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Abstract

When events of (time) temporal point processes are too close to each other

they can be erased by dead-time effects. Among various possible mechanisms

of dead-time, the output dead-time is the most important. Dead-time effects

modify the statistical properties of point processes and some of these modifi-

cations are (analyzed) analyzed in this paper. To do so, we note that a point

process is defined by the distance between its successive points called life-time

which (constitute) constitutes a discrete time positive signal. The dead-time

mechanism is a system which transforms such a signal into another (of the

same nature) discrete time positive signal. Except in very specific cases this

transformation cannot be expressed in closed form. We show however that it

can be written in a recursive form analogous to the state representation of sys-

tems. By using this recursion, various statistical properties of point processes

with dead-time are analyzed in computer experiments. In this study we fo-

cus on the probability distribution of the intervals between points and the

coincidence function which describes the second-order properties of the point

process. For the rare processes where theoretical calculations are possible there

is an excellent agreement between experiment and theory.

Some key words. Point processes, statistical modeling, signal represen-

tation, nonlinear signal processing, life-time.

1Unité mixte de recherche (UMR 8506) du Centre national de la recherche scientifique
(CNRS), de l’École supérieure d’électricité (Suplec) et de l’Université de Paris-Sud 11 (UPS).
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1 Introduction

Dead-time (DT) effects appear in a large number of physical phenomena and, in

the time domain, they are the counterpart of band limitation in the frequency

domain. As any physical system cannot pass arbitrarily high frequencies, so it

cannot distinguish too close time instants.

The purpose of this paper is to analyze DT effects on Point Processes (PP).

Such effects have been discussed in many papers originating from different sci-

entific fields such as, for example, Particle Physics [Delotto et al. (1964),

Muller (1973), Muller (1974)], Optical Communications [Bédard (1967), Saleh

(1977), Teich and Vanucci (1976), Vanucci and Teich (1981)] or Signal Process-

ing [Gruner and Johnson (2001)].

(In its principle the) The problem can be stated as follows: the DT effect

transforms an input PP P into an output PP P ′ according to a specific mech-

anism in which some points of P are erased. The problem is then to deduce

some properties of P ′ from the structure of the transformation and from the

statistics of P. Except in some very specific cases, the complete theoretical so-

lution of this problem is almost impossible to obtain. As a consequence we are

obliged to limit the theoretical analysis to certain elementary properties and

to carry out an experimental analysis (for example) by computer simulation.

A (time) temporal PP is a sequence of random instants and the distances

between successive points are positive random variables (RV) called life-times.

These distances can be considered as the values of a discrete time positive

random signal xi and the statistical properties of the PP are equivalent to

those of xi. In particular if the signal xi is strictly white, which means that

the RVs xi are independent and identically distributed (IID), the PP is a

renewal PP.

(After the DT effect the input PP P defined by xi is transformed into an

output PP P ′ defined by another signal yi, and the transformation of xi into

yi is defined by the DT mechanism.)

The input PP P defined by xi is transformed by the DT effect which

erases some of its points into another PP P ′ called output PP. This PP is

defined by another signal yi, and the transformation of xi into yi is defined

by the DT mechanism. Our first purpose is to establish the input-output

relationship of the system which yields yi from xi. This transformation is in

2
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general (extremely) non-linear which makes it impossible to calculate all the

properties of yi. This is the reason why the only possible approach is the use

of computer experiments to analyze the problem.

The paper is organized as follows. In Section 2 we set the problem out in

detail and introduce some appropriate notations for its solution. In Section 3

we establish the relation between input and output for a specific model of DT

called output DT which is the most important for practical applications. These

relations are presented in the form of recursive equations and are similar to

the state equations used in (system) systems theory [see p. 193 of Picinbono

(1988)]. These recursions are non-linear and, except in some very specific

cases, the statistical properties of the output yi cannot be calculated from

those of the input xi. When theoretical calculations are impossible computer

experiments using these recursions are (in general more easily realized) usually

feasible. In particular, using this procedure, we can obtain some ( expectation)

expected values of the output yi and also its marginal probability density

function (PDF). In Sections 4 and 5 we present computer experiments with

output DT in order to visualize the transformation due to the DT. If theoretical

calculations are possible there is an excellent agreement with experimental

results. Note that the approach presented in this paper is similar to the one

appearing in [Igarashi (1994)], but the calculations are completely different.

