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On the Stable Recovery of the Sparsest Overcomplete
Representations in Presence of Noise

Massoud Babaie-Zadeh and Christian Jutten, Fellow, IEEE

Abstract—Let x be a signal to be sparsely decomposed over a redundant
dictionary A, i.e., a sparse coefficient vector s has to be found such that
x = As. Itis known that this problem is inherently unstable against noise,
and to overcome this instability, Donoho, Elad and Temlyakov [‘“Stable re-
covery of sparse overcomplete representations in the presence of noise,”
IEEE Trans. Inf. Theory, vol. 52, no. 1, pp. 618, Jan. 2006] have proposed
to use an “approximate” decomposition, that is, a decomposition satisfying
[[x — As|| < & rather than satisfying the exact equality x = As.
Then, they have shown that if there is a decomposition with ||s||o < (1 +
M~1) /2, where M denotes the coherence of the dictionary, this decom-
position would be stable against noise. On the other hand, it is known that
a sparse decomposition with ||s||o < (1/2)spark(A) is unique. In other
words, although a decomposition with ||s||o < (1/2)spark(A) is unique,
its stability against noise has been proved only for highly more restric-
tive decompositions satisfying ||s||o < (1 + M ') /2, because usually
(1 + M~1)/2 « (1/2)spark(A). This limitation maybe had not been
very important before, because ||s||o < (1 + M ~")/2 is also the bound
which guaranties that the sparse decomposition can be found via mini-
mizing the £' norm, a classic approach for sparse decomposition. However,
with the availability of new algorithms for sparse decomposition, namely
SLO0 and robust-SL0, it would be important to know whether or not unique
sparse decompositions with (1 + M™") /2 < ||s|lo < (1/2)spark(A)
are stable. In this correspondence, we show that such decompositions are
indeed stable. In other words, we extend the stability bound from ||s||o <
(1 + M ~") /2 to the whole uniqueness range ||s||o < (1/2)spark(A).
In summary, we show that all unique sparse decompositions are stably recov-
erable. Moreover, we see that sparser decompositions are “more stable.”

Index Terms—Compressed sensing, overcomplete dictionaries, sparse
component analysis (SCA), sparse recovery, sparse signal decomposition.

I. INTRODUCTION

Let A be an n X m matrix with m > n, and consider the un-
derdetermined system of linear equations (USLE) As = x. Such a
linear system has typically infinitely many solutions, but let consider
its sparsest solution, that is, a solution sq which has as much as possible
zero components.

This problem has recently attracted a lot of attention from many dif-
ferent viewpoints. It is used, for example, in compressed sensing (CS)
[2]-[4], underdetermined sparse component analysis (SCA) and source
separation [5]—[8], atomic decomposition on overcomplete dictionaries
[9], [1], decoding real field codes [10], image deconvolution [11], [12],
image denoising [13], electromagnetic imaging and direction of arrival
(DOA) finding [14], etc.
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In atomic decomposition viewpoint [15], the columns of A are called
‘atoms’ and the matrix A is called the “dictionary” over which the
“signal,” the representation is not unique, but by the sparsest solution,
we are looking for the representation which uses as small as possible
number of atoms to represent the signal.

Sparse solutions of underdetermined linear systems would not be
useful unless positive answers can be provided for the following three
questions:

1) Uniqueness: Is such a solution unique?

2) Practical algorithm: Is it practically possible to find the sparsest
solution of an USLE?

3) Stability against noise: Doesn’t a small amount of noise result in
a completely different sparse solution?

In this correspondence we study the third question, and we gener-
alize previously available results. To better explain the problem and
our contribution, we firstly do a brief review in Section II on the avail-
able results about the above questions, and then explain in Section II-D
what our contribution is. We state then the main theorem in Section III.
Finally, a generalized result will be stated in Section IV.

II. PROBLEM STATEMENT

A. Uniqueness?

The uniqueness problem has been addressed in [14], [16], and [17],
and it has been shown that if an underdetermined linear system has a
sparse enough solution, it would be its unique sparsest solution. More

precisely:
Theorem 1 (Uniqueness [16], [17]): Let spark(A) denote the min-
imum number of columns of A that are linearly dependent, and || - ||o

denotes the £° norm of a vector (i.e., the number of its non-zero com-
ponents). Then if the USLE As = x has a solution sq for which
|Isoll, < (1/2)spark(A), it is its unique sparsest solution.

A special case of this uniqueness theorem has been stated in [14]: if
A has the unique representation property (URP), that is, if all n X n
submatrices of A are non-singular, then spark(A) = n + 1 ad hence
Isoll, < (n/2) implies that s¢ is the unique sparsest solution.

