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Linear regression through PAC-Bayesian truncation
JEAN-Y VES AUDIBERTY?, OLIVIER CATON| 34
September 11, 2011

ABSTRACT : We consider the problem of predicting as well as the besalitombi-
nation ofd given functions in least squares regression utd@rconstraints on the linear
combination. When the input distribution is known, themeatly exists an algorithm hav-
ing an expected excess risk of ordgn, wheren is the size of the training data. Without
this strong assumption, standard results often containlaphzative log »n factor, com-
plex constants involving the conditioning of the Gram matf the covariates, kurtosis
coefficients or some geometric quantity characterizingréation betweer.? and L>°-
balls and require some additional assumptions like exp@ianoments of the output.

This work provides a PAC-Bayesian shrinkage procedure witimple excess risk
bound of ordexl/n holding in expectation and in deviations, under variousiaggions.
The common surprising factor of these results is their deipland the absence of ex-
ponential moment condition on the output distribution whalchieving exponential de-
viations. The risk bounds are obtained through a PAC-Bayeanalysis on truncated
differences of losses. We also show that these results cgar@ralized to other strongly
convex loss functions.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 62J05, 62J07.

KEYWORDS. Linear regression, Generalization error, Shrinkage, B&gesian theo-
rems, Risk bounds, Robust statistics, Resistant estig)aBibbs posterior distributions,
Randomized estimators, Statistical learning theory
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INTRODUCTION

OUR STATISTICAL TASK. LetZ; = (X1,Y1),...,Z, = (X,,Y,) ben > 2
pairs of input-output and assume that each pair has beependently drawn
from the same unknown distributia®. Let X denote the input space and let the
output space be the set of real numbRrso thatP is a probability distribution
on the product spacg £ X x R. The target of learning algorithms is to predict
the outputY” associated with an inpuX for pairsZ = (X,Y’) drawn from the
distribution P. The quality of a (prediction) functioii : X — R is measured by
the least squaressk:

R(f) £ Egzup {[Y — f(X)}.

Through the paper, we assume that the output and all thegtisdfunctions we
consider are square integrable. iBebe a closed convex set Bf, andy, . . ., ¢4
bed prediction functions. Consider the regression model

d
F = {fg = 005 (61,....04) € @}.
j=1

The best functiorf* in & is defined by

= Z ) € argmln R(f). (0.1)

Such a function always exists but is not necessarily unigasides it is unknown
since the probability generating the data is unknown.

We will study the problem of predicting (at least) as well@sdtion f*. In other
words, we want to deduce from the observatidhs. . ., Z, a functionf having
with high probability a risk bounded by the minimal rigK /*) on ¥ plus a smalll
remainder term, which is typically of ordéyn. Except in particular settings (e.g.,
when® is a probability simplexandd > /n), it is known that the convergence
rate d/n cannot be improved in a minimax sense (see [25], and [27]dlated
results).

More formally, the target of the paper is to develop estimsfofor which the
excess risk is controlleph deviationsi.e., such that for an appropriate constant

SThis corresponds to the convex aggregation problem, whéstbeen widely studied by several
authors since the work of Nemirovski and Judisky [22, 18]sTarticular setting is not the topic
of this paper, but our results apply to it, and corresponti¢éominimax optimal rate fod < /n.
Ford > +/n, the minimax optimal rate of convex aggregationi$og(1 + d//n)/n, which is
not achieved by our procedure.




k > 0, for anye > 0, with probability at least — ¢,

. d + log(e!
- + log(e ).

R(f) = R(f") < (0.2)

n
Note that by integrating the deviations (using the ideriiity’ = f0+°° P(W >
t)dt which holds true for any nonnegative random varidfg Inequality (0.2)
implies
A . d+1
ER(f) ~ R(f*) < 5= —. (0.3)
In this work, we do not assume that the function
£ 2 E[Y|X = 1],

which minimizes the riskk among all possible measurable functions, belongs to
the modelF. So we might haveg™* # £ and in this case, bounds of the form

ER(f) — R(/®™) < C[R(") ~ R + 5%, (0.4)
with a constan€’ larger thanl do not even ensure thBR( f) tends toR(f*) when
n goes to infinity. This kind of bounds with > 1 have been developed to analyze
nonparametric estimators using linear approximation epam which case the
dimensiond is a function ofn chosen so that the bias terf{ f*) — R(f®9) has
the orderd/n of the estimation term (see [16] and references within).eHee
intend to assess the generalization ability of the estimaten when the model
is misspecified (namely wheR(f*) > R(f9)). Moreover we do not assume
either thafy’ — f(®9(X) and X are independent.

Notation. When© = R¢, the functionf* and the spac# will be written f;,

anddj, to emphasize thdt is the whole linear space spanneddy. . ., ¢4:

Fiin = span{p1, ..., q} and fir € argminR(f).
fETin

The Euclidean norm will simply be written ds ||, and(-, -) will be its associated
inner product. We will consider the vector valued function X — R? defined

by p(X) = [<pk(X)]Z:1, so that for any € O, we have

fo(X) = (0, p(X)).

The Gram matrix is the x d-matrix @ = E[p(X)p(X)"], and its smallest and
largest eigenvalues will respectively be writtenggs, and ¢,.... The empirical
risk of a functionf is



and for\ > 0, the ridge regression estimator 8ris defined byf(%9) = f; ...
with

H(ridge) : 2

T € argminr(fy) + 0],

where )\ is some nonnegative real parameter. In the case when0, the ridge
regressionf 9 js nothing but the empirical risk minimizei®™. In the same
way, we introduce the optimal ridge function optimizing #gected ridge risk:
f = f; with i

HEan%gg{RU@#mWHW}. (0.5)

Finally, letQ, = Q + \I be the ridge regularization @j, where! is the identity
matrix.

OUTLINE AND CONTRIBUTIONS. The paper is organized as follows. Section 1
is a survey on risk bounds in linear least squares regresslworems 1.3 and
1.5 are the results which come closer to our target. Sectipre@ents our main
result on linear least squares regression. Section 3 gsiedounds for general
loss functions from which the results of Section 2 are dekivgpendix A shows
that (0.2) cannot hold under the only assumption that thewee ofY” is finite,
even in the favorable situation whef&°? belongs tdr.

The main contribution of this paper is to show that an appad@rshrinkage
estimator involving truncated differences of losses ham@ess risk of ordef/n
(without a logarithmic factor as it appears in numerous \8fyrkoncentrating ex-
ponentially, which does not degrade when the magxis ill-conditioned or when
some ratio ofZL? and L> norms behaves badly or when the output distribution is
heavy-tailed. Our results tend to say that shrinkage anmtt#tion lead to more
robust algorithms when we consider robustness with respebe distribution of
the noise, and not to a potential contamination of the tnginliata by input-output
pairs not generated by.

1. VARIANTS OF KNOWN RESULTS

1.1. ORDINARY LEAST SQUARES AND EMPIRICAL RISK MINIMIZATION. The
ordinary least squares estimator is the most standard ohethioear least squares
regression. It minimizes the empirical risk
1< )
r(f) == Y- FG)P,

i=1



among functions it¥;, and produces

d
” o
fO9 =2 0%;,

j=1
with 6©9 = [§°¥]4_, a column vector satisfying
XT'X @) = X'y, (1.1)

whereY = [Y;]7_, andX = (¢;(Xi))1<i<n,1<j<a- It is well-known that

e the linear system (1.1) has at least one solution, and in taetset of so-
lutions is exactly{X" Y +u;u € ker X}; whereX" is the Moore-Penrose
pseudoinverse of and kerX is the kernel of the linear operatir

e X 0©9) js the (unique) orthogonal projection of the veciore R on the
image of the linear mak;

e if sup, . Var(Y|X = z) = 0 < +00, we have (see [16, Theorem 11.1])
forany Xy,..., X, inX,

E{% z”: [f(OIS)(Xi> _ f(reg)(Xi)}Q X ,Xn}
- 137 (7000 - ) < B0 < 2 g

where we recall thaf(® : » — E[Y|X = z] is the optimal regression
function, and that when this function belongsdig (i.e., f9 = f:), the
minimum term in (1.2) vanishes;

e from Pythagoras’ theorem for the (semi)nobinh — +EW?2 on the space
of the square integrable random variables,

R(f©%) — R(fi)
= E[fO(X) — fO(X)|Zy,..., Zo]" — E[fin(X) — fCI(X)]".
(1.3)

The analysis of the ordinary least squares often stopssaptint in classical sta-
tistical textbooks. (Besides, to simplify, the strong asption f9 = f; is often
made.) This can be misleading since Inequality (1.2) doesmaly ad/n upper
bound on the risk of ©9). Nevertheless the following result holds [16, Theorem
11.3].