Finally it is worth pointing out the relation between DT and the (queues)

queuing problems appearing in service systems. However the approach is quite

different because the purpose of service systems is to avoid loss of messages

while it is not possible to avoid losses of points in (presence) the presence of

DT [Bedekar and Azizoglu (1998), Gelenbe and Pujolle (1987), Hajek (1984),

Krishnan (1990)].

2 Statement of the problem and (notations)

notation

Consider a stationary PP in time P with (density) intensity µ. Its points Ti

are time instants ti. In order to simplify the presentation, we use in what

follows the expression “point ti” to express “point Ti at time ti”. A PP can be

considered as a sequence of positive RVs which are the values of the intervals

between successive points. These intervals are called life-times of order 1. Let

3
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xi be the RVs describing P defined by xi = ti− ti−1, which implies that xi > 0.

The set of RVs xi can also be considered as a positive discrete-time sta-

tionary random signal and the statistical properties of the PP P are entirely

defined from those of this signal. However the calculation of properties such

as the probability pn(T ) of counting n points Ti in an interval [t, t + T [ is in

general rather complicated [Cox and Isham (1980), Saleh (1977)] and in most

cases only a numerical approach is possible.

The DT effect erases some of these points and this yields a new PP of points

θj noted P ′. The (density) intensity λ of P ′ (satisfies obviously) obviously

satisfies λ ≤ µ. In order to associate to each ti a well defined θi we proceed as

follows. If ti is not erased we have θi = ti. Suppose furthermore that ti+1 is

erased. In this case we state θi+1 = θi = ti. This means that it is possible for a

point θi to come from distinct points ti and it is said that θi is a multiple point.

(In such case we use the expression of multiple point θi.) Let yi = θi − θi−1 be

the distance between successive points θi. (It) This is a non-negative RV which

takes the value 0 if θi is a multiple point. In conclusion the DT mechanism

associates to each ti at least one θi, and thus to each positive xi one well defined

non-negative yi.

There are several mechanisms of DT effects which transform xi into yi. The

two most important are the input and the output DTs.

In the input DT each point ti of P, erased or non-erased, generates a DT

interval [ti, ti + D[ and all the points of P arriving in this interval are erased.

It is clear that when the (density) intensity µ increases, λ decreases, and it

even tends to zero if µ → ∞, which corresponds to the classical congestion

phenomenon where all the points of P are erased and P ′ disappears. This

input DT effect is sometimes called (type II counter) the type II counter in the

statistical literature [see p. 101 of Cox and Isham (1980)]. It is analyzed in

some detail in Picinbono (2007), and henceforth no longer discussed.

The output DT, sometimes called (type I counter) the type I counter, is

more important for the applications and does not present the congestion phe-

nomenon introduced just above. It is characterized by the fact that each point

θi of P ′ generates a DT interval [θi, θi + D[ where D is a positive constant

characterizing the length of the DT, (and) such that all the points ti of P

in this interval are erased. This means that only the non-erased points of P

4
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contribute to the DT effect. In this case if µ → ∞ the PP P ′ tends to become

a periodic process, or a sequence of points [with a constant interval D between

them) θi such that the corresponding distances yi are equal to 0 or to D.

To each of these two DT effects one can associate a particular mechanism

for the transformation of the RVs xi into the RVs yi. The explicit calculation

of this transformation and of its consequences for the properties of the yis is in

general extremely complicated and in most cases only experimental approaches

are possible.