B. Practical Algorithm?

Finding the sparsest solution of an USLE can be expressed as

(Pp) :  Minimize [|s[|o subjectto As=x (1)
where || - ||o stands for the (° norm of a vector. Solving the above
problem requires a combinatorial search and is generally NP-hard.
Then, many algorithms have been proposed to indirectly solve the
problem. One of the first and most successful ideas is the idea of basis
pursuit (BP) [9], which is to replace the above problem by
(P1): Minimize ||s||+ subjectto As=x )
where ||s||1 2 >, |si| is the {' norm of s. Note that the problem P;
is convex and can be easily solved by using linear programming (LP)
techniques. Moreover, it has been shown that if the sparsest solution so
is highly sparse, then the solution of I is also the sparsest solution,
i.e., it is also the solution of Fy.
To express this property more precisely, let the columns of A be
normalized to have unit £ (Euclidean) norm. Let also define the “co-
herence” M of the dictionary A as the maximum correlation between

its atoms, that is
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where a;,¢ = 1,...,m denote the columns of A. Then:

Theorem 2 (Equivalence of Py and Py [16], [17]): If the USLE
As = x has a solution sy for which [|sol|, < (1+M™'/2), theniitis
the unique solution of both problems % and /.

In other words, if the sparsest solution satisfies [|sol|, <
(1 + M~'/2), it can be found by solving the convex program
P

Remark 1: Note that the bound on sparsity that guaranties the equiv-
alence of I and P is highly more restrictive than the bound which
guaranties the uniqueness of the sparsest solution. For example, sup-
pose that the dictionary A is constructed by concatenating two or-
thonormal bases, A = [®, ¥], and hence m = 2n. It can be easily
shown [16] that in this case the maximum possible value for M is
1/+4/n (this maximum value for M is obtained for example for con-
catenation of a Dirac and a Fourier dictionary). Consider for example
such a dictionary A with m = 1000 and » = 500, which satisfies
the URP and has the maximum possible coherence M = (1/y/n) =
1/(22.36). Then, by Theorem 1 a solution so with ||so||, < 250 is
necessarily the unique sparsest solution. However, from Theorem 2, it
is guaranteed that the sparsest solution can be found by P only where
Isolly < (14 22.36)/2, that is ||so]|, < 11.In other words, if there
is a solution sg such that among its 1000 entries there are at most 250
non-zero entries, it would be the unique sparsest solution, but we cannot
necessarily find it by solving i , unless among these 1000 entries, there
are at most 11 non-zero entries. Consequently, equivalence of P, and
P, holds only for the case there exists a “very very” sparse solution.

Remark 2: Note also that if the unique sparsest solution satisfies
(1+M7"/2) < |Isoll, < (1/2)spark(A), the above theorem does
not state that it “cannot” be found by solving P, ; it simply does not
“guarantee” that I, can recover it. In fact, from the uniqueness The-
orem 1, we know that if we find a solution 8¢ by using any method (e.g.,
Py, or even simply by a magic guess), and we see that it happens that
ISolly < (1/2)spark(A), we will know that we haye found the unique
sparsest solution.

In addition to the methods based on ¢' norm minimization, there are
other ideas for finding the sparsest solution, for example, matching pur-
suit (MP) [15] and smoothed ° (SLO) [18]. The latter method (SLO),
which has been designed in our group, tries to directly solve the Fy
problem by replacing the £° norm by a smooth approximation of it
(and hence the name “smoothed” (°). One of the motivations behind
SLO is the fact stated above: Since the equivalence of Py and P holds
only where there exist very very sparse solutions, it would probably be
better trying to solve Fy directly. Another motivation is the speed: it
has been shown [18] that SLO is highly faster than solving P .

C. Stability Against Noise?

Suppose that xo is a linear combination of a few atoms of the dic-
tionary, that is, xo = Asg, where sg is sparse. Now consider a noisy
measurement of Xq, that is, X = x¢ + n, where n denotes the noise,
and ||n||2 < <. The question of ‘stability’ [1] is then: Even for a very
small ¢, is it guaranteed that the sparse decomposition of x over the
dictionary (problem %) is not too different from the sparse decompo-
sition of xo? The answer is unfortunately no, that is, the problem I
can be too sensitive to noise [19].

To overcome this problem, it has been proposed in [1] that instead
of solving I or P, one considers solving their noise aware variants:

(Po’g) :
(Plj,g) :

st |lx—As|z <6

|lx — As||. < 6.

“
(&)

Minimize||s||o
Minimize||s||; s.t.