THEOREM 1.1 If sup, .y Var(Y|X = z) = 0 < +o0 and

1779 = sup | f**Na)| < H
zeX

for someH > 0, then the truncated estimatg®® = (9 A H) v —H satisfies

(0% V H?)dlogn

ER(fQ¥) — R(f*9) < 8[R(fin) — R(f*)] + «

(1.4)

for some numerical constant

Using PAC-Bayesian inequalities, Catoni [10, Proposiio®1] has proved a
different type of results on the generalization ability/&fS).

THEOREM 1.2 LetJ C F, be such that for some positive constamtd/, M-
e there existy, € ¥ s.t. foranyzr € X,

E{exp[a’Y—fo(X)” ’X ::c} < M;

e forany fi, fo € ¥, sup,ex [ f1(z) — fo(2)] < M.
LetQ = E[p(X)p(X)T] and@ = [1 7 o(X,)¢(X:)"] be respectively the

expected and empirical Gram matr?ces.dkft@ =# 0, then there exist positive
constants’; andC; (depending only on, M and M’) such that with probability

at leastl — ¢, as soon as

{f € Fin : (f) < r(fO) + Cl%} SEE (1.5)

we have

d +log(c™") + log(d29)

R(fO) — R(fir) < Cs .

n

This result can be understood as follows. Let us assume we $@we prior
knowledge suggesting thdf;, belongs to the interior of a s&F C %, (e.g.,
a bound on the coefficients of the expansionfgf as a linear combination of
1, ..., pq). It is likely that (1.5) holds, and it is indeed proved in Qait[10,
section 5.11] that the probability that it does not hold gmesero exponentially
fast withn in the case whefi” is a Euclidean ball. If it is the case, then we know
that the excess risk is of ordéyn up to the unpleasant ratio of determinants,
which, fortunately, almost surely tendst@sn goes to infinity.

By usinglocalizedPAC-Bayes inequalities introduced in Catoni [9, 11], one ca
derive from Inequality (6.9) and Lemma 4.1 of Alquier [1] ttadlowing result.
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THEOREM 1.3 Let ¢,,;, be the smallest eigenvalue of the Gram matpx=
E[p(X)¢(X)T]. Assume that there exist a functigin € Fin, and positive con-
stantsH andC such that

[ fin = folloo < H.
and|Y| < C almost surely.

Then for an appropriate randomized estimator requiring kinewledge off;,
H and C, for anye > 0 with probability at leastl — ¢ w.r.t. the distribution

generating the observations,, . .., Z, and the randomized prediction function
f, we have
: . d10g(3qp;,) +log[(logn)e™"
R(f) = R(fin) < n(H* +C?) Log| L ue

for somex not depending od andn.

Using the result of [10, Section 5.11], one can prove thaudds result still
holds for f = f©9), but with x also depending on the determinant of the prod-
uct matrix Q. The log[log(n)] factor is unimportant and could be removed in
the special case quoted here (it comes from a union bound aidafpos-
sible temperature parameters, whereas the temperatute lcewset here to a
fixed value). The result differs from Theorem 1.2 essemntibl the fact that
the ratio of the determinants of the empirical and expectedyct matrices has
been replaced by the inverse of the smallest eigenvalueeofjtiadratic form
0 — R(Z?Zl 0,0;) — R(fi). In the case when the expected Gram matrix is
known, (e.g., in the case of a fixed design, and also in thatyfidifferent context
of transductive inference), this smallest eigenvalue @sdi to one by choosing
the quadratic form® — R(fy) — R(f;,) to define the Euclidean metric on the
parameter space.

Localized Rademacher complexities [19, 6] allow to proweftiilowing prop-
erty of the empirical risk minimizer.

THEOREM 1.4 Assume that the input representatioqX ), the set of parameters
and the outpul” are almost surely bounded, i.e., for some positive constédnt

andC,
sup [|0]] <1
6co

esssup [|p(X)| < H,

and
Y| <C as.



Letv; > --- > 1, be the eigenvalues of the Gram matfix= E[¢(X)p(X)T].
The empirical risk minimizer satisfies for any- 0, with probability at least —«:

min (h~+ V/U§f5F-§:i>hL@>—+log(5*1)

9 0<h<d

R(f®™) — R(f*) < &(H + C) -
S I{(H + C)Qrank(Q> Z 10g<8_1>’

wherex is a numerical constant.

PROOF The resultis a modified version of Theorem 6.7 in [6] appleethe linear
kernelk(u,v) = (u,v)/(H + C)?. Its proof follows the same lines as in Theorem
6.7 mutatis mutandiCorollary 5.3 and Lemma 6.5 should be used as intermedi-
ate steps instead of Theorem 5.4 and Lemma 6.6, the nonzgnoveiues of the
integral operator induced by the kernel being the nonzeyermalues of). [

When we know that the target functigfij, is inside some.* ball, it is natu-
ral to consider the empirical risk minimizer on this ball.iF allows to compare
Theorem 1.4 to excess risk bounds with respegfto

Finally, from the work of Birgé and Massart [7], we may derthe following
risk bound for the empirical risk minimizer on/z° ball (see Appendix B).

THEOREM 1.5 Assume thaff has a diameter upper bounded Byfor the L>°-
norm, i.e., for anyfi, fo in &, sup, | fi(x) — fa(x)| < H and there exists a
function f, € F satisfying the exponential moment condition:

for anyz € X, E{exp [A—lyY - fo(X)y] ‘X - x} <M, (L7
for some positive constantsand M. Let

d
. 5551 0561

P15--50d geRd—{0} H‘gHgo

where the infimum is taken with respect to all possible ortioral basis off for
the dot product(fi, fo) = Ef1(X)f2(X) (when the sef admits no basis with
exactlyd functions, we seB = +o0). Then the empirical risk minimizer satisfies
for anye > 0, with probability at leastl — e:

R(f(erm)) . R(f*) < H(Az + H2)dlog[2 + (é/n) /\n(n/d)] + 10g<8_1>’

wherex is a positive constant depending only bh



This result comes closer to what we are looking for: it givgsamential devi-
ation inequalities of order at worgdog(n/d)/n. It shows that, even if the Gram
matrix  has a very small eigenvalue, there is an algorithm satigfgiconver-
gence rate of orded log(n/d)/n. With this respect, this result is stronger than
Theorem 1.3. However there are cases in which the smallgsibwalue of@ is
of order1, while B is large (i.e.,.B >> n). In these cases, Theorem 1.3 does not
contain the logarithmic factor which appears in Theorem 1.5

1.2. FRROJECTION ESTIMATOR When the input distribution is known, an al-
ternative to the ordinary least squares estimator is tHewalg projection esti-
mator. One first finds an orthonormal basis¥gf for the dot product fi, f2) =
Efi1(X)f2(X), and then uses the projection estimator on this basis. fBzj,

if ¢1,...,¢4 form an orthonormal basis dfj,, then the projection estimator on

this basis is: .

flPro) — Z ngron ;)

j=1
with
. 1 <&
o) _ - Z Yi; (X;).
i=1

The following excess risk bound of ordéfn for this estimator is Theorem 4 in
[25] up to minor changes in the assumptions.

THEOREM 1.6 If sup, .y Var(Y|X = z) = 0% < +o0 and
17oo = sup [ f**(z)| < H < +o0,
zeX

then we have p
ER(f®) — R(fr) < (0> + H 2)5- (1.8)

1.3. FENALIZED LEAST SQUARES ESTIMATOR It is well established that pa-
rameters of the ordinary least squares estimator are ncafignunstable, and that
the phenomenon can be corrected by addindapenalty ([20, 23]). This solu-
tion has been labeled ridge regression in statistics ([RAl) consists in replacing
f(ols) by f(ridge) _ fé(ridge) with

d
9199 ¢ argmin {T(fg) + A Z 0]2},
j=1

OcRd
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where )\ is a positive parameter. The typical value)oghould be small to avoid
excessive shrinkage of the coefficients, but not too smatirder to make the
optimization task numerically more stable.

Risk bounds for this estimator can be derived from generallte concerning
penalized least squares on reproducing kernel Hilbertesp§8]), but as it is
shown in Appendix C, this ends up with complicated resultartathe desired
d/n rate only under strong assumptions.

Another popular regularizer is the" norm. This procedure is known as Lasso
[24] and is defined by

d
6(35%9) ¢ argmin {T(fg) + A Z |0j|}.
j=1

OcRd

As the L? penalty, theL! penalty shrinks the coefficients. The difference is that
for coefficients which tend to be close to zero, the shrinkagkes them equal to
zero. This allows to select relevant variables (i.e., fireljth such that; # 0).