Let us present the kind of problems that can be analyzed. The PP P is

completely defined by the statistical properties of the xis. The simplest case

appears when these RVs are IID. This means that xi is a discrete-time strictly

white noise. In this situation the PP P is a renewal PP and all of its statistical

properties can be deduced from the Probability Density Function (PDF) of the

xis. If this PDF is exponential, P is a Poisson process, which is the simplest

model of PP. But the assumption that the xis are IID is often too restrictive

and we shall present examples of situations in which it is not (introduced)

required.

3 Dead-time input-output relationships

Our purpose is to study the transformation of P into P ′ (after) induced by DT

effect. The problem is (then) to calculate the system which generates the signal

yi from the signal xi for a given (mechanism of the DT effect) DT mechanism.

We shall write this system in a non-linear recursive form, analogous to a state

representation of non-linear systems, and present some consequences of this

recursive description.

Consider a point ti of P which is not erased. Let ti+p be the first point

of P (posterior to) following ti which is not erased. This means that p is the

(first) smallest positive integer such that either xi+p > D or xi+p < D but

σi,p = xi+1 +xi+2...+xi+p > D. It is this last relation which ensures that, even

if all the points of P satisfy xi < D, some of them are not erased because the

sum σi,p is greater than D. This is the case when µ → ∞ which yields that

P ′ becomes a periodic process of period D. The algorithm generating the yis

from the xis is decomposed into two parts similar to the state equation and

the observation equation, allowing to deduce the output of a system from its

5
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input.

For this purpose we introduce a signal si, called the state signal in analogy

with the state vector used in system theory. It is defined as follows: it increases

and returns to zero when ti is not erased, which appears either when xi > D

or when si > D. It is then defined by the recursion

s1 = u(D − x1)x1 , si+1 = u(D − xi+1)u(D − si − xi+1)(si + xi+1), (1)

where u(.) is the unit step function. As a result of the definition of the output

DT the signal yi is given by the recursion

y1 = u(x1−D)x1 , yi+1 = [u(xi+1−D)+u(D−xi+1)u(si+xi+1−D)](si+xi+1).

(2)

Indeed if xi+1 > D, the point ti+1 is not erased and yi+1 = si + xi+1. On the

other hand if xi+1 < D, the point ti+1 is erased (uniquely) if si + xi+1 < D.

In order to visualize the behaviour of the complete algorithm, we present

the results for nine values of xi, si and yi obtained in a computer experiment

in which xi is uniformly distributed in [0, 1] for the value D = 0.75 of the DT.

1 2 3 4 5 6 7 8 9
xi 0.4120 0.7446 0.2679 0.4399 0.9334 0.6833 0.2126 0.8392 0.6288
si 0.4120 0 0.2679 0.7079 0 0.6833 0 0 0.6288
yi 0 1.1566 0 0 1.6412 0 0.8959 0.8392 0

The erased points ti are t1, t3 t4, t6, and t9. The points not erased by the fact

that xi > D are t5 and t8 and those not erased by the effect of the sum are t2

and t7. Note that si satisfies si < D. Indeed suppose that si < D, xi < D,

and si+1 = si + xi+1 > D. It results from (1) that si+1 = 0.

Let mx and my be the mean values of xi and yi respectively. These(s)

quantities are related to the densities µ and λ of the PPs P and P ′ respectively

by

µ = 1/mx ; λ = 1/my. (3)

The mean value mx is given in the definition of the PP P. The mean value

my can easily be deduced from the algorithms (1) and (2). Indeed it results

directly from these algorithms that

N∑

i=1

xi =
N∑

i=1

yi
4
= SN , (4)

6
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where N is the number of variables xi analyzed in the experiment, or also the

number of steps of the recursions (1) and (2). The experimental estimation of

mx and my are then

m̂x = SN/N ; m̂y = SN/MN , (5)

where MN is the number of variables yi that are positive in the experiment.

It then suffices to calculate the number of yis taking the value 0, say N0, and

MN = N − N0. These values appear clearly in Table 1, and their number N0

is deduced very simply from the sequence of the yi.

