 5), they lead to
top-down approaches to information. In particular, they can be used to grasp
the information content of a text (and more generally of a set of texts) with
no access to it “from the inside”, i.e. without reading and understanding the
text. These methods look for analogies with other texts, the meaning of which
is known, or they compare their respective information content. Somehow, they
are “profilers” which will become incredibly efficient in the near future when
applied to information on the Web40.

However we have also explained how these methods still lack some formal de-
velopment, in particular for the notion of query: for any classification of infor-
mation, the first question is to find back information from this classification. It
is a fact that the notion of query to the Web (with Google or any browser) is
still not really formalized.

We have seen that Codd’s relational database model led to a completely mathe-
matical structure and processing of the information contained in computer files
through the relational schema and the possible queries to the database (the
scope of such queries being tightly dependent of the relational schema). As said
above, before Codd, there was no such information processing with machines.
Codd had to fight to impose his mathematical model and, even today, operating
systems do not really use databases. A reflexion about possible formalizations of
classification by compression, Google classification and a notion of query to the
Web, is, in our opinion, quite fundamental. Note that with Google (or any other
browser) we have no idea how to measure the degree of uncertainty of Google’s
answers. The percentage of pertinent answers may be anything between 0% and
100%. Google answers are unpredictable and constantly moving. Not an easy
situation! However, it seems reasonable to ignore at first the moving character
of Google (and also its not completely scientific features, cf. section 3.2, point 4)
when looking for a mathematical modeling of these methods.

Indeed, one starts from a clustering or more generally from a classification, ob-
tained by way of conjunctions of keywords which are proposed into queries for
Google or from a clustering or a classification obtained by compression or ob-
served by way of the statistical methods.

In the simple case of a clustering, we infer the existence of a property, of a “law”,
which is a form of regularity. The emergence of such a law coincides with the
existence of a certain degree of intensionality in the clustering we accomplish.
Otherwise said, we make obvious a grouping of objects, the description of which
can be compressed by using this property. This is an intensional description
(when the compression have been performed). This can be seen as an (ex-
tended) top-down version of the set theoretical or probabilistic comprehension
schema: the property used in the set groupings is not known and fixed before-
hand.

40Recall that once an information has been put on the Web, it is almost impossible to
remove it. . .

31

For more sophisticated classifications, one will have higher order clusterings ,
i.e. clusterings of clusterings, etc. Otherwise said, several properties will be
involved (in some cases, even infinitely many properties, in a theoretical point
of view). Observe that, with a subtle analysis of modelization using relational
databases one can see that, up to now, quite a few levels suffices to modelize
a lot of discrete information systems (for the “real world)”. One can expect
a similar situation for classifications obtained via the top-down approaches as
evoked above, at least for those relative to the present real world.

In case of some random grouping, no law gives any description: no classifica-
tion is possible. The sole descriptions which can be given are the extensional
ones (element by element): they are intrinsically non intensional. Such ran-
dom groupings can be called “non intensionalizable”, in other words, there is no
shorter description and no more abstract one, hence no more intensional one,
which is equivalent. Otherwise said such a description is incompressible.

This points out the remarkable pertinence of Kolmogorov complexity theory
which is an avant-garde theory. Especially when being considered with several
points of view, namely by studying the randomness of a word or its information
content or the possibility to compress this word. Somehow, randomness is the
“opposite” of classification, More precisely, there is a duality randomness ver-
sus classification, coming from the fact that Kolmogorov’s theory of algorithmic
information allows to look at these two sides of information (this is what Kol-
mogorov explicitly tells in [28]).

This duality is a quasi-opposition though randomness is not chaos (cf. Part I).
This points out deep relations between Komogorov complexity and relational
databases (which constitute, up to now, as we saw, the sole implemented – and
widely spread – logical approach to information systems). This complexity also
appears unavoidable as soon as one is interested in classification problems. This
is not surprise since Kolmogorov complexity is primarily a theory about infor-
mation!