In other words, it has been proposed to do an “approximate” decom-
position, that is, a decomposition with ||x — As|| < é instead of the
exact decomposition x = As. These noise aware variants have to be
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solved for a sufficiently large 9, that is, for 6 > ¢ to guarantee that
the true solution sy satisfies the constraints of the above optimization
problems. Then, in [1], the authors prove that both problems I s and
P, s are stable against noise, that is, the estimation error is at worst
proportional to the noise level. More precisely, the stability of Fp s is
given by the following theorem:

Theorem 3 (Stability of Po,s; Theorem 2.1 of [1]): Let M denote
the coherence of the dictionary A. Suppose that for the sparse repre-
sentation of the noiseless signal xo = Asg we have

14+ M1

A
k2 llsolly, < =5

6)
If 89,5 denotes the result of applying Fy s on the noisy data x with
6 > £, then

e+ 6

80,5 — S S Ao
[180.5 — soll, < 1- M(2k-1)

Note that (6) implies also that the term under the square root in (7)
is positive.

The authors of [1] also prove the stability of P s for the case
lIsolly, < (1+ M 1)/4.

A noise aware variant of SLO (called robust-SL0), has already been
developed [20], which tries to solve directly I s without passing
through P 5.

O]

D. Our Contribution

As it was said in Section II-C, the stability of the problem F; s has
only been shown for the case ||sol|, < (1 + M~")/2. This sparsity
limit for stability is the same as the sparsity limit for the equivalence of
Py and P as stated in Theorem 2. Howeyver, as was stated in Remark 1
after Theorem 2, this sparsity limit is highly more restrictive than the
sparsity limit for the uniqueness of the sparse solution. In other words,
current results state that although a sparse representation with (1 +
M~'/2) < |Isoll, < (1/2)spark(A) is unique, it is not guaranteed
that I s can stably recover this representation in presence of noise.

Maybe the lack of this guarantee had not been important before, be-
cause, the classic idea for solving I%) was solving P, and the sparsity
limit for the equivalence of these two solutions is the same as the spar-
sity limit for the stability of Fy s. However, with new algorithms like
SLO or robust-SLO, one can now try to solve I% s directly and without
relying on P s. Hence, it is now important to know whether or not
sparse representations with (1 + M ™" /2) < (|sol|, < (1/2)spark(A)
are stable.

In the next section, we will show that I s is stable for the whole
sparsity range that guarantees the uniqueness, that is, I} s is stable
whenever [|so||, < (1/2)spark(A). Moreover, we will show that for
smaller ||so||, the problem is “more stable,” that is, the more sparsity,
the more stability. Finally, we will show in Section IV that this stability
not only holds for Py s, but also holds for any estimation So such that
[Solly < (1/2)spark(A) and ||x — ASol|, < 6.

III. THE MAIN THEOREM

To state the main theorems, we need first to define two notations:

e Let g = g(A) = spark(A) — 1. Then, by definition, every ¢
columns of A are linearly independent, and there is at least a set
of ¢ + 1 columns which are linearly dependent (in the literature,
the quantity ¢ is usually called “Kruskal rank™ or “k-rank” of the
matrix A). It is also obvious that ¢ < n, in which, ¢ = n corre-
sponds to the case A has the URP.

e Let of;i)n, 1 < j < ¢(A), denote the smallest singular value

among all of the submatrices of A formed by taking j columns of
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A Note that since every ¢ columns of A are linearly independent,
wehavea o > 0,V1 < j < g(A).

Moreover, it is known [21, p. 419], [22, Lemma 3] that if we add a
new column to a full-rank tall matrix, its smallest singular value de-
creases or remains the same (refer to [22] for a simple direct proof).
Therefore, oY) g a decreasing sequence in j, that is

min

(J) > 0(J+1) >0,

mln — Ymin

Vi<j<g-1 ®

We are now ready to state the following theorem.

Theorem 4 (Stability of Pys): Suppose that the noiseless
signal xo has a sparse representation xo = Aso satisfying
lsoll, < (1/2)spark(A). Let also X = Xo + n be a noisy measure-
ment of xo and ||n||z < &. If §o,s denotes the result of applying o s
on the noisy signal x with 6 > ¢, then

b+¢
0

min

[180,5 — sol], < ©)

where £ = 2||s¢||,.