From the sequences xi or yi it is possible to deduce one of the most im-

portant features concerning the PPs P and P ′ which is their marginal PDF.

In particular, as noted above, in the case of renewal PPs all their statisti-

cal properties can be deduced from this PDF. There are various ways for the

measurement of the PDF of a sequence of RVs and in what follows we use a

procedure starting from the histograms of the sequences xi or yi. (As we shall

see this yields excellent results in the case in which the analytical expression

of the PDF is known.) In the cases in which the analytical expression of the

PDF is known we shall verify an excellent agreement between analytical and

experimental results, which constitutes a test of the validity of the procedure.

For various calculations it is also interesting to know the marginal PDF of

the so called lifetime (or) of higher order. The life time of order n of a PP is the

distance between a point of the process and the nth point of the process ( pos-

terior to) following it. (If n = 1 we return to the lifetime already introduced.)

For renewal PPs these lifetimes do not yield new statistical information be-

cause the lifetimes of order n are sums of IID RVs and their (PDF) PDFs

(is a multiple convolution) are multiple convolutions of the (PDF) PDFs of

the intervals between successive points (defining completely) completely spec-

ifying the PP. These convolutions are however often difficult to be obtained

analytically, and then their experimental measurement yields (an) interesting

information on the PP.

The PDF fn(x) of the lifetime of order n of a PP defined by the stationary

signal xi appears in the expression of the coincidence function c(x) which

(describes) completely specifies the second order properties of the PP, and

in particular its spectrum as defined in Bartlett (1962) or in Cox and Isham

7
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(1980). The coincidence function of a PP is defined by the relation

Pr{[dN(θ) = 1] ∩ [dN(θ′) = 1]} = c(θ − θ′)dθdθ′, (6)

where dN(θ) is the number of points of the PP appearing in the interval

[θ, θ + dθ[. Some of its properties and the principle of its measurement are

discussed in Picinbono (2008) and here we limit the presentation to the most

fundamental properties. The basic result concerning the coincidence function

c(x) is expressed by

c(x) = λ
∞∑

n=1

fn(|x|), (7)

where λ is the (density) intensity of the PP and fn(x) the PDF of the life-

time of order n of the PP. This expression is used for the measurement of

the coincidence function as indicated in Picinbono (2008). The use of multi-

ple histograms allows us to measure the PDFs fn(x) for a finite number M

of lifetimes and we estimate c(x) by using a finite sum of M terms instead

of a series. The precision and the performance of the method is analyzed in

Picinbono (2008). In the cases in which c(x) can be calculated analytically the

results of measurements are in excellent agreement with those of the calcula-

tions. Note finally that for regular ergodic processes the coincidence function

tends to λ2 when x tends to infinity. This results from (6) and from the fact

that for such processes the RVs dN(θ) and dN(θ′) become independent when

θ − θ′ tends to infinity and satisfy Pr[dN(θ) = 1] = E[dN(θ)] = λdθ, which is

one of the definitions of the (density) intensity of a PP.

In the case of PPs obtained from output DT there is an additional property

which greatly simplifies the measurements of the coincidence function. Indeed

the fundamental property of the distances yi between points after output DT

is that they satisfy yi > D. This implies that the PDF f1(y) is equal to 0

if y < D. Similarly the PDF fk(y) is equal to 0 if y < kD. This implies

that the series (7) is always a finite sum of terms. There is one term only if

D < y < 2D, and k terms only if kD < y < (k + 1)D.

4 Output dead-time and Poisson processes

As indicated previously, Poisson processes are the simplest and also the most

important examples of PPs. Furthermore the complete calculation of the sta-

tistics (after output DT) of the PP obtained after DT effect is rather simple

8
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and it is (almost the only) a rare example where theory and experiment can

easily be compared.