If we go back to Kolmogorov’s approach, one can observe that it is relevant to the
top-down mode. Indeed, look at the basic definition of Kolmogorov complexity:

The length of the shortest program which outputs a given data (the
output being a binary word which represents a given object)41.

Larger is the Kolmogorov complexity of an object, larger are all programs to
produce it, more random it is, larger is its information content, Larger is the
Kolm are all programs to produce it, less intensional is any description of it, less
intensional is it itself, less abstract is any property that allows us to describe
the object (when we consider the property in a syntactical perspective) .

In this definition one does not enter into the content of the output or into the

41Kϕ(y) = min{|p| : ϕ(p) = y} where Kϕ : O → N where ϕ : {0, 1}∗ → O is a partial
function (intuitively ϕ executes program p as a LISP interpreter does) and O is a set endowed
with a computability structure. We take the convention that min ∅ = +∞ (cf. Part I).

32

details of the object, which is therefore taken as a whole. One solely handles
the object from the outside via some program and/or some property which al-
lows to describe it. This is indeed a top-down approach as are classification
using compression, classification using Google and a part of statistical inference
methods. And this suggests that these classifications methods are somewhere
related and that Kolmogorov complexity could give an unifying mathematical
formal framework.

In other words, thanks to Kolmogorov theory, we are able to measure the com-
plexity of an object (in the sense of Kolmogorov), i.e. to give a numerical
measure of the degree of intensionality or even of degree of abstraction which is
contained in a computable description of that object. It is remarkable that this
can be done with no prerequisite “knowledge” of the structure of the object and
that this is indeed what allows us to apprehend this structure.

6.2 Kolmogorov complexity and information theories, semi-

otics

Let us now compare the diverse ways to approach the notion of information
followed by Shannon (cf. Part I), Kolmogorov, Codd and other researchers.

• For Shannon (1948) [32], an information is a message which is transmit-
ted through some physical device. In particular, an information is a signal
and there can be losses during the transmission. This design is that of a
dynamic information approach and the physical communication medium
is of outmost importance.

So he looks at robustness of information and comes to a quantitative no-
tion of information content in transmitted messages. To measure variation
of this quantity, he borrows to thermodynamics the concept of entropy and
he bases his theory on it. So he clarifies, on mathematical basis, how to
deal with noisy communication channels. In Shannon’s theory, words rep-
resent information (messages). It is based on coding letters or groups of
letters in a word (cf. Partie I), i.e. it is a purely syntactic analysis of words
(and messages they represent) which makes no use of any semantics.
Thus Shannon elaborates a mathematical theory of the information con-
tent of messages transmitted with some loss of signal. Its main (and hugely
important) applications are related to telecommunications (no surprise:
Shannon worked in Bell Laboratories).

• The origin of Shannon’s work is Wiener’s cybernetics (cf. note 7) in the
late 40’s. This subject was much discussed in the Macy conferences (New-
York, 1942 – 1953), to which Shannon attended. Before Wiener and these
conferences, there was nothing like an information theory.
Cybernetics is a theory which establishes, among other things, the con-
cept of auto regulated system , in terms of : global behavior, exchanges,

33

communication and interactions. Fundamentally, this is a top-down ap-
proach to information and systems. Wiener talks about ≪ a science of
relations and analogies between (living) organisms and machines42 ≫. In
particular, he studies random processes and the “noise” occurring during
the exchanges in a system. A fundamental notion in his theory is that of
feedback : ≪ An object is controlled by the instantaneous error margin be-
tween its assigned objective ≫. This is clearly a prefiguration of Shannon’s
information theory (Shannon attended Wiener lectures as a student).
Wiener has an avant-garde vision on machines ! His works are the ori-
gin of many discoveries, in particular, in sociological, psychological and
biological aspects of communication and interaction and, more generally,
in all information theories. Besides several research themes generated by
Wiener’s theory, let us also mention that Wiener’s theory has a deep in-
fluence on a large part of modern semiotics43.