Remark 1: Theorem 4 shows that I s is stable not only for
lsoll, < (1 + M~'/2), but also for the whole uniqueness range
lsoll, < (1/2)spark(A). The stability is in the sense that the es-
timation error increases at worst proportionally to the noise level.
Moreover, from (8), the upper bound on estimation error decreases or
remains the same as the sparsity increases (this is because sparser sg
means smaller ||so||,, which implies smaller ¢ and hence larger or the

14
same 0'( )

i )- In other words, sparser solutions are “more stable.”
Remark 2: The main reason for stating Theorem 4 is to provide a
stability result for the case 1 + M ™" < ¢ = 2||so]|, < spark(A),
because in this case, Theorem 3 provides no stability result. Moreover,
note that for the case £ < 1 4+ M ™', in which both bounds (7) and

(9) are applicable, (9) provides also a tighter bound than (7). This is

implied from Lemma 2.2 of [1] which states that in this case (r,(j])n >
V1—M(-1).
Proof of Theorem 4: Let define Xo s 2 ASq 5. We write
lIx0 = %o,5[l, =[lx — 1 = %o 51|,
= |l(x — ASo,5) = n|,
< |lx — ASo 5|, + ||nlf»
—_—————— =
<s <e
<5+e. (10)
On the other hand
Xo — Xo,s = A(So —80,5) =Bv (11)

where Vv is a vector composed of non-zero entries of sy — 8¢5, and B is
a submatrix of A composed of the columns of A corresponding to the
non-zero entries of sp — 8¢,s. Since 6 > &, so satisfies the constraint of
the optimization problem Fy s, and hence |80 s(|, < [|so||,. Therefore,
So — 80,5 has at most ( £ 2||s0l|, < spark(A) non-zero entries (note
that { < spark(A) means ¢ < ¢(A)). In other words, B has at most
£ < g columns, and hence (by having also in mind (8))

BvIl2 > ol 1V]l2- (12)

Noting that || v||2 = ||so — 80,s]|,, and combining the above inequality
with (11), we obtain

%0 = %o,5ll, > oianllso = 80,sll,- (13)

3

Combining (10) and (13) gives
aidullso = 8oll, <6+ (14)
which completes the proof. u

Remark 3: From (8) and { = 2||so||, < ¢(A), we may replace Jfgi)n
by its worst case to obtain the following looser bound, which does not

need knowing the value of ||so]|,:

o4«
O

Inln

15s)

lIso,s — soll, <

IV. A GENERALIZED STABILITY THEOREM

If we carefully re-examine the proof of Theorem 4, we notice that
the fact that |80 s||, < [|sol|, is not essential for obtaining the looser
bound (15). Hence, the bound (15) holds not only for the sparse re-
covery methods based on solving F% s, but also for any other estimation
So0,s (obtained from any sparse recovery algorithm or even simply from
amagic guess), provided that it satisfies ||So 5|, < (1/2)spark(A ) and
|lx — ASo,s||, < 4. In other words, not only Iy s is stable, but also
any other method for “approximate” sparse representation is stable
provided that it provides a sparse enough estimation. More precisely:

Theorem 5 (Stability of Approximate Sparse Representation): Sup-
pose that the noiseless signal xo has a sparse representation xo = Aso
satisfying ||so[|, < (1/2)spark(A). Let also X = Xy + n be a noisy
measurement of Xg and ||n||2 < =. If we have at hand an estimation
80,5 Of the sparse representation coefficients which satisfies ||$o,s||, <
(1/2)spark(A) and ||x — A& s||, < 6, then
o+«

min

16)

80,6 — soll, <

Proof: 1t is easily obtained by following the same steps as the

proof of Theorem 4: (10) and (11) still hold. We then note that

lI80,5 = solly < [I80,5lo + llsoll, < spark(A.) a7)

and hence ||80,s — sol|, < ¢(A). Consequently, instead of (12) we
write

IBll2 > o7, [V (18)

which in combination by (10) and (11) proves (16). |

Remark: Note that the condition 6 > = does not explicitly appeared

in Theorem 5, and is no more essential (while it was essential in The-

orem 4, because it was necessary to insure that Py s gives an estima-

tion satisfying [|So,s||, < o» Which was essential in the proof).

However, implicitly, the 6 in Theorem 5 cannot be too small, because

for a very small &, it is possible that there exists no 8¢ s satisfying

I — Ao s, < 5.

V. CONCLUSION

Since minimizing ¢* norm has been one of the first and most suc-
cessful ideas for finding the sparsest solution of an USLE, some theo-
retical aspects of the sparsest solution are currently too much influenced
by the /! minimization idea. Currently, with the availability of the algo-
rithms that try to find the sparse solution by means of other approaches,
e.g., SLO and robust-SLO, some of the properties of the sparsest solu-
tion need to be revisited. In this correspondence, we studied the sta-
bility of the sparsest solution, and we showed that it is stable not only
where ||so||, < (14+M™")/2, but also for the whole uniqueness range
|Isoll, < (1/2)spark(A). These results prove the practical interest of
designing (°-norm minimization algorithms, since they can provide a



good estimation from noisy data, with the weakest condition of spar-
sity.
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