A Poisson PP of (density) intensity µ is defined by the fact that the RVs

xi are IID with an exponential distribution

f(x) = µu(x) exp(−µx). (8)

(After output DT we obtain) The PP obtained after DT effect is a renewal

process and, as shown in the Appendix, the PDF of the lifetime yi is

f1(y) = u(y − D)µ exp[−µ(y − D)], (9)

where D is the (value) duration of the DT. This implies that f1(y) = f(y−D),

which means that it is simply a shifted exponential distribution. For D = 0,

yi = xi and we return to (8). We deduce from (8) and (9) that

mx = 1/µ ; my = (1 + µD)/µ = mx + D. (10)

The PDF of the lifetime of order n after DT is obtained from multiple convo-

lution of (9) and the result is

fn(y) = u(y − nD)µ
[µ(y − nD)]n−1

(n − 1)!
exp[−µ(y − nD)]. (11)

We shall now (verify) compare these results to those obtained by by com-

puter simulations. The Poisson process P is simulated by generating a se-

quence of N IID exponential RVs. For (simplification) simplicity we assume

in most of our experiments that the (density) intensity µ of P is 1. The num-

ber N is usually of the order of 106 or 107, which yields (a) good statistical

precision.

The (estimation) estimator m̂y (of my) compared to its theoretical value

my = 1 + D for various values of D is presented in the following table.

D 0 0.5 1 1.5 2 3
my 1 1.5 2 2.5 3 4
m̂y 1.0001 1.4995 2.0001 2.5002 2.9997 3.9996

This shows an excellent agreement between theory and experiment.

Let us now present some results on the PDFs and on the coincidence (func-

tions) function (measurements) estimation. In Figure 1 we present results con-

cerning the PDFs of the ( lifetime) lifetimes of order 1 to 4 of the PP obtained

9
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from a Poisson process of (density) intensity 1 after output DT of value D = 1.

The points are the results of the (measurements) estimation of these PDFs de-

duced from normalized histograms. The continuous curves represent the PDFs

defined by (11). We observe that the experimental points correspond exactly

to the theoretical values. This agreement can be considered as a test of the

correct behaviour of the algorithm yielding the lifetimes yi after dead time.

In Figure 2 we present experimental results concerning f1(y) for various

values of D. The (measurements) estimations of f1(y) are presented in semi-

logarithmic coordinates, in such a way that the experimental points must be

located on parallel straight lines corresponding to (9). This clearly appears in

the figure.

In Figure 3 we present (measurements) estimations of the coincidence func-

tion for two values of D. As previously the points correspond to experimental

(measurements) estimations and the continuous curves are deduced from (7)

and (11). Here also we observe an excellent agreement between theory and ex-

periment which confirms the validity of the algorithms calculating the output

dead time and the principle of the (measurements) estimations of the coinci-

dence function. We note also that the asymptotic value of c(x) is effectively

λ2 = 1/m2
y equal to 0.444 and 0.25 for D = 0.5 and D = 1 respectively.

5 Output dead-time and some renewal processes

As indicated previously, renewal processes are PPs in which the distances

between successive points are IID random variables. This means that the

statistical properties of such processes are completely defined by the PDF

f(x) of the lifetime of order one. Note incidentally that Poisson processes are

also renewal processes in which f(x) is given by (8). We shall now consider the

case of certain particular renewal processes which are particularly interesting

for some applications.

5.1 Erlang processees

Erlang PPs are renewal processes for which the PDF of the life time is

p(x) = 4µ2x exp(−2µx). (12)

10
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The quantity µ is the (density) intensity of the PP, inverse of the mean value

of the life time. It is another rare example where the PDF of the life time after

DT can be explicitly calculated and, as shown in the Appendix, the result is

f1(y) = µu(y − D) exp[−2µ(y − D)]g(y), (13)

where g(y) = Ay + B with

A = 2µ[1 + exp(−4µD)] ; B = 1 − 2µD − (1 + 2µD) exp(−4µD). (14)

Note that (13) and (14) show clearly that, unlike in the case of Poisson

processes, the DT effect is not simply reduced to a shift of the PDF (12).