• In particular, Let us cite Umberto Eco44, in The Open Work 45 (1962)
which analyses the question of openness of art pieces (that we can see as
some form of non-determinism or as a plurality of interpretations). Eco
often refers to Wiener in chapter 3 : Openness, Information, Communi-
cation. He convincingly pinpoints the necessity to distinguish between46 :

≪ [. . .] the signification of a message and the information it
brings. ≫

In other words, it is important to differentiate the semantics of a message
and its information content. Eco gives a simple and illuminating example
(which we slightly modify) to make clear this distinction: the message
“tomorrow it will snow in Paris” does not have the same meaning in
December than in August! He also adds:

≪ Wiener said that signification and information are synonyms,
both related to entropy and disorder. [. . . information also de-
pends on the source which sends he message. ≫

Otherwise said, contrary to Wiener (and Shannon), Eco stresses how the
information content of a message (and somehow its pertinence too) de-
pends on the context in which the message is considered. We shall see
below how Kolmogorov answers this problem.

42Wiener’s book Cybernetics or Control and Communication in the Animal and the Ma-
chine , published in 1948, raised many controversies (and Wiener exchanged a lot with von
Neumann about it).

43A subject going back to Charles Sanders Pierce (1839 - 1914).
44Eco is President of the “Scuola Superiore di Studi Umanistici”, University of Bologna,

where he holds the chair of Semiotics. He published many novels, essays and academic texts
in which he puts into practice his theories on semiology and language.

45 Eco U. The Open Work. Bompiani, 1962 & Harvard University Press, 1989.
46Ibid. Note 45.

34

• For Kolmogorov (1965) (see also Chaitin (1966) and Solomonoff (1964)),
the fundamental aspect of information is the information content of an ob-
ject, independently of any consideration on how this information is used
(as a message for instance). This is a static vision of information.

What Kolmogorov is interesting in is to give mathematical foundations
for the notion of randomness and to explicit the notion of information
content of a given object which is intrinsic to that object. Thus, what
Kolmogorov looks for is a mathematical theory of information which would
be far more abstract than Shannon’s one and would be based on semantics
not only on a “physical” object like a word. His solution is to consider
computer programs (considered as computable descriptions) – considering
things in fact in the context of the calculability theory – which output an
object and look at the length of a smallest one. Thus, considering both
programs and what the program does, the algorithmic information theory
created by Kolmogorov has both syntactic (length of a program) and se-
mantic features (i.e. what the program does).

With Kolmogorov complexity, one can capture an “objective” mathemat-
ical measure of the information content of an object. Moreover, this mea-
sure is really inherent to the object – in some way it is an universal
specification of the information content of of the object – since it does
not depend (up to a constant) on the considered programming language
to get programs: this is the content of Kolmogorov’s Invariance Theo-
rem. In order to aim an “absolute” mathematical notion of randomness,
Kolmogorov makes a drastic abstraction from any physical device to carry
information. In this way, he elaborates the algorithmic information theory
which allows to “compute”47 Kolmogorov complexity of any object. In-
troducing a conditional version of Kolmogorov complexity, he refines this
notion of intrinsic complexity of an object by relativizing it to a context
(which can be seen as an input or an oracle, etc. for the program) car-
rying some extra information. This exactly matches the problem pointed
by Eco about the necessity to distinguish signification and information
content.

This is how Kolmogorov founds algorithmic information theory, which can
be looked at as much as a mathematical foundation of the notion of ran-
domness than as a mathematical foundation of information classification
and structuralization.

• As seen above, for Codd (1970), the fundamental feature of information is
its structuralization – which is formally described – and the fact that one
can get back information from this structuralization in an exhaustive way.
Codds theory essentially relies on mathematical logic. Thus, Codd bases
his work on the static aspect of information Observe that, as Kolmogorov

47Recall that the very original idea on which Vitanyi based the classification using compres-
sion is to compute an approximate value of this complexity via usual compression algorithms.

