Robust 3D Reconstruction and Mean-Shift Clustering of Motoneurons from Serial Histological Images

Abstract : Motoneurons (MNs) are neuronal cells involved in several central nervous system (CNS) diseases. In order to develop new treatments and therapies, there is a need to understand MN organization and differentiation. Although recently developed embryo mouse models have enabled the investigation of the MN specialization process, more robust and reproducible methods are required to evaluate the topology and structure of the neuron bundles. In this article, we propose a new fully automatic approach to identify MN clusters from stained histological slices. We developed a specific workflow including inter-slice intensity normalization and slice registration for 3D volume reconstruction, which enables the segmentation, mapping and 3D visualization of MN bundles. Such tools will facilitate the understanding of MN organization, differentiation and function.
Type de document :
Communication dans un congrès
Medical Imaging and Augmented Reality (MIAR), Sep 2010, China. pp.191-199, 2010, 〈10.1007/978-3-642-15699-1〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00524109
Contributeur : Nicolas Guizard <>
Soumis le : mercredi 6 octobre 2010 - 22:35:10
Dernière modification le : samedi 19 novembre 2011 - 00:10:51
Document(s) archivé(s) le : jeudi 25 octobre 2012 - 16:35:44

Fichier

Histo_clusterization_workshop_...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Guizard, Pierrick Coupé, Nicolas Stifani, Stefano Stifani, D. Louis Collins. Robust 3D Reconstruction and Mean-Shift Clustering of Motoneurons from Serial Histological Images. Medical Imaging and Augmented Reality (MIAR), Sep 2010, China. pp.191-199, 2010, 〈10.1007/978-3-642-15699-1〉. 〈hal-00524109〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

74