The results of computer experiments appear in Figure 4 for various values

of D and µ = 1. Note that high values of D are analyzed because they (appear

effectively) are practically used in some neural computers [McNeill and Card

(2005)]. The continuous curves are calculated from the previous equations and

the points correspond to the experimental (measurements) estimations (in an

experiment) with 106 samples of the RXs xi. As for Poisson processes, there

is an excellent agreement between theory and experiment. We note in this

figure that for D > 2 the PDFs are approximately obtained by the shifting

of the PDF f1(y) obtained for D = 2. This is due to the fact that the term

exp(−4µD) in (14) is almost zero.

The mean value of the lifetime after output dead-time defined by the PDF

(13) and (14) is given by

my = 3/(4µ) + D + [1/(4µ)] exp(−4µD). (15)

For large values of D this mean value is approximately equal to 3/(4µ)+D. In

the following table we present some values of my given by (15) and experimental

results m̂y for the same values of D for an Erlang PP of (density) intensity

µ = 1. We observe, as in the case of Poisson processes, an excellent agreement

between theory and experimental results.

D 0 0.5 1 2 3 4 5
my 1 1.2838 1.7546 2.7501 3.7500 4.7500 5.7500
m̂y 1.0001 1.2839 1.7545 2.7495 3.7491 4.7490 5.7488

Results concerning the (measurements) estimations of coincidence func-

tions are presented in Fig. 5. For D = 0, i.e. for an Erlang PP of (density)

11
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intensity µ without DT, the coincidence function is c(x) = µ2[1−exp(−4µ|x|)].

It is (represented in the) represented by a continuous line in the figure and it

fits with the experimental points quite well. For nonzero DT there is no sim-

ple expression (of) for the coincidence function. The constant straight lines

calculated for D = 0.5 and D = 1 are the functions c(x) = 1/m2
y presented for

1.5 < x < 4, where my is given by (15). As indicated above, we verify that the

coincidence function tends to λ2, where λ = 1/my is the (density) intensity of

the PP after DT.

5.2 Renewal Processes with Uniform Distribution

In this section we suppose that the RVs xi are IID and uniformly distributed

in [0, 2[. This value is chosen in order to make a comparison with the other

PPs analyzed above. All these PPs have the same mean value (mx = 1), which

implies the same (density) intensity λ = 1.

The measured PDFs f1(y) for various values of the DT appear in Fig. 6.

The analytic expressions of these PDFs are very complicated but the experi-

mental results highlight the following points.

At first it is clear that, as in the case of Erlang processes and contrary to

the case of Poisson processes, the PDF of the life time after output DT is not

obtained by a simple shift of the PDF without DT.

It appears also that the PDFs f1(y) of yi after DT are zero outside the

intervals [D, D + 2[. This can be explained quite simply. Indeed let ti be a

non-erased point of P. The first non-erased point (posterior to) following ti

cannot be outside the interval [ti + D, ti + D + 2[. This comes from the fact

that the distance between successive points ti of the initial PP is smaller than

2, because of its uniform distribution in [0, 2[.

For D < 2 the PDF f1(y) is constant in the interval [D, 2] and decreases

approximately linearly in the interval [2, D + 2]. This means that there is

(in general) with high probability only one point erased and as a result the

(lifetimes) lifetime yi is a sum of two IID RVs xi, which introduces a triangular

PDF. Finally we observe that for D = 4, the PDF f1(y) is approximately equal

to (1/2)(−y+6) in the interval [4, 6] and zero otherwise. This structure appears

still more clearly for D > 4 and the PDF tends to be equal to (1/2)(−y+D+2)

in the interval [D, D+2] and zero otherwise. This leads to a mean value equal

12
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to D + 2/3.

This can be verified by the experimental (measurement) estimation of the

mean value yielding the results presented in the following table.

D 0 0.5 1 2 3 4 5 10
m̂y − 1 0.0001 0.2840 0.6486 1.7183 2.6572 3.6714 4.6654 9.6665

We observe that m̂y does not vary linearly in terms of D for D < 3, as it was the

case with a Poisson PP. On the contrary we have approximately m̂y = D+0.66

when D > 3.