35

does, Codd also makes abstraction of the physical device carrying the in-
formation. This was quite a revolution in information treatment at IBM:
previously, any information treatment dealt with the files containing the
data: information and files were considered as a whole.
Observe that the modeling of information systems via relational databases
also takes into consideration the subtle distinction raised by Eco between
semantics and information content: the pertinence of an information with
respect to a given information system is seriously considered. The same
distinction is taken into account in the construction of the relational
schema of a database. For instance, in a database to manage a university,
a choice is to be made: is the information about the students hobbies to
be considered or to be ignored? Of course, this choice is completely sub-
jective, this is semantics. If the attribute StudentHobby is retained then it
will appear in the relational schema of the database, i.e., in the syntactic
counterpart of what is retained as the “constitutional” semantics of the
information system.

6.3 Algorithmic information theory, representation and

abstraction

A priori, Kolmogorov complexity does not apply directly to the objects we con-
sider, but only to binary words associated to a chosen representation of objects.
However, for the usual different representations, this has quite a minor incidence
(this is the content of the invariance theorem). Thus, we (abusively) speak of
the Kolmogorov complexity of objects instead of Kolmogorov complexity of rep-
resentations of objects.

Nevertheless, if higher order representations are considered, this is no more true.
For instance, if we represent integers as cardinals of (finite) recursively enumer-
able sets. Indeed, Kolmogorov complexity allows to compare higher order rep-
resentations of integers, leading to a proper hierarchy of natural semantics for
integers (Church iterators, cardinals, ordinals, etc.) as we proved in [23]. This
hierarchy can be put in parallel with a hierarchy of Kolmogorov complexities
obtained by considering infinite computations and/or oracles.

We show, among other things, that Kolmogorov complexity is also useful to
get a kind of classification of semantics for integers which is rather amazing.
We can also see this classification of different representations of integers as a
classification of the degree of intensionality of these representations, i.e. a sort
of classification of the less or more abstract nature of different definitions of
integers, obtained from the different semantics we consider. We develop this in
[23]48.

48As in the two forthcoming (technical) papers: Ferbus-Zanda M. & Grigorieff S. Kol-
mogorov complexity and higher order set theoretical representations of integers and Ferbus-
Zanda M. & Grigorieff S. Infinite computations, Kolmogorov complexity and base dependency.

36

7 Conclusion

The previous considerations show, in particular, that not only Kolmogorov com-
plexity allows a mathematical foundation of the notion of randomness, but this
theory is also intrinsically related to the fundamentals of information: the no-
tions of information content and compression, that of classification and struc-
ture , and more generally, database and information system (as they currently
are). This theory is also related to the notions of intensionality and abstraction ,
and also to the notions de representation , syntax and semantics . An enormous
scope!

This double aspect (randomness and classification) – drawn by Kolmogorov since
the origin of his theory [28] – is partly stressed by the denomination algorithmic
information theory commonly used to distinguish Kolmogov complexity theory
and Shannon’s information theory . Many applications can be expected in var-
ious unsuspected domains. And this theory seems to us particularly suited to
provide a unifying theoretical framework for a lot of approaches to information
processing.

However, it seems to us to be interesting, to look for an extension of Kolmogorov
complexity. As it is now, it is essentially based on the theory of computable func-
tions hence on algorithms. What we propose it to extend it by considering to
sets, information systems and databases. This would put forwards a relational,
non deterministic point of view which would be in contrast with the functional,
essentially deterministic current point of view, first considered by Kolmogorov
himself (this goes along with a new look to ASMs in the relational framework).
It would then be possible to revisit (and to increase) Kolmogorov complexity
and ASMs in terms of the duality functional versus relational (see section 4.1
et section 4.2)49.