If we assume that the regression functigff? is a linear combination of only
d* < d variables/functionsp;’s, the typical result is to prove that the risk of
the Lasso estimator fox of order+/(log d)/n is of order(d* log d) /n. Since this
quantity is much smaller thai/n, this makes a huge improvement (provided
that the sparsity assumption is true). This kind of resusisally requires strong
conditions on the eigenvalues of submatriceg)pessentially assuming that the
functionsy; are near orthogonal. We do not know to which extent theseitons
are required. However, if we do not consider the specificrélygm of Lasso, but
the model selection approach developed in [1], one can ehtregse conditions
into a single condition concerning only the minimal eigdoeaof the submatrix of

Q corresponding to relevant variables. In fact, we will ses t#tven this condition
can be removed.

1.4. CONCLUSION OF THE SURVEY Previous results clearly leave room to im-
provements. The projection estimator requires the ursteaassumption that the
input distribution is known, and the result holds only in egfation. Results using
L' or L? regularizations require strong assumptions, in partiautethe eigenval-
ues of (submatrices of). Theorem 1.1 provides @ logn)/n convergence rate
only when theR(fii,) — R(f"9) is at most of ordefdlogn)/n. Theorem 1.2
gives a different type of guarantee: th¢n is indeed achieved, but the random
ratio of determinants appearing in the bound may raise sgelarews and forbid
an explicit computation of the bound and comparison witkeobounds. Theorem
1.3 seems to indicate that the rate of convergence will beadiegl when the Gram
matrix ) is unknown and ill-conditioned. Theorem 1.4 does not putassump-
tion on () to reach thel/n rate, but requires particular boundedness constraints

11



on the output. Finally, Theorem 1.5 comes closer to what wdanking for. Yet
there is still an unwanted logarithmic factor, and the rekalds only when the
output has uniformly bounded conditional exponential motsevhich as we will
show is not necessary.

Our recent work [4] provides a risk bound for ridge regresssbowing the
benefit on the effective dimension of the shrinkage parametand being of or-
der d/n (without logarithmic factor). The work [4] also proposesabust esti-
mator for linear least squares, which satisfied/a excess risk bound without
logarithmic factor, but with constants involving severaktosis coefficients. As
discussed in Section 3.2 of [4], depending on the basis iumeand the distribu-
tion P, these kurtosis coefficients typically behave either asearigal constants
or v/d (but worse non-asymptotic behaviors of these constantalsaroccur).

Finally, several works, and in particular those cited int®ec1.1, have con-
sidered the problem of model selection where several liggaces are simultane-
ously considered, and the goal is to predict as well as thdilmestion in the union
of the linear spaces. Only a few of them considered the cameatpiits having only
finite conditional moments (and not finite conditional exeotial moments). This
is the case of [5] in the fixed design setting and [26] in theloan design setting.
The excess risk bounds there are typically of ordér with d the dimension of
the “best” linear space, but holds in expectation and egdbnivhen the optimal
regression functiorf®9 belongs to the union of linear spaces.

2. A SIMPLE TIGHT RISK BOUND FOR A SOPHISTICATECPAC-BAYES
ALGORITHM

In this section, we provide a sophisticated estimator, igaa simple theoret-
ical excess risk bound, with neither a logarithmic factar complex constants
involving the conditioning of), kurtosis coefficients or some geometric quantity
characterizing the relation betweéh and L>°-balls.

We consider that the séi is bounded so that we can define the “prior” distri-
bution 7 as the uniform distribution off (i.e., the one induced by the Lebesgue
distribution on® C R renormalized to get(F) = 1). Let A > 0 and

Wi, ) = MY = J(X)]" = [V = f1(X0)]° )

Introduce (af)
~ ™
£ =8 | i, g TG &Y
We consider the “posterior” distributiahon the setr with density:
d exp[—E(f)]
—(f) = - : (2.2)
dr " [exp[=E(f)]m(df")

12



To understand intuitively why this distribution conceméson functions with low
risk, one should think that whekis small enough] — W;(f, f') + sWi(f, f')?
is close toe="i(/:/") "and consequently

f)m)\i[}/;—f()(i)]z—i—log/ (df') exp{ - )\ZY rea)’,

and

d_ﬁ(f) ~ exp{-A YL, [Yi — f(X))*} .

dm Jexp{ =AY — (X0} (df')
The following theorem gives@&/n convergence rate for the randomized algorithm
which draws the prediction function froffiaccording to the distributiofa.

THEOREM 2.1 Assume thaff has a diameter upper bounded Byfor the L>°-
norm:

sup  [fi(z) — fo(2)| < H (2.3)
f1,fee€F,zeX

and that, for some > 0,

sup E{[Y — f*(X)*|X =2} < 0® < +o0. (2.4)

zeX

Let f be a prediction function drawn from the distributiéndefined in(2.2) and

depending on the parameter > 0. Then for any0 < ' < 1 — A(20 + H)?

ande > 0, with probability (with respect to the distributiaR®"# generating the
observationsZ, . . ., Z, and the randomized prediction functighat leastl — ¢,

we have

Cld + CQ log(25’1)

n

R(f) = R(f") < (20 + H)*

with

log ({12 2
¢y = "0 and Cy=————— and n=A(Q20+ H)
n(l—n—1n) n(l—n—1)
In particular for A = 0.32(20 + H)~? andn’ = 0.18, we get
16.6 d + 12.51og(2e 1)
- .

R(f) = R(f") < (20 + H)’
Besides iff* € argmin,_;, R(f), then with probability at least — ¢, we have

8.3d+ 12.5log(2c71)
- .

R(f) = R(f") < (20 + H)?
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PROOF This is a direct consequence of Theorem 3.5 (page 21), Letéha
(page 19) and Lemma 3.6 (page 28).

If we know thatf;;, belongs to some bounded balldi,, then one can define a
bounded’ as this ball, use the previous theorem and obtain an exsslaund
with respect tof, .

REMARK 2.1 Let us discuss this result. On the positive side, we hale.aon-
vergence rate in expectation and in deviations. It has n@aéagjarithmic factor.
It does not require any particular assumption on the sniadigenvalue of the
covariance matrix. To achieve exponential deviations, ifotmly bounded sec-
ond moment of the output knowing the input is surprisinglffisient: we do not
require the traditional exponential moment condition am dlitput. Appendix A
(page 34) argues that the uniformly bounded conditionalsg@moment assump-
tion cannot be replaced with just a bounded second momeditgaom

On the negative side, the estimator is rather complicateth Méwadays com-
puters and numerical methods, it seems impossible to geb@ goproximation
of it even when the dimensiadis small. Nevertheless, in presence of a heavy-
tailed noise distribution, it can be a way to move from the giogl risk minimizer
(which is the baseline estimator for linear regressionhmright direction (that
is in a direction in which one can find an estimator having allenask than
the one of the empirical risk minimizer). When the targebiptedict as well as
the best linear combinatiof, up to a small additive term, the estimator requires
the knowledge of & >-bounded ball in whichf;;, lies and an upper bound on
sup,cx E{[Y — fir,(X)]?|X = x}. The looser this knowledge is, the bigger the
constant in front ofl/n is. Note that the possible lack of knowledgeffando
call for a model selection algorithm, which goes beyond tegps of this work.
In practice, a careful application of (cross-)validatioleas would probably be
sufficient to select these parameters.

REMARK 2.2 The proposed randomized estimator is more complex beaclas-
sical Gibbs estimator (that is the one with exponential Wesgnvolving the em-
pirical risk). Even if the paper does not prove it, (we beati¢kat) the classical
Gibbs estimator cannot be robust to heavy-tailed noises balief is motivated
by the same arguments as the ones used in [12] to show thecelsenobustness
of the empirical mean estimator. In absence of heavy-tail@de, the classical
Gibbs estimator satisfies a similar result to Theorem 2\viergin Theorem 3.2.
Our randomized algorithm consists in drawing the predicfinction accord-
ing to 7. As usual, by convexity of the loss function, the risk of tlegedministic
estimator fueterm = [ f7(df) satisfiesR(foeer) < [ R(f)7(df), so that, after
some computations, one can prove that for any 0, with probability at least

14



Rl fooem) — R(fi) < (20 + P THIEED)

for some appropriate numerical constant 0.

REMARK 2.3 We consider a “prior” distributiom, which is a uniform distri-
bution onJ. In presence of sparsity (when only a small number of thefieoef
cients¢; in (0.1) are nonzero), alternative prior distributions (@iplace form)
are useful in fixed design regression [13, 14, 2] and in thdgandesign scenario
[15, 2]. When the coefficient vectdr is non-sparse (which is not the focus of
these works), the latter papers prové%ﬂ risk bound when the noise distribu-
tion admits at least sub-exponential tails.