In Fig. 7 we present some experimental results concerning the coincidence

function for two values of D: 0.5 and 1, as in figures 2 and 4. There is no closed

form expression of this function and we can only highlight some particular

points. As indicated above the coincidence function c(x) is zero for x < D and

equal to λf1(x) when D < x < 2D. We verify these points by comparing them

with the PDFs presented in Fig. 5. As in Fig. 4 we have shown the straight

line f(x) = λ2 for 2 < x < 4, where λ is the (density) intensity of the PP after

DT equal to the inverse of the mean value my presented in the previous table.

We observe in Fig. 6 that, in accordance with the theory, c(x) tends to λ2 for

large values of x.

6 Output dead-time and EAR(1) processes

The assumption of independence between successive life times, which is the

basis of the theory of renewal PPs, is too restrictive in many applications

and various models of PPs with correlated time intervals have been presented.

Among them, the best known is the exponential autoregressive (EAR) of order

one PP first introduced in [Jacobs and Lewis, 1977] and also discussed in [Cox

and Isham, 1980].

We shall (fist) first briefly recall its structure before discussing its properties

when output DT appears. Consider the signal Xk defined by the recursion

Xk = aXk−1 + BkZk, (16)

in which Bk is a Bernoulli white noise, or a sequence of IID RVs taking only

the values 0 and 1 with the probabilities 1 − α and α respectively and Zk is

a positive strictly white noise, or a sequence of IID positive RVs, independent

of the Bks and with an exponential marginal distribution. This equation is

13
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similar to the recursion defining autoregressive models, and the parameter a is

the regression coefficient. One can show that if α = 1− a the RVs Xk defined

by this recursion are positive and with an exponential marginal distribution.

They can then be used as the lifetimes of PPs. The marginal distribution of

these lifetimes are then the same as for Poisson processes, but the Poisson

character disappears because these lifetimes are no longer independent and

their covariance function γn is σ2
Xa|n|, where σ2

X is the variance of Xk. The

interest of this model of PP is its analogy with the Poisson process, in particular

if a = 0, it becomes a Poisson process.

The statistical properties of this model of PP are very difficult to obtain in

simple mathematical expressions, and this is especially true when DT effects

appear. On the other hand the computer simulation of this model is especially

simple and we shall now present some experimental results obtained with the

method used above in the case of renewal PPs.

In the following table we present the results of (measurements) estimations

of the mean value of the life time for various values of the DT D and of

the regression coefficient a. The experimental mean value is obtained from

approximately 106 samples of points of an EAR(1) process of (density) intensity

µ = 1. The first line obtained for a = 0 corresponds to a Poisson PP for which

the mean value after output DT must be equal to D + 1. The results are

similar to those presented above in the section devoted to Poisson processes.

a\D 0 0.5 1 2 3 4 5
0 1.0002 1.5005 2.0006 3.0001 4.0012 4.9992 6.0001

0.5 1.0015 1.4332 1.9128 2.9275 3.9552 4.9709 5.9822
0.7 0.9994 1.4062 1.8715 2.8882 3.9266 4.9525 5.9684
0.9 0.9995 1.3726 1.8187 2.8213 3.8775 4.9275 5.9558

We observe (on the columns) in each of the columns of this table that the

influence of the regression coefficient a is rather small, especially for large

values of D. For a better understanding of this point we shall now present

results on (PDFs measurements) PDF estimations.

Some results are presented in Fig. 8. The points correspond to (measure-

ments) estimations of the PDFs fi(y), 1 ≤ i ≤ 4 of the lifetimes of order i

after an output DT of value D = 1 and a regression coefficient a = 0.7. The

continuous curves are those appearing in Fig. 1 concerning the effect of the

same DT on a Poisson process of the same (density) intensity. We observe

14
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that for i = 1 the effect of the DT is rather small(, which explains the results

of mean values (measurements) estimations appearing in the previous table).