This means that we look at Kolmogorov complexity with a more refined and
more structured point of view – in other words with a qualitative point of view –
than that of Kolmogorov. For him a program and an output are binary words
(which can represent sets, graphs, information systems, etc.) and his main pur-
pose is to get a quantitative definition of the complexity of an object.

Such a qualitative approach was also followed by Codd himself while he elab-
orated the relational model for databases. His theory is based on the formal
notion of attribute which is to represent qualitative characteristics of objects
(which are related via diverse links which are also of qualitative nature) and
Codd puts such attributes in a mathematical framework. A database is a formal
and mathematical specification as “scientific” as any algorithm which processes
data and computes.

In particular, one can look at the smallest program which outputs some given

49 We study the duality of functional and relational in [25]. The relation between ASMs
and Kolmogorov complexity and the reconsideration of these theories with a relational point
of view are developed in a forthcoming paper: Ferbus-Zanda M. Kolmogorov Complexity and
ASM: the relational point of view, in preparation.

37

object rather than at its sole length or also look at the set of all programs
which give the wanted output. Such an approach enlightens new links between
algorithmic theory of and Gurevich’s ASMs50. It opens promising perspectives.
As Gurevich told us51, the ideas of Kolmogorov complexity theory are far from
having exhausted all possible applications: it is just the beginning... Classifica-
tion of information by compression and Google classification witness such new
possibilities. It is also in such a structural perspective that Bennet developed
the logical depth complexity [1] which considers the running time of the pro-
gram which gives the output. It is also called the organized complexity.

Keeping the same spirit (with such a level of refinement), comes this question:

Why consider the shortest program? What is so particular with it?

The answer comes from the observation of ASMs and the Curry-Howard corre-
spondence:

The shortest program is the most possible abstract.

Indeed, Curry-Howard correspondence insures a deep relation between logic and
λ-calculus – in that sense, this correspondence is an isomorphism – hence by
extrapolation logic and computer programming. Curry-Howard correspondence
plays a fundamental role in the articulation of proof theory, typed lambda cal-
culus, theory of categories and also with models of computing (either theoretical
or implemented ones like programming languages). It was known by Curry for
combinatory logic as early as 1934 and for Hilbert proof systems in 1958. It was
extended by William Howard in 1969 who published a corner-stone paper52 in
80 53.

Let us say briefly that in the Curry-Howard correspondence, one consider that:

• Logical formulas correspond to types in typed λ-calculus and to abstract
types in computer science.

• Logical proofs correspond to λ-terms and computer programs.

50This is what we started in Ibid. Note 49.
51Personal communication while he was visiting our university in Paris.
52Howard W. The formulas-as-types notion of construction, in Essays on Combinatory

Logic, Lambda Calculus and Formalism. Seldin J.P., Hindley J.R. eds., Academic Press,
pp. 479-490, 1980.

53Joachim Lambeck also published in the 70’s, about this correspondence concerning the
combinatories of the cartesian closed categories and the intuitionist propositional logic. Note
that Nicolaas Debruijn (Authomath system) and Per Martin-Löf had also a decisive influence
upon the original Curry-Howard isomorphism. Martin-Löf saw the typed lambda calculus,
which he was developing, as a (real) programming language (Cf. Martin-Löf P. Constructive
Mathematics and Computer Programming. Paper read at the 6-th International Congress for
Logic, Methodology and Philosophy of Science, Hannover, 22 – 29 August 1979.) Similarly,
Thierry Coquand elaborated the theory of Construction, on which is based the Coq system,
iniatially developed by Gérard Huet at the INRIA (France) in the 80’s. (See also note 55).

38

• Cut elimination in a proof54 corresponds to normalization by diverse rules
in λ-calculus, including β-reduction55 relating λ-terms and runs of com-
puter programs.