REMARK 2.4 Theorem 2.1 expresses boundedness in terms di*théiameter
of the set of functiongF. Besides, (2.4) implies that the functigi®? : » —
E[Y|X = x| satisfiesf9(X) — f*(X) < o almost surely. By using Lemma
3.7 (page 23) instead of Lemma 3.6 (page 23), Theorem 2lhstds without
assuming (2.3) and (2.4), when replaci?g + H)? with

' P\/fe'fnn:sup B(f(OY = (X))

E[f(X)?]=1
2

+ W“p E([f’(X)—f”(X)P)\/ sup  E[f(X)1]

fr.freF feFinE[f(X)?]=1

The quantityV is finite when simultaneously) is bounded, and for any in
{1,...,d}, the quantitied [¢}(X)] andE{p;(X)*[Y — f*(X)]*} are finite.

3. A GENERIC LOCALIZED PAC-BAYES APPROACH

3.1. NOTATION AND SETTING. In this section, we drop the restrictions of the
linear least squares setting considered so far in ordercigsfon the ideas under-
lying the estimator and the results presented in Sectiow 2l0Tthis, we consider
that the loss incurred by predicting while the correct output ig is @(y,y’)
(and is not necessarily equal tg — ')?). The quality of a (prediction) function
f X — Ris measured by its risk

R(f) =E{{[Y. f(X)]}.

We still consider the problem of predicting (at least) adaglthe best function in
a given set of function§ (butJ is not necessarily a subset of a finite dimensional
linear space). Lef* still denote a function minimizing the risk among functions

15



in J: f* € argmin._; R(f). For simplicity, we assume that it exists. The excess
risk is defined as
R(f) = R(f) = R(J").

Let/: ZxF xF — R be afunction suchthdt”, f, f') representshow worse
f predicts thary’ on the dat& . Let us introduce the real-valued random processes
L:(f,f)—=uZ ff)andL; : (f,f) — UZ,f, f), whereZ Z,,..., Z,
denote i.i.d. random variables with distributiéh

Let 7 and7* be two (prior) probability distributions ofi. We assume the fol-
lowing integrability condition.

Condition |. For anyf € F, we have

/E{exp (f, [ )]}nﬂ'*(df/) < +00, (3.1)

7(df)
d 0. 3.2
an /fE{eXp ff’}w df’<+ (3.2)

We consider the real-valued processes

)= Ll ), (3:3)
&(5)=tog [ exp[L(7.£)] 7P, (3.4)
L(f. f') = ~nlog{E [exp(~L(/, 1) |} (35)
LA(f. f') = nlog{Eexp(L(£. 1)) | }. (3.6)
and Sﬁ(f) = log{/exp [Lﬁ(f, f’)} w*(df’)}. (3.7)

Essentially, the quantitiefs(f, ), L°(f, f) andLt(f, f') represent how worse is
the prediction fromf than fromf’ with respect to the training data or in expecta-
tion. By Jensen’s inequality, we have

L’ <nE(L) =E(L) < L*. (3.8)

The quantities (f) and &*(f) should be understood as some kind of (empirical
or expected) excess risk of the prediction functjowith respect to an implicit
reference induced by the integral o&r

SWhile the natural choice in the least squares setting((&,Y), f, f') = [Y — f(X)]? —
[Y — f/(X)]?, we will see that for heavy-tailed outputs, it is preferaiol€onsider the following
soft-truncated version of it, up to a scaling factor- 0: /((X,Y), f, f/) = T(A[(Y — f(X))? —
(Y — f'(X))?]), with T'(z) = —log(1 — x + 2 /2). Equality (3.4, page 16) corresponds to (2.1,
page 12) with this choice of functiaghand for the choice™ = .
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For a distributiorp on & absolutely continuous w.r., let dp denote the den-
s
sity of p w.r.t. 7. For any real-valued (measurable) functiodefined orn such
that [ exp[h(f)]n(df) < +oo, we define the distribution;, on ¥ by its density:

dry . exp[h(f)]

an D= Tophl P ¢9
We will use the posterior distribution:
di dr_g exp[=€(f)]
) = =) = _ _ 3.10
== Jexp[=E(f)]m(df") ¢19

Finally, for anys > 0, we will use the following measures of the size (or com-
plexity) of F around the target function:

7(8) = —tog{ [ exp[~BR()] 7 (df) }
and

1(8B) = —log{ [ exp[-BR(f)]7(df) }.

3.2. THE LOCALIZED PAC-BAYES BOUND. With the notation introduced in
the previous section, we have the following risk bound foy eandomized esti-
mator.

THEOREM 3.1 Assume thatr, 7%, F and ¢ satisfy the integrability conditions
(3.1)and (3.2, page 16)Letp be a (posterior) probability distribution off ad-
mitting a density with respect todepending orfy, . . ., Z,,. Letf be a prediction
function drawn from the distributiop. Then for anyy > 0, ~* > 0 ande > 0,
with probability (with respect to the distributioR®"p generating the observa-
tions 7y, . .., Z, and the randomized prediction functigh at leastl — &:

[ 26D+ RO )~ 2R ()
<27 - 36) ~ ou{ [ exp[-(1)]atan)}

+ log {Zﬁ; (f)] +2 log(2€_1). (3.11)

PROOF. See Section 4.2 (page 26)]

Some extra work will be needed to prove that Inequality (Bdrbvides an
upper bound on the excess rlRKf) of the estimatof. As we will see in the next
sections, despite theyR(f) term and provided that is sufficiently small, the
left-hand side will be essentially lower bounded byR(f), while, by choosing
p = 7, the estimator does not appear in the right-hand side.
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3.3. APPLICATION UNDER AN EXPONENTIAL MOMENT CONDITION The es-
timator proposed in Section 2 and Theorem 3.1 seems rathatunal (or at least
complicated) at first sight. The goal of this section is twofd-irst it shows that
under exponential moment conditions (i.e., stronger apsioms than the ones in
Theorem 2.1 when the linear least square setting is corslfieone can have a
much simpler estimator than the one consisting in drawingatfon according to
the distribution (2.2) witl€ given by (2.1) and yet still obtain @&/n convergence
rate. Secondly it illustrates Theorem 3.1 in a different amdpler way than the
one we will use to prove Theorem 2.1.

In this section, we consider the following variance and claxipy assumptions.

Condition V1. There exist\ > 0 and0 < n < 1 such that for any function

feF we haveiE{exp{AZ[Y,f(X)}}} < +o0,

eu{eon{a 155000 -] )

<
and log{E{eXp{_)‘[g[Y’f(Xﬂ — 0y, f*(X)H }}}
< A1 =n)[R(f) = R(f7)]-

Condition C. There exist a probability distribution, and constant® > 0 and
G > 0 such that forany < a < g,

(Jesp{—alRU) ~ RGN _ (G
log (f xp{—BIR() —R(f*)]}W(df)) =Dl g( « )

THEOREM 3.2 Assume tha¥'1 and C are satisfied. Let(®S) be the probability
distribution onJ defined by its density

di®™9 - exp{-AYL, (Y, f(X0)])
dm - Jexp{=AXL Y, G Yr(df)
whereX > 0 and the distributionr are those appearing respectively\i and C.
Let f € F be a function drawn according to this Gibbs distributionefnifor any

n’ such thatd < " < 1 — n (wheren is the constant appearing 1) and any
e > 0, with probability at least — ¢, we have

CiD + Chlog(2e1)

R(f) = R(f) <

n
with an
log( (;n)) 2
O] = and C) =
oAl =n—1) 2T Ml-n—7)



PROOF We considel [(X,Y), f, f'] = M{[Y, f(X)] — £[Y, f'(X)]}, where
A is the constant appearing in the variance assumption. Letkesy* = 0 and
let 7* be the Dirac distribution af*: 7*({ f*}) = 1. Then Condition V1 implies
Condition | (page 16) and we can apply Theorem 3.1. We have

P ﬁ(Gibbs)’
1(f) = —nlog{E [ exp[~L(f. )] }
&:(f) = nlog{E[exo[L(f, )] |}

and Assumption V1 leads to:

tog{E[exp[L(f, /]| } < A1+ mIR() - R()]
and log{E exp[~L(f, /)] | } < =A(1L = )[R(f) = R(f")].

Thus choosing = 7, (3.11) gives

[An(1 —n) —~]R(f) < =I(v) + J[)\n(l + ?7)} + 2log(2e71).

Accordingly by the complexity assumption, for< An(1 + ), we get
_ . 1
At = ) = 21 < D1og (FUED) 4 p10g(a),

which implies the announced result by reparameterizatedar(gy = Ann’). O
Let us conclude this section by mentioning settings in wlaissumptions V1
and C are satisfied.

