H. M. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, vol.20, issue.4, pp.341-366, 2004.
DOI : 10.1093/imammb/20.4.341

C. Cheng, Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique, Blood, vol.106, issue.12, pp.3691-3698, 2005.
DOI : 10.1182/blood-2005-06-2326

C. Cheng, Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress, Circ, pp.2744-2753, 2006.

A. Decoene, Modèle hydrostatique pour lesécoulementsàlesécoulementslesécoulements`lesécoulementsà surface libre tridimensionnels et schémas numériques, 2006.

N. Khatib, S. Genieys, and V. Volpert, Atherosclerosis Initiation Modeled as an Inflammatory Process, Mathematical Modelling of Natural Phenomena, vol.2, issue.2, pp.126-141, 2007.
DOI : 10.1051/mmnp:2008022

N. Khatib, S. Genieys, B. Kazmierczak, and V. Volpert, Reaction???diffusion model of atherosclerosis development, Journal of Mathematical Biology, vol.96, issue.8
DOI : 10.1007/s00285-011-0461-1

URL : https://hal.archives-ouvertes.fr/hal-00353029

O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochimica et Biophysica Acta, vol.27, pp.229-246, 1958.
DOI : 10.1016/0006-3002(58)90330-5

O. Kedem and A. Katchalsky, A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability, The Journal of General Physiology, vol.45, issue.1, pp.143-179, 1961.
DOI : 10.1085/jgp.45.1.143

P. Libby, I nflammation in atherosclerosis, Nature, pp.868-874, 2002.

Z. Malat and A. Tedgui, Anti-inflammatory mechanisms in the vascular wall, Circ Res, vol.88, pp.877-887, 2001.

G. Meyer, R. Merval, and A. Tedgui, Effects of Pressure-Induced Stretch and Convection on Low-Density Lipoprotein and Albumin Uptake in the Rabbit Aortic Wall, Circulation Research, vol.79, issue.3, pp.532-540, 1996.
DOI : 10.1161/01.RES.79.3.532

B. Maury, Characteristics ALE Method for the Unsteady 3D Navier-Stokes Equations with a Free Surface, International Journal of Computational Fluid Dynamics, vol.30, issue.3, pp.175-188, 1996.
DOI : 10.1016/0045-7825(92)90116-2

B. Osterud and E. Bjorklid, Role of Monocytes in Atherogenesis, Physiological Reviews, vol.83, issue.4, pp.1070-1086, 2003.
DOI : 10.1152/physrev.00005.2003

G. Rappitsch and K. Perktold, Pulsatile Albumin Transport in Large Arteries: A Numerical Simulation Study, Journal of Biomechanical Engineering, vol.118, issue.4, pp.511-519, 1996.
DOI : 10.1115/1.2796038

M. Prosi, P. Zunino, K. Perktold, and A. Quarteroni, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow, Journal of Biomechanics, vol.38, issue.4, pp.903-917, 2005.
DOI : 10.1016/j.jbiomech.2004.04.024

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, 1999.

A. Quarteroni, A. Veneziani, and P. Zunino, Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1488-1511, 2002.
DOI : 10.1137/S0036142900369714

R. Ross, Atherosclerosis -an inflammatory disease, Massachussets Medical Society, vol.340, pp.115-120, 1999.

P. Zunino, Mathematical and numerical modeling of mass transfer in the vascular system, 2002.