This enhances the abstract character of programs evoked above. Indeed, the
smallest logical proof (considered in a given context) is in fact the one which
contains the most numerous cuts. We saw (cf. Note 54) that in some cases, a
cut is a form of abstraction. Notice that a proof, of which we have eliminated
cuts (which therefore means in some situations replacing “a general case” by a
lot of “particular cases”), has its size bounded in the absolute by a “tower of
exponentiations”. . .

The more cuts a proof contains the more abstract it is. Somehow,
we can say that the more abstract is a proof, the more compressed
it is.

In the same way,

The more redexes there is in a λ-term 56, The more abstract is a
λ-term, the more compressed it is.

And for computer programs, the notion of cut can also be defined for program-
ming languages with their usual primitive instructions. For instance, a program
containing

for i = 1 to 1000000 do print(i)

is more abstract than the same program in which this loop is replaced by the
sequence of instructions

do print(1) and do print(2) and ... and print(1000000)

Thus, the for loop allows for cuts. Hence a result similar to those precedents:

54 The notion of cut in the Sequent Calculus and the Natural Deduction is a fundamental
notion in proof theory. It was introduced by Gerhard Gentzen in the 30’s – and these two log-
ical calculus too. In some cases one can see a cut as a form of abstraction where a multiplicity
of particular cases are replaced by a general case. In the sequent calculus, a cut is defined
by means of the cut rule, which is a generalization of the Modus Ponens. The fundamental
result of Gentzen is the Hauptsatz, which states that every proof in the sequent calculus can
be transformed in a proof of the same conclusion without using this cut rule.

55 In fact, Church’s original λ-calculus can be extended with constants and new reduction
rules in order to extend to classical logic with the notion of continuation , Thimothy Griffin,
1990. – and possibly classical logic plus axioms such as the axiom of dependent choice – the
original Curry-Howard correspondence between intuitionist logic and usual typed λ-calculus.
This is the core of Jean-Louis Krivine’s work who introduced some of those fundamental
constants which have a deep computer science significance (cf. Krivine J.L. Dependent choice,
‘quote’ and the clock. Theoretical Computer Science. 308, p. 259-276, 2003. see also:
http://www.pps.jussieu.fr/∼krivine/).

56A redex in a λ-term t is a subterm of t on which a one-step reduction can be readily
applied, for instance, with β-reduction, this is a subterm of the form ((λx.u)v) and it reduces
to u[v/x], which is the term u in which every occurrence of x is replaced by v (some variable
capture problems have to be adequately avoided).

39

The more cuts a program contains, the more compressed it is.

Observe that the more a program is compressed via cuts, the more declarative
is this program. Which means that its text contains less control instructions,
i.e. less instructions about the technical way some parts of the program are to
be executed. A fully compressed program is totally declarative.

But what about ASMs in this context?

As we said, ASMs allow to represent- in a very simple way - the step by step of
the execution of any sequential algorithm using models in first-order logic and
some simple primitive instructions. As can be expected, it is interesting to look
for a notion of cut in the ASM framework. In the same vein, deep relations
exist between ASMs, λ-calculus and Curry-Howard correspondence. Cf. our
paper to appear in honor of Yuri Gurevich [24], in which we represent ASMs in
λ−calculus, showing that λ−calculus is algorithmically complete as are ASMs.

Going back to Kolmogorov complexity, we can can say that:

The shortest program producing a given output is the most abstract
one, hence (viewed in λ-calculus) it is the λ-term containing most
redexes, hence also (viewed in proof theory) the proof which contains
the most cuts.

In any case, this is a form of abstraction. Which is no surprise since we already
noticed that Kolmogorov complexity is fundamentally related to the notion of
abstraction.

Going back to the information context, we can say :

Knowledge is abstract information: abstract, compressed, with some
intensionality content.