LEMMA 3.3 Let © be a bounded convex setRf, and g, ..., ¢, bed square
integrable prediction functions. Assume that

d
F= {f9 = Zejgpm(elaaed) € 6}7
j=1

7 is the uniform distribution or¥ (i.e., the one coming from the uniform distri-
bution on©®), and that there exish < b, < b, such that for anyy € R, the
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function@y Ly {(y,y") admits almost everywhere a second derivative such
that, (y,y') — £, (y’) is measurable, for any,y’ € R, by < £(y’) < by, and

!

o) = ) + 0~ )iy + [ " =y

Then ConditiorC holds for the above uniform, G = /b2 /b; and D = d.
Besides wherf* = fi, (i.e.,ming R = minycga R(fy)), ConditionC holds for
the above uniformr, G = by /by and D = d/2.

PROOF. See Section 4.3 (page 3Q)]

REMARK 3.1 In particular, for the least squares 166g, /) = (y — /)%, we have
b; = by = 2 so that condition C holds with the uniform distribution o, D = d
andG = 1, and withD = d/2 andG = 1 when f* = f.

LEMMA 3.4 Assume that the loss functidnsatisfies the conditions stated in
Lemma 3.3. Assume moreover that there exist 0 and M > 0 such that for any
z e X,

E{exp[A_l}lZ’Y [f(X)] ” ’X = x} < M.

Assume thaff is convex and has a diameter upper boundedbjor the L>°-
norm:

sup | fi(z) — foz)| < H.
f1,f2€F,2eX

In this case Conditiov1 holds for any(\, ) such that
A2

n> o exp [M2 exp(HbQ/A)]

and0 < X\ < (2AH)~!is small enough to ensurg< 1.

PROOF See Section 4.4 (page 31
3.4. APPLICATION WITHOUT EXPONENTIAL MOMENT CONDITION. Whenwe
do not have finite exponential moments as assumed by Conditio(page 18),
e.g., whenE{exp{\{{[Y, f(X)] — (Y, f*(X)]}}} = 400 for any A > 0 and
some functionf in &, we cannot apply Theorem 3.1 witH(X,Y), f, f'] =

MUY, f(X)] = L[V, f/(X)] } (because of thé* term). However, we can apply it
to the soft truncated excess loss

XYY ST = T(MIY (0] = 1Y, £(X)] ),
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with T'(x) = — log(1—x+x2/2). This section provides a result similar to Theorem
3.2 in which condition V1 is replaced by the following condit.

Condition V2. For any functionf, the random variablg[Y, f(X)]—([Y, f*(X)]
Is square integrable and there exiBts> 0 such that for any functiorf,

el [i[y. ()] 2y, (0] ]} < VIRG) - RO

THEOREM 3.5 Assume that Conditioné2 above andC (page 18) are satisfied.
Let0 < A < V~-!and

XY, ] = T(A{Z[Y, FOXO] =Y, £/(X)] }), (3.12)

with

T(x) = —log(l — z + 2*/2). (3.13)
Let f € F be a function drawn according to the distributiégndefined in(3.10,
page 17)with & defined in(3.4, page 16and* = r the distribution appearing
in ConditionC. Then for any0 < ' < 1 — AV ande > 0, with probability at
leastl — ¢, we have

CiD + Chlog(2e1)
n

R(f)—R(f) <V

2
—— % and n=)\V.
nL—n—1) 2 p—n—my O v

with

In particular, for A\ = 0.32V ! and»n’ = 0.18, we get

16.6D + 12.5log(2v/Ge 1)

R() - R <V L

PROOF We apply Theorem 3.1 fargiven by (3.12) and™ = . Let us define,
foranyf, f' € 5, W(f, f) = )\{@[Y, FO] =]V, f/(X)] } Sincelog u < u—1
for anyu > 0, we have

L= -nlogE(1—W +W?/2) > n(E(W) — E(W?)/2).
Moreover, from Assumption V2,

M <SE[W(f, )] +EW (S, *)?] < NVR(f) + NVR(f),

(3.14)
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hence, by introducing = AV,

L(f, 1) = An | R(f) = R(J") = \VVR(f) = AVR(S)|

= An[(1=)R(f) = (1 + )RS (3.15)
Noting that
1 l+u+% 14ut+? u?
T = = 2 — 2 <1 —
we see that

L* = n1og{E|exp[T(W)] | } < n[E(W) + E(W2)/2].

Using (3.14) and stilh = AV, we get

LA(f.f') < Wn|R(P) = R(f) +nR(f) + nR(f)]
= An(L+n)R(f) = An(1 = n)R(f"),
and B
E(f) < M1+ n)R(f) = I(An(1 = n)). (3.16)
Plugging (3.15) and (3.16) in (3.11) fpr= 7, we obtain

(1 =) = )R + [ = n(1+ )] [ R n(d)
<IY) =I(y) +I(An(L+n)) = I(An(L —n)) + 2log(2e7).

By the complexity assumption, choosing= An(1 +n) andy < An(1 —n), we
get
R 2
[An(1—n) —~]R(f) < Dlog <G%) +2log(2e7),

hence the desired result by considering Ann’ withn’ <1 —n. O

REMARK 3.2 The estimator seems abnormally complicated at firstt.sighs
remark aims at explaining why we were not able to considemalgr estimator.

In Section 3.3, in which we consider the exponential momemniddion V1,
we took¢[(X,Y), f, f'] = ML[Y, f(X)] — £[Y, f(X)]} and7* as the Dirac
distribution atf*. For these choices, one can easily check thabes not depend
on f*.
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In the absence of an exponential moment condition, we cacmdider the
function £[(X,Y), f, f'] = MUL[Y, f(X)] — £[Y, f/(X)]} but have instead to
use a truncated version. The truncation functiorof Theorem 3.5 can be re-
placed by the simpler function — (uV —M) A M for some appropriate constant
M > 0 but this leads to a bound with worse constants, withoutyesathplifying
the algorithm. The precise choi@&r) = —log(1 — = + 2?/2) comes from the
remarkable property: there exist second order polynonfaland P* such that
P+(u) < exp|T(u)] < P*(u) andP’(u)P*(u) < 14 O(u*) for u — 0, which are
reasonable properties to ask in order to ensure that (hi8);c@nsequently (3.11),
are tight.

Besides, if we take as in (3.12) withT" a truncation function and* as the
Dirac distribution atf*, then7 would depend onf*, and is consequently not
observable. This is the reason why we do not consides the Dirac distribution
at /*, but7* = x. This leads to the estimator considered in Theorems 3.5 dnd 2

REMARK 3.3 Theorem 3.5 still holds for the same randomized estinmatehich
(3.13, page 21) is replaced with
T(x) = log(1 + x + 2%/2).

Condition V2 holds under weak assumptions as illustratedhleyfollowing
lemma.

LEMMA 3.6 Consider the least squares settifgy, ') = (y —y')%. Assume that
JF is convex and has a diameter upper boundedibfpr the Z>°-norm:

sup  |fi(z) — fao(z)| < H
f1,f2€F,2€X

and that for some > 0, we have
sup E{[Y — f*(X)*|X =2} < 0® < +o0. (3.17)

zeX

Then ConditiorV2 holds forV = (20 + H)?.
PROOF See Section 4.5 (page 33)]

LEMMA 3.7 Consider the least squares settifgy, ') = (y —y')%. Assume that
F (i.e., @) is bounded and that for anye {1,...,d}, E[¢;(X)*] < + ocoand
E{p;(X)*[Y — f*(X)]*} < +oc. Then Conditionv2 holds for

he {2\/ o S, BUCOY = (X))

(E[f(X)?]=1

o B0 = OOR), [ ELSX)]
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PROOF. See Section 4.6 (page 33)]

4. PROOFS

4.1. MAIN IDEAS OF THE PROOFS The goal of this section is to explain the key
ingredients appearing in the proofs which both allow to mbtaub-exponential
tails for the excess risk under a non-exponential momeninagson and get rid
of the logarithmic factor in the excess risk bound.

4.1.1. Sub-exponential tails under a non-exponential nmasumption via trun-
cation. Let us start with the idea allowing us to prove exponentiaiqunali-
ties under just a moment assumption (instead of the traditiexponential mo-
ment assumption). To understand it, we can consider theafappy) simplistic
1-dimensional situation in which we ha#e= R and the marginal distribution of
¢1(X) is the Dirac distribution at. In this case, the risk of the prediction function
foisR(fo) =E[(Y—0)*] =E[(Y —EY)?] + (EY —6)?, so that the least squares
regression problem boils down to the estimation of the mdaheooutput vari-
able. If we only assume that admits a finite second moment, sBf?) < 1, it
is not clear whether for any > 0, it is possible to find such that with probability
at leastl — 2¢,
. 7y2 _ clog(e™!)