Note that when there is no DT (D = 0) the PDF f1(y) is exponential and does

not depend on a. On the other hand, the effect of the correlation between suc-

cessive intervals on the PDF of their sum is considerable and this appears

clearly in the difference between the continuous curves and the experimental

points. (Such an effect has an influence on the coincidence function because

of (7) and (measurements) estimations of this function are presented in Fig.

9 for a = 0.5). This appears also on the structure of the coincidence function

because of (7) and results on its estimation appear in Fig. 9 for a = 0.5. They

must be compared to those of Fig. 3 obtained with the same values of the

parameters but for a = 0, which corresponds to a Poisson process. This com-

parison highlights clearly the influence of the correlation between successive

intervals on the form of the coincidence function.

Appendix: calculations for Poisson and Erlang processes

Let P be a Poisson process of (density) intensity µ. Consider an arbitrary

non-erased point of this process chosen as the origin of the time axis. It results

from the definition of the output DT that all the points of P appearing in the

interval [0, D[ are erased because there is a non-erased point at the origin.

As a consequence the first point of P ′ posterior to the origin is located in the

interval [y, y+dy[ iff there is no point of P in the interval [D, y[ and at least one

point of P in [y, y + dy[. This yields (9). The generating function associated

with this PDF is G1(s) = exp(−sD)µ/(µ + s). It is clear that P ′ is a renewal

PP. The generating function corresponding to the life time of order n is then

Gn(s) = [G1(s)]
n. By taking its inverse Laplace transform we obtain (11).

Consider now the case of Erlang processes. There are many ways to define

them and the simplest one is by using the method of periodic erasing on

stationary Poisson processes. Consider such a PP with (density) intensity 2µ

and let denote ti its points. The PP with points t2i, which means the PP

deduced from the Poisson process by erasing all the points t2i+1, is an Erlang

process. Its (density) intensity is clearly µ and it results immediately from this

definition that the PDF of the intervals between successive points is given by

(12) which is the PDF of a sum of two IID exponential random variables.
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Consider now the effect of the output DT on such a PP. As for the calcula-

tion in the case of a Poisson process, suppose that there is a non-erased point

at the origin. Let A, B and C be the intervals [0, D[, [D, y[, and [y, y + dy[ re-

spectively, which implies y > D. Because of the construction of the Erlang PP

P from a Poisson process of (density) intensity 2µ noted PO, the first point of

P ′ after the origin is in C either if there is an even (or zero) number of points

of PO in A, 1 point of PO in B and at least 1 point of PO in C or if there is

an odd number of points of PO in A, 0 point of PO in B and at least 1 point

of PO in C. By noting that the probabilities of even or odd numbers for a

Poisson process are given by (1/2)[1+ exp(−4µD)] and (1/2)[1− exp(−4µD)]

respectively, we obtain (13) and (14).
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Figure 1: PDFs f1(y), f2(y), f3(y), f4(y) of a Poisson PP with output DT,
D = 1.
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Figure 2: PDFs f1(y) of a Poisson PP with output DT for various values of
D.
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Figure 3: Coincidence function of a Poisson PP with output DT for two values
of D.
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Figure 4: PDF f1(y) of lifetime with output DT on an Erlang process for
various values of D : 0, 0.5, 1, 2, 3, 4. Points: experiments, curves: theoretical
values given by (13) and (14)
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Figure 5: Coincidence function of an Erlang PP with output DT for two values
of D.
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Figure 6: PDF f1(y) of lifetime with output DT on a PP with uniform lifetime
for various values of D : 0, 0.5, 1, 2, 3, 4.
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Figure 7: Coincidence function of a PP with uniform distribution and output
DT for two values of D.
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Figure 8: PDFs f1(y), f2(y), f3(y), f4(y) of a EAR(1) PP with output DT,
D = 1.
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Figure 9: Coincidence function of a EAR(1) PP with output DT for two values
of D. a = 0.5
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