And such a knowledge will be, in its turn, compressed, etc. This is exactly the
mode the brain functions with language and mathematics. Observe that some
abstractions are somewhat “accidental”: they occurred at some time and dras-
tically modify the state of knowledge. Such an abstraction was the invention
of phonetic transcription of Indo-European languages: with a handful of sym-
bols as (letters of the Roman or Greek alphabet and some extra signs), one can
write down all texts in these languages. One can also enunciate them (which
is not the same as understanding them): a few rules suffice to capture specific
pronunciation features in any such language. Such an abstraction is lacking in
Chinese writing. . .

Note that it is really what Kolmogorov complexity shows. Suppose an inte-
ger has a long and seemingly lawless binary (or decimal) representation: it
takes space to represent it in this way. But if we get a (good) constructible
property about this integer, then we can obtain a short, abstract, compressed
characterization of it. And this increases our knowledge. In the same way, the

40

development of integral calculus, some parts of geometry and fractal geometry,
allow for short (effectively computable) sequential descriptions of shapes.

Especially, it appears that Kolmogorov’s complexity can be a very useful theory
in order to address in a mathematical way the approaches of classification, which
are now essentially, to the exception relational database, heuristic methods (not
yet fully formalized as can be expected from a classification method) such as
classification using compression and Google classification. One can also hope
for applications in other domains such as semiology, cognitive science or biol-
ogy with the genome, as spectacularly shown by the French biologist Antoine
Danchin in his book, [12]. Indeed, classification by compression is already used
by some biologists in such a perspective.

Let us conclude by stressing again how much useful are such classification meth-
ods using compression or using Google along the top-down operational mode.
In many cases, we face huge families of objects (when one can define them) for
which there is no obvious structure. So that we really are in a syntactic world
and want to grasp this world with some semantic. This is, for example, the case
for DNA sequences of living organisms and for the multi billion many files on
the Web. . .

For that last example, though we are not so much pessimistic, let us cite Edsger
W. Dijkstra’s penetrating analysis in his famous 1972 Turing award reception
speech [17]57 :

≪ As long as there were no machines, programming was no problem
at all; when we had a few weak computers, programming became
a mild problem, and now that we have gigantic computers, pro-
gramming has become an equally gigantic problem. In this sense
the electronic industry has not solved a single problem, it has only
created them – it has created the problem of using its products. ≫

Remerciements.

For Francine Ptakhine, who gave me liberty of thinking and writing.
Thanks to Serge Grigorieff and Chloé Ferbus for listening, fruitful communica-
tion and for the careful proofreading and thanks to Maurice Nivat who welcomed
me at the LITP in 1983.

References

[1] Bennett C. Logical Depth and Physical Complexity. Dans The Universal
Turing Machine a Half-Century Survey. R. Herken (ed). Oxford University
Press, p. 227–257, 1988.

57Let us mention the remarkable collection of Dijkstra’s unpublished papers and notes [18].

41

[2] Bennett C., Gács P., Li M. , Vitányi, P. & Zurek W. Information distance.
IEEE Trans. on Information Theory, 44(4):1407–1423, 1998 .

[3] Chaitin G. On the length of programs for computing finite binary se-
quences. Journal of the ACM, 13:547–569, 1966.

[4] Chaitin G. On the length of programs for computing finite binary se-
quences: statistical considerations. Journal of the ACM, 16:145–159, 1969.

[5] Chaitin G. A theory of program size formally identical to information
theory. Journal of the ACM, 22:329–340, 1975.

[6] Chen P.S. The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[7] Cilibrasi R. Clustering by compression. IEEE Trans. on Information The-
ory, 51(4):1523–1545, 2003.

[8] Cilibrasi R. & Vitányi P. Google teaches computers the meaning of words.
ERCIM News, 61, April 2005.

[9] Cilibrasi R. & Vitányi P. The Google similarity distance. IEEE Trans. on
Knowledge and Data Engineering, 19(3):370–383, 2007.

[10] Codd E.W. A relational model of data for large shared databanks. CACM,
13, No 6, juin 1970.