R(fy) = R(f) = (B(Y) = 0)" < — == (4.1)
for some numerical constant Indeed, from Chebyshev’s inequality, the trivial
choiced = % > i, Y; just satisfies: with probability at least— 2¢,

R(f;) — RUY) < —

’
ne

which is far from the objective (4.1) for small confidencedksv(considee =
exp(—+/n) for instance). The key idea is thus to average (dofficatedvalues
of the outputs. This is performed by taking

L A2Y?
=S log 1+, i),
ng( Fav4 2

with \ = \/M (this mean estimator thus depends on the confidence level

n

parameter). Since we have
2

A A2
log E exp(nAf) = nlog (1 + AE(Y) + ?E(Y2)) <nAE(Y) + n
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the exponential Chebyshev's inequality (see Lemma 4.1jaguees that with
probability at least — ¢, we haven\ (6 —E(Y)) < nA; + log(¢71'), hence

2log(e71)

0—E(Y) -

ReplacingY” by —Y in the previous argument, we obtain that with probability at
leastl — ¢, we have

1 n )\2}/;2 )\2 .
nA{E(Y)Jrﬁ;log (1—)\YZ—+ )} §n?+log(5 ).

2
Since—log(1 + = + x?/2) < log(1 — = + x?/2), this implies

2log(e~1)
—

E(Y)—6 <

The two previous inequalities imply Inequality (4.1) (fer= 2), showing that
sub-exponential tails are achievable even when we onlynasshat the random
variable admits a finite second moment (see [12] for moreildeta the robust
estimation of the mean of a random variable).

4.1.2. Localized PAC-Bayesian inequalities to eliminal@garithm factor. The
analysis of statistical inference generally relies on ufyoeinding the supremum
of an empirical procesg indexed by the functions in a modé&l One central tool
to obtain these bounds are the concentration inequalkiealternative approach,
called the PAC-Bayesian one, consists in using the entexpality

E exp <SUP{/P(df)X(f) - K(p, W')}) = /W'(df)EeXp (x(f). 4.2)

peEM

whereM is the set of probability distributions ghand K (p, 7’) is the Kullback-
Leibler divergence (whose definition is recalled in (4.4g@29)) betweep and
some fixed distribution’.

Let7 : ¥ — R be an observable process such that for AmyJ, we have

Eexp (x(f)) <1

for x(f) = AR(f) — 7(f)] and some\ > 0. Then, as a consequence of (4.2), for
anye > 0, with probability at least — ¢, for any distributiorp on F,

[otanrin < [ papicn + HETEED g
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The left-hand side quantity represents the expected rigknespect to the distri-
bution p. The question is now how to use (4.3) to design a posteridrilaligion
p for which [ p(df)R(f) is guaranteed to be small. The constraint on the choice
of (p,n’) is thatp should be computable from the data (e.g., it cannot depend on
R) and7’ should not depend on the data: it may dependRofin contrast with
Bayesian prior distributions!) but not anSimple choices likép, 7') = (9 4+, 0 4+)
or (p, ') = (67,65) for f ¢ argmin,;7(f), whereg, denotes the Dirac distri-
bution at the functiory, are thus forbidden (while they would have led to small
right-hand side of (4.3)).

For fixedn’, the posterior distribution minimizing the right-hand esidf (4.3)
is p = n’_,;. It is computable from the data if’ is. Without prior knowledge,
this would lead to take a “flat” distribution fat’ (e.g., the one induced by the
Lebesgue measure in the case of a m@daéfined by a bounded parameter set in
some Euclidean space). The resulting Kullback-Leibleedjence might be very
large as it compares a distribution with a sharp peak (cdretel on functions
f € Fforwhich7(f)) with a flat one.

To get a smaller Kullback-Leibler divergence, we can takstg@or and prior
distributions which are peaked around almost the sameiamdthis can be done
by taking = and p respectively concentrated arourftd and f. More precisely,
one can take posterior distributions of the fopm= 7_,; for some\ > 0 and a
“flat” distribution = computable without knowing neither the distributiGngen-
erating the data nor the training data (in particutamust not depend o or
7), and a “localized” prior distribution’ = 7n_gg for somes > 0. The pa-
rameters\ and 8 controlling the sharpness of the peaks at argmji(f)* and
argmin,.57(f) should be taken such that the peaks overlap (to ensure tat th
Kullback-Leibler divergence is small) and are in the sametsharp enough (to
ensure that/ p(df)r(f) is small). The use of the “localized” prior distribution
7' = m_ggr implies an additional technical difficulty as one needs toted the
divergenceX (p, m_sr). This is achieved by writing

K(pvn-an) = K(p.m) +10g ([ im0 w(an) +5 [ () olap),
and controlling the new logarithmic term through PAC-Bagiesnequalities.
4.2. RROOF OF THEOREM 3.1. We use the standard way of obtaining PAC

bounds through upper bounds on Laplace transforms of apptepandom vari-
ables. This argument is synthesized in the following result

LEMMA 4.1 For anye > 0 and any real-valued random variablé such that
Elexp(V)] < 1, with probability at least — ¢, we have

V <log(s™).
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Let Vi (f) = / [D(F. ) + 2 R pldf) — 2 B(f)
— I (v") +3(7) + log (/eXp[—é(f)}ﬂ(df)) —log l% (f)}

andV, = —log < / exp[—&( f)]w(df)) +log ( / exp[—Sﬁ(fﬂﬂ(df))

To prove the theorem, according to Lemma 4.1, it suffices dogthat

E{fexp[vl(]g)}p(df)} <1 and E[fexp(\/g)p(df)} <1
These two inequalities are proved in the following two satdi

4.2.1. Proof otE{f exp [W(f)]p(df)} < 1. From Jensen’s inequality, we have

JI2G.0 47 RO i)
= [N+ ROV ) + [ [P D)~ LG D]l
< / [L(f, )+ 7" R()]7" . p(df) + log / exp[L’(f, ) = L(f, N]7" . p(df).
From Jensen’s inequality again,
~&(f) = ~tog [ explL(F. £ ()
——tog [ exp[L(F.) 42 BN pld) —1og [ exp[— RO ()
<= [ILG )+ 7 BN pldf) + 7).
From the two previous inequalities, we get
W(H < [ LD +7 RO ald)
+log [exp[L(F.7) ~ L(F. Pl (df) = 1R(F)
=) 490) +log [ expl-E()])atan) - 1os| (7).
= [ B0+ 7 R gl
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+log [exp[L(F.1) - L(F. P (df) ~ 1 R(F)
-7 (7)+90) - £~ g | 07
<tog [ explL'(7, 1) - L(F. D) ()
)+ 3(7) ~ log [%(f)]
—tog (e[, - LA D]t +1og| TR,
hence, by using Fubini's inequality and the equality
E{exp[~L(f, )] } = exp[-L°(f, )],
we obtainE / exp[Vi(f)] p(df)
<& [ [enl.0) ~ LDl )1l
= [ ([l 1)~ LDt )t =1

4.2.2. Proof ofE [f eXp(Vz)p(df)] < 1. ltrelies on the following result.

LEMMA 4.2 Let W be a real-valued measurable function defined on a product
spaceA; x A, and letu; and s be probability distributions on respectively,
andAs.

o if Eq oy {log [Eaz~u2 {exp[-W(a1, as)] }] } < 400, then we have

B {log[B {exp[—wmbam 1}

log{anM [exp Eqy o W(al,aQ)H }

-1

o if W>0o0nA, xAy,andE,,.,, {anm (ay,as) 71} < +00, then
—1 -1

]EGINMI {EG2NM2 |: alva? } } EazNﬂz { a1~p1 [W(a17a2)] } .

PROOF

28



e Let A be a measurable space awddenote the set of probability distribu-
tions onA. The Kullback-Leibler divergence between a distributicamd a
distributiony is

dp .
K(p, ,LL) 'y EQNP log [@(a)] if p < p, (4.4)
+00 otherwise,

dp
Whered denotes as usual the densityoiv.r.t. u. The Kullback-Leibler

1
divergence satisfies the duality formula (see, e.g., [10ede&9]): for any
real-valued measurable functiérdefined onA,

plélj\f/t {EaNp a) + K(p, 1 } = —logE,., {exp [—h(a)}}. (4.5)

By using twice (4.5) and Fubini’'s theorem, we have
_Ea1~u1 {log{Ea2~M2 |:8Xp [_W(ala a2)]] }}
= EalNMl {H;f {Ea2~p [W(ala GQ)} + K(p, MQ)}}
< inf {Barniy |Easey [Wlar, a2)] + K (p. o) |

= —log{E@Nm [exp{—Eale [W(ar,as)] }] }

e By using twice (4.5) and the first assertion of Lemma 4.2, wesha

Baren {Burmi [Wian,02)] "}

= Eayn {exp{—10g[Buyp {oxp[—log W(ar, @) }] }}
= By, {exp{ir;f [Em,, {log[W(a1,a2)] } + K (p, MQ)] }}
gh;f{exp[[((p, 12)] By {eXp{EGQNP [1og (a1, az) ]}}

< nplf{exp (K (p, 12)] exp{EaM {1og [Emm (a1, az) ]}}

— exp{ir;f{Eazwp 108 { B,y [Wiar, )] }| + K (p,12) } }

= exp{ — 10g{ B,y {exp|—l0g{Earp, [Wlar, ) ]}}}
= By, {Emm [W(ay, )] } 0
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From Lemma 4.2 and Fubini’s theorem, sinéadoes not depend of1 we have

B[ [ ex(vao(as)| = Elexp(va)]

exp

[ewl-ex) nanef | [ew(-&] “df)r}
g/eXp[—Sﬁ(fﬂ”(dﬁ /E[exp(é(f))]_lﬂ'(df)}_l
[—€5(f)

{
= / exp[— { [ / explL (df’)]lw(df)}l
- /exp[—eﬁ(f)]ﬁ(df){/{/ exp [L¥(f, f’)}w*(df’)ylw(df)}_l 1L

This concludes the proof that for any> 0, v* > 0 ande > 0, with probability
(with respect to the distributio?®” p generating the observatioss, . . ., Z,, and
the randomized prediction functigf) at leastl — 2¢:

Vi(f) + Vo < 2log(e 7).

4.3. ROOF OFLEMMA 3.3. Let us look atF from the point of view off*.
Precisely leSg.(O, 1) be the sphere dk? centered at the origin and with radius

1and J
S = {Zﬁjapj, (91, e ,Hd) € SRd(O, 1)}
j=1

Introduce
Q= {¢ES;3U>OS.t.f*+u¢E?}.

Forany¢ € Q, letuy = sup{u > 0 : f*+ u¢p € F}. Sincer is the uniform
distribution on the convex sét(i.e., the one coming from the uniform distribution
on ©), we have

/exp{—a[R f) = R(f)]}m(df)
/(;59/ exp{ —a[R(f* + u¢p) — (f*)]}ud_ldudgb.
Letc, = E[¢(X)0(f*(X))] anday = E[¢*(X)]. Since
£ € argmin, sE{ &y [ f(X)] },
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we havec, > 0 (andc, = 0 if both —¢ and ¢ belong tof2). Moreover from
Taylor’s expansion,

biagu? byayu?

< R(f"+ud) — R(f*) —ucy <
Introduce

Jo¢ exp{—alucy + Lbragu®] juttdu
f()% exp{—ﬁ[u% + %bg%uQ] }ud—ldu'
For any0 < a < 3, we have

Vg =

[ exp{—=alR(f) — R(f")|}n(df) it
Jexp{=BIR(f) — R(f*)|}n(df) ~ oes

For any( > 1, by a change of variable,

b < Cdfo exp{ alCucy + 1b1a¢(’2 2 }ud Ldu
I exp{—Bucy + 1brayu?] bud—1du
< Cdsg% exp{ Blucy + sbaayu’] — afCucy + 1brag( u’l}.

Taking¢ = +/(b283)/(bicr) whene, = 0 and¢ = +/(b283)/(bix) V (8 /) other-
wise, we obtain), < ¢?, hence
C—llog ( 26) whensupc, = 0,

(f eXp{ af R R(f*)]}ﬂ(df)) 2 " ha pe

dlog (4/ blg i) otherwise,

4.4. RROOF OFLEMMA 3.4. For—(2AH)™' < X < (2AH)™!, introduce the
random variables

which proves the announced result.

F=f(X) = (X)),
Q:@@ﬂ+@LFS/h—w@wtmw—Fmﬁ

L= MUY, F)— (Y, F),

and the quantities
M?A? exp(Hby/A)

27/7(L — [NAH)
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and A
A= Hby/2 + Alog(M) = 5 log{ M? exp[Hb,/(2A)] }.

From Taylor-Lagrange formula, we have
L=M\F — F")Q.
SinceE[exp(|Q[/A) | X] < M exp[Hby/(2A)], Lemma D.2 gives

M?a? exp(Hby/A)

1og{E[exp{oz[Q — E(Q|X)]/A} |X}} < 2/7(1 — |af)

forany—1 < a < 1, and .
IE(QX)| < A (4.6)

By consideringy = A\[f(x) — f*(z)] € [—_1/2; 1/2] for fixed z € X, we get
log{E[eXp (L — E(L|X)]| X} } < N2(F — F*)2a()). (4.7)
Let us put moreover
L =E(L|X) 4+ a(\N(F — F*)2.
Since—(24H) ™' < A < (24H)~', we havel < |\|HA + a(A\)A\2H? <V with

v = A/(2A) + M?exp(Hby/A)/(4y/7). SinceL — E(L) = L — E(L|X) +
E(L|X) — E(L), by using Lemma D.1, (4.7) and (4.6), we obtain

og{E[ex [~ (]| } < og{E[exp[ 2~ B(D)] |} + NaB[(F - )7
< E(L?)g(¥) + Na(NE[(F - F*Y]
< NE[(F — F*)?] [A%(V) + a(V)],

with g(u) = [exp(u) — 1 —u] /u?. Computations show that for ary(2AH)~! <
A< (24H),

A2

A%g(V) + a(X) < = exp [Mz exp (Hbz/A)} :

4
Consequently, for any (2AH)~! <\ < (2AH)~!, we have
1og{E [exp{)\[g(Y, F) — (Y, F*)]}] }
< AR(f) = R(f)] + NE[(F — F*)?] AZQ exp [M2 exp (Hbs /A)} .
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Now it remains to notice tha [(F' — F*)?] < 2[R(f) — R(f*)]/b:. Indeed con-
sider the functiony(t) = R(f*+t(f — f*)) — R(f*), wheref € F andt € [0;1].
From the definition off* and the conveX|ty off, we hava;ﬁ > 0 on|0; 1], imply-

ing that¢'(0) > 0. Besidesp(1) = ¢(0) + ¢'(0) + [ (1 — t)¢" (t)dt, whereg"(t)
is defined as
#'(t) = B{[£(X) - f"(x >} Bl -0+ 100}
> BE{[f(X) ~ (0]},
implying that
DE(F ~ F) < R(J) ~ R(P"). (48)

4.5. PRROOF OFLEMMA 3.6. We have

B({[y - SR - Y - (0P
=E([f(X) - /(X)] 2{2 Y = F O]+ () = FO])
= E([f*(X) = FOOPLE()Y — £(X)P|X)

(Y — fOOIX)[F(X) = FOO)+ [£(X) = FOOP})
(1F(X) = FOP{40® + 40| 1*(X) = FOXO)| + [/*(X) = F(OP})
(I (X) = FX)P(20 + H)?)

(20 + HP[R(f) = R(f")],

where the last inequality is the usual relation betweensxdek and.? distance
using the convexity off (see above (4.8) for a proof).

<
<

4.6. RROOF OFLEMMA 3.7. Let8 = {s € Fy, : E[s(X)?] = 1}. Using the
triangular inequality id.?, we get

B({ly - f(OF = [ - F(X)PY)
- E({2[f*(X) — FEOIY = P01+ () - FOOPY)
< (2 wa:{ {(X) = FOORIY = (00} + \/B{If(X) = 7))
< |2/E(r \/supE< SO - F(XOP)

seS8
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V— {2 \/supE(s(X)z[Y — (X))

sES

" \/ﬁg;@([f(m — F0P) \/supE[3< X)ﬂ} )

where the last inequality is the usual relation betweensxdsk and.? distance
using the convexity off (see above (4.8) for a proof).

A. UNIFORMLY BOUNDED CONDITIONAL VARIANCE IS NECESSARY TO
REACH d/n RATE

In this section, we show that the target (0.3) cannot be exhithwve just assume
that Y has a finite variance and that the functionsdirare bounded. For this
purpose, the following result givesid./n lower bound whenl = 2. (Note that
it is not implied by the,/log(1 + d/+/n)/n lower bound for convex aggregation,
proved in [25], and in slightly weaker forms in [18, 27], senthe latter bound is
shown ford > /n.)

For this, consider an input spag@epartitioned into two set&; andX,: X =
X1 UXp andX; N Xy = 0. Let p1(x) = Tuex, andga(x) = Tex,. LetTF =
{01@1 + 02()02; (01, 02) c [—1, 1]2}

THEOREMA.1 For any estimatorf and any training set size > 1, we have

1
4y/n’

where the supremum is taken with respect to all probabilgyridhutions such that
f®9 ¢ FandVar(Y) < 1.

sup {E[R(f)] = R(f)} 2 (A1)

PROOF Let 8 satisfyingd < 5 < 1 be some parameter to be chosen later.
Let P,, o € {—,+}, be two probability distributions off x R such that for any
oe{—,+}

Po(xl) =1-5,

P,(Y=0X=2x)=1 foranyz € Xy,
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P(,(Y:%\X:x):ﬂ

=1-P, (Y——\/—_|X—x> foranyz € Xs.