[11] Codd E.W. The relational model for database management. Version 2.
Addison-Wesley, 1990.

[12] Danchin A. The Delphic Boat: What Genomes Tell Us. Odile Jacob, 1998
& Harvard University Press, 2003.

[13] Delahaye J.P. Information, complexité, hasard. Hermès, 1999 (2d edition).

[14] Delahaye J.P. Classer musiques, langues, images, textes et génomes. Pour
La Science, 316:98–103, 2004.

[15] Delahaye J.P. Complexités : Aux limites des mathématiques et de
l’informatique. Belin-Pour la Science, 2006 Odile Jacob, 1998 & Harvard
University Press, 2003.

[16] Dershowitz N. & Gurevich Y. A natural axiomatization of computability
and proof of Church’s thesis. The Bulletin of Symbolic Logic, Vol 14,
Number 3, Sept. 2008.

[17] Dijkstra E.W. The Humble Programmer. ACM Turing Lecture, 1972.
Available on the Web from:
http://www.cs.utexas.edu/ EWD/transcriptions/EWD03xx/EWD340.html

[18] Dijkstra E.W. Selected writings on computing: A personal perpective.
Springer-Verlag, 1982.

42

[19] Durand B. & Zvonkin A. Kolmogorov Complexity, in Kolmogorov’s Her-
itage in Mathematics. E. Charpentier, A. Lesne, N. Nikolski (eds). Belin,
p. 269-287, 2004 & Springer-Verlag, p. 281-300, 2007.

[20] Evangelista A. & Kjos-Hanssen B. Google distance between words. Fron-
tiers in Undergraduate Research, Univ. of Connecticut, 2006.

[21] Feller W. Introduction to probability theory and its applications, volume 1.
John Wiley, 1968 (3d edition).

[22] Ferbus-Zanda M. & Grigorieff S. Is randomness native to computer sci-
ence? In Current Trends in Theoretical Computer Science. G. Paun, G.
Rozenberg, A. Salomaa (eds.). World Scientific, pages 141–179, 2004.

[23] Ferbus-Zanda M. & Grigorieff S. Kolmogorov complexity and set theo-
retical representations of integers. Math. Logic Quarterly, 52(4):381–409,
2006.

[24] Ferbus-Zanda M. & Grigorieff S. ASM and operational algorithmic com-
pleteness of Lambda Calculus, in Studies in Honor of Yuri Gurevich. Lec-
ture Notes in Computer Science. To appear.

[25] Ferbus-Zanda M. Duality: Logic, Computer Science and Boolean Algebras.
Soon submitted.

[26] Ferbus-Zanda M. Logic and Information System: Cybernetics, Cognition
Theory and Psychoanalysis. Soon submitted.

[27] Kolmogorov A.N. Grundbegriffe der Wahscheinlichkeitsrechnung. Springer-
Verlag, 1933. English translation: Foundations of the Theory of Probability,
Chelsea, 1956.

[28] Kolmogorov A.N. Three approaches to the quantitative definition of infor-
mation. Problems Inform. Transmission, 1(1):1–7, 1965.

[29] Kolmogorov A.N. Combinatorial foundation of information theory and the
calculus of probability. Russian Math. Surveys, 38(4):29–40, 1983.

[30] Li M., Chen X., Li X., Ma B. & Vitányi P. The similarity metrics. 14th
ACM-SIAM Symposium on Discrete Algorithms, 2003.

[31] Li M. & Vitányi P. An introduction to Kolmogorov Complexity & its ap-
plications. Springer, 2d Edition, 1997.

[32] Shannon C.E. The mathematical theory of communication. Bell System
Tech. J., 27:379–423, 1948.

[33] Solomonoff R. A formal theory of inductive inference, part I. Information
and control, 7:1–22, 1964.

[34] Solomonoff R. A formal theory of inductive inference, part II. Information
and control, 7:224–254, 1964.

43