One can easily check that for anye {—,+}, Varp (Y) =1 - < 1 and
9 (z) = o, € F. To prove Theorem A.1, it suffices to prove (A.1) when the
supremum is taken among € {P_, P, }. This is done by applying Theorem
8.2 of [3]. Indeed, the paifP_, P, ) forms a(1, 5, 3)-hypercube in the sense of
Definition 8.2 with edge discrepancy of type | (see (8.5)113.and (10.20) for

q = 2):d; = 1. We obtain

sup  {E[R(f)] — R(f*)} > B(1 - Bv/n),

Pe{P_,P.}

which gives the desired result by takifg= 1/(2y/n). O

B. EMPIRICAL RISK MINIMIZATION ON A BALL : ANALYSIS DERIVED FROM
THE WORK OFBIRGE AND MASSART

We will use the following covering number upper bound [21iimea 1]

LEMMA B.1 If ¥ has a diameter upper bounded &% for the L>°-norm (i.e.,

supy, rerzex [f1(x) — fo(x)] < H), then forany) < § < H, there exists a set
F# C 7, of cardinality|F#| < (3H/d)¢ such that for anyf € J there exists
g € 3% such that]| f — gl < 6.

We apply a slightly improved version of Theorem 5 in Birgé anassart [7].
First for homogeneity purpose, we modify Assumption M2 hylaeing the con-
dition “o? > D/n" by “o? > B?D /n” where the constanB is the one appearing
in (5.3) of [7]. This modifies Theorem 5 of [7] to the extenttth&1” should be
replaced with ¥ B2”. Our second modification is to remove the assumption that
W, and X; are independent. A careful look at the proof shows that theltstill
holds when (5.2) is replaced by: for amy= X, andm > 2

EJM™(W)|X; = 2] < anA™, foralli=1,...,n
We considetV =Y — f*(X),v(z, f) = (y— [ (2))*, Az, u,v) = |u(z ) v(@)l,
and M (w) = 2(|w| + H). From (1.7), for allm > 2, we haveE{[(2(|W]| +
H)™X =] < Z[4M(A+ H)]™. Now consider’ andr such that Assumption
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M2 of [7] holds for D = d. Inequality (5.8) forr = 1/2 of [7] implies that

for anyv > k4(A* + H?)log(2B' + B'r\/d/n), with probability at least —
—nv

XD [/@(AZ + HQ)] ’

R(FE™) = R(F) + (%) = (&™) < (B{ [f*™(X) = (0]} v v) /2

for some large enough constandepending onV/. Now from Proposition 1 of
[7] and Lemma B.1, one can take eithigr= 6 andrv/d = VBorB = 3y/n/d
andr = 1. By usingE{ [ fe™(X) — f+(X)]*} < R(f©™) — R(f*) (sinceT is
convex andf* is the orthogonal projection &f on &), andr(f*) — r(f(e"“)) >0
(by definition of /™), the desired result can be derived.

Theorem 1.5 provides &/n rate provided that the geometrical quantiyis
at most of ordemn. Inequality (3.2) of [7] allows to bracke® in terms of B =
how this qdahtity behaves and to illustrate some of the pteseresults, let us
give the following simple example.

Example 1. Let A4, ..., A, be a partition ofX, i.e., X = u?zlAj. Now con-
sider the indicator functiong; = 14,5 = 1,...,d: p; is equal tol on A4;
and zero elsewhere. Consider thdtand Y are independent and that is a
Gaussian random variable with meémnd variancer?. In this situation;f;;, =
flrea) — Z?zl f;. According to Theorem 1.1, if we know an upper bouidn

| /09|, = 6, we have that the truncated estimat$'s) A H) v —H satisfies

(0% V H?)dlogn

ER(/) - R(fin) < vt~

for some numerical constant Let us now apply Theorem C.1. Introdupe =
P(X € Aj) andpy,, = min; p;. We have)) = (Eapj(X)apk(X))M = Diag(p;),

X = 1 and|#*|| = 6+/d. We can taked = ¢ and M = 2. From Theorem C.1,
for A = dL./n, as soon a3 < pu,, the ridge regression estimator satisfies with
probability at least — &:

292 ,2
R — R(fy) < vt (024 20255 ®.D)
n MPmin
for some numerical constart Whend is large, the term{d?£?) /(npmi) is felt,
and leads to suboptimal rates. Specifically, sipgg < 1/d, the r.h.s. of (B.1)
is greater tham* /n?, which is much larger thad/n whend is much larger than
n'/3.1f Y is not Gaussian but almost surely uniformly boundedby. +oc, then
the randomized estimator proposed in Theorem 1.3 satisfeesiter property:
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with probability at least — ¢,

)d 10g(3ppi,) + log((logn)e™)

R(f) = Rfin) < w(H* + C° ;

J

for some numerical constant In this example, one can check that= B’ =
1/Pmin Wherep,, = min; P(X € A;). As long asp,in > 1/n, the target (0.2)
is reached from Corollary 1.5. Otherwise, without this asgtion, the rate is in
(dlog(n/d))/n.1

C. RIDGE REGRESSION ANALYSIS FROM THE WORK OICAPONNETTO AND
DE VITO

From [8], one can derive the following risk bound for the mdgstimator.
THEOREM C.1 Let ¢,,;, be the smallest eigenvalue of tlie< d-product matrix
Q = (Ep;(X)pr(X)), - Let K = sup,cx D25, v;(w)?. Let [|0*] be the Eu-
clidean norm of the vector of parametersfif = ijl 07p;. Let0 < e < 1/2
and L, = log?(e~'). Assume that for any € X,

E{exp[|Y — fia (X)1/4] | X =} < M.

For A = (KdL.)/n, if A < gmm, the ridge regression estimator satisfies with
probability at leastl — ¢:

R(J9) — R(f) < "0

(A2 L2 9<£€|!9*|12) (C.1)

min

for some positive constartdepending only oi/.

PROOF. One can check thai™%®) € argmin, ., 7(f)+A S0, || f]1%, whered
is the reproducing kernel Hilbert space associated wittkéneel K : (z,2') —
>4 wi(@)pr(a’). Introducef™ € argmin, ., R(f)+ A>T, || I3 Letus use
Theorem 4 in [8] and the notation defined in their Section5e2¢ be the column
vector of functiongy;]%_,, Diag(a;) denote the diagonal x d-matrix whosej-
th element on the diagonal ig, andI, be thed x d-identity matrix. LetU and
q,---,qq be such thalUT = I and@ = UDiag(q;)U". We havefy, = ¢T6*
andf™ = 7(Q + AI)~'Q0*, hence

fir, = [N = " UDiag(\/(g; + \) U 6"

After some computations, we obtain that the residual, rsitoation error and
effective dimension respectively satisfi()\) < qA—%He*HQ, B(N) < qé—%H@*HZ,
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andN()\) < d. The result is obtained by noticing that the leading term&#) of
[8] are A(\) and the term with the effective dimensidif\). [

The dependence in the sample sizis correct sincd /n is known to be mini-
max optimal. The dependence on the dimengiginot optimal, as it is observed
in the example given page 36. Besides the high probabilijmddC.1) holds only
for a regularization parameterdepending on the confidence levelSo we do
not have a single estimator satisfying a PAC bound for evenfidence level.
Finally the dependence on the confidence level is largergkpacted. It contains
an unusual square. The example given page 36 illustratesdimeC.1.

D. SOME STANDARD UPPER BOUNDS ON LOELAPLACE TRANSFORMS

LEMMA D.1 LetV be a random variable almost surely boundedbby R. Let
g:u [exp(u) — 1 —u] /ul.

log{E[eXp [V - E(V)H } <E(V?)g(b).

PROOF. Sinceg is an increasing function, we hay¢l’) < ¢(b). By using the
inequalitylog(1 + u) < u, we obtain

1og{E [exp = E(V)H } = —E(V) + log{E[1+ V + V2g(V)]}
<E[VZg(V)] <E(V?)g(b).
0

LEMMA D.2 LetV be a real-valued random variable such tfafexp (|V])] <
M for someM > 0. Then we havéE(V)| < log M, and for any—1 < «a < 1,

log{E[exp{oz [V —E(V)] }] } < %.

PROOF First note that by Jensen’s inequality, we h#él’)| < log(M). By
usinglog(u) < w — 1 and Stirling’s formula, for any-1 < o < 1, we have

log{E [exp{oz [V —E(V)] }] } <E [exp{oz [V —E(V)] }] } —1
—E{exp{a[V ~E(V)]} - 1-a[V —E(V)] |
< E{exp[lal[V ~E(V)[] - 1 - |||V — E(V)|}

< E{exp“V —E(V) }}sup{ [exp(|aju) — 1 — |a|u] exp(—u)}

u>0
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