The Transferable Belief Model for reliability analysis of systems with data uncertainties and failure dependencies

Mohamed Sallak, Walter Schön, Felipe Aguirre

To cite this version:

Transferable Belief Model for incorporating failure dependencies in reliability analysis under data uncertainties

Felipe Aguirre, Mohamed Sallak and Walter Schön
Compiegne University of Technology, UMR CNRS 6599
Heudiasyc BP 20529, 60205 Compiegne cedex, France
Email: (felipe.aguirre-martinez,mohamed.sallak,walter.schon)@utc.fr

Abstract—Dealing with uncertainty introduces an increased level of complexity to reliability analysis problems. The uncertainties associated to reliability studies usually arise from the difficulty to account for incomplete or imprecise reliability data and complex failure dependencies. This paper introduces the Transferable Belief Model (TBM) to the reliability analysis so that epistemic uncertainties can be taken into account as well as aleatory uncertainties. Two approaches are used to represent failure dependencies of components: an implicit and an explicit approach. The TBM model is then compared to an interval-probability model by highlighting the different characteristics of the results obtained.

Keywords: Transferable Belief Model (TBM), Dempster-Shafer (D-S) theory, reliability analysis, epistemic uncertainty, failures dependencies, interval-probability.

I. INTRODUCTION

Uncertainties are one of the most challenging problems in reliability studies of complex systems [1]–[3]. They are present in any reliability evaluation due to randomness in the failure phenomena and difficulty to obtain failure data of components with scarce failures. Uncertainties have been classified into two subtypes: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty is also called irreducible and inherent uncertainty. It is the inherent variation associated with the physical system or the environment under consideration [4]. It represents, for example, the inherent variability of failures and repair times of equipment. Epistemic uncertainty is subjective and reducible because it arises from lack of knowledge or data. It represents uncertainty of the outcome due to lack of knowledge or information in any phase or activity of the modeling process [4]. That’s why it is important that aleatory and epistemic uncertainties are properly accounted for in reliability studies.

Classical probability theory is adapted only for aleatory uncertainty [5]. Epistemic uncertainty can be handled by possibility theory, Dempster-Shafer (D-S) theory, interval analysis, and imprecise probabilities [6]. The possibility theory is usually employed to quantify only epistemic uncertainty. The D-S theory can be considered a generalization of classical probability theory and also as a generalization of possibility theory [1]. The D-S theory has several interpretations such as the Transferable Belief Model (TBM). The TBM is completely dissociated from any model based on probability functions and it separates the credal and the decision levels [7]. Hence, in this work the TBM is proposed to handle both aleatory and epistemic uncertainties in order to evaluate the system’s reliability. This work only takes into account the credal level, but the decision level can also be studied in our case.

Furthermore, in many reliability studies, the failure of system’s components are assumed to be independent. However, in reality, different types of dependencies can be involved, making the results of reliability evaluations wrong. Fricks and Trivedi [8] have proposed a classification of failure dependencies (Common Cause Failures (CCFs), standby dependencies, etc.). There are two principal methods to model failure dependencies in system’s reliability analysis: implicit and explicit methods [9]. The implicit method corresponds to the case of the use of joint probabilities, correlations values or conditional probabilities [10]. In explicit methods, the causes of dependencies are explicitly included into the system’s logic model [10] as a block in Reliability Block Diagrams (RBDs) or a basic event in Fault Trees (FTs). Here, it is proposed to use both approaches in the TBM model reliability analysis.

Section II treats the related work using the Dempster-Shafer theory in reliability analysis. Section III presents the basic notions of the TBM model. Next, the proposed TBM approach is presented in section IV. In section V, failure dependencies are treated using an implicit and explicit approach. The TBM and interval-probability models are applied and a comparison between both approaches is given. Finally, the paper finishes with some conclusions and perspectives.

II. RELATED WORK

The first work introducing D-S theory in reliability analysis was presented by Dempster and Kong [11]. They proposed the use of a FT as a particular case of the tree of cliques to propagate beliefs through the tree. The prior beliefs of basic events of the tree represent prior failure beliefs of components. The second work was presented by Guth in 1991 [12] and concerned FT analysis. Guth represented the belief that a basic event A happens with failure probability p by three valued logic (True, False and unknown) and proposed truth tables with the three valued logic in order to propagate the beliefs in FT. Chin et al. [13] proposed to use evidence theory to capture the non-specificity and conflict features in judgment
experts. The beliefs are then propagated in a FT in order
to diagnose the fault distribution of web service process.
Walley [6] and Kozin et al. [14] turned out that in some
applications the use of Dempster’s combination rule led to
incorrect results. Almond [15] developed graphical models
using belief functions and applied this graphical model in
FT analysis. Rakowsky et al. [16] have modeled uncertainties
in Reliability-Centered Maintenance (RCM). They used belief
and plausibility measures to express the uncertainties of ex-
erts in reasoning. They also use weighted recommendations
during the RCM process. This approach was applied to a fire
detection and extinguishing system. Pashazadeh et al. [17]
proposed reliability assessment under epistemic uncertainty
using D-S and vague set theories. They eliminated the gap
between the representation of combined evidence and the way
of representing the components reliability in the Vague Set
theory. Simon et al. [18] have proposed to combine Bayesian
networks and D-S theory to study the reliability of systems
under imprecise reliability data. They used evidential networks
and junction tree inference algorithms.

Furthermore, there is very little work treating the use of
TBM theory to model failures dependencies in reliability
studies. Almond [15] proposed to treat the problem of de-
pendence between basic events by using pivotal variables
and information dependence breaking theorem. Walley [6]
proposed an example which indicated that D-S theory is not
suited to treat dependency in the case of total ignorance of
dependencies. Hence, an original TBM reliability analysis is
proposed in order to take into account failures dependencies
in reliability evaluations.

III. BASIC NOTIONS OF TRANSFERABLE BELIEF MODEL
(TBM)

The TBM was introduced by Smets and Kennes [19] as a
subjectivist interpretation of D-S theory. The D-S theory, also
called evidence theory, was first described by Dempster in the
1960’s [20] with the study of upper and lower probabilities and
extended by Shafer in 1976 [21]. The TBM represents a unique
framework for representing and manipulating aleatory and
epistemic uncertainties. It is based on two levels: the credal
level, where available pieces of information are represented
by belief functions; and the pignistic or decision level, where
masses are transformed into pignistic probabilities. It was
originally applied in information fusion [22], [23], pattern
recognition [24], [25] and diagnostic [26]. In a finite discrete
space, the TBM can be interpreted as a generalization of
probability theory where probabilities can be assigned to
any subsets instead of singletons only. In this section, basic
notions, extended operations, and terminology of TBM are
explained. For a more detailed exposition see [19]–[21].

A. Frame of discernment

The frame of discernment \(\Omega \) is the definition domain of
the variable of interest \(\mathbf{x} \). It consists of all mutually exclusive
elementary propositions. It can be viewed as the sample
space in probability theory. As an example, let’s consider
\(\Omega = \{x_1, x_2\} \) be a frame of discernment. Then, \(x_1 \) and \(x_2 \)
are elementary propositions and mutually exclusive to each
other. The power set \(2^\Omega \) is the set of all the subsets of \(\Omega \noiding itself, i.e.: \(2^\Omega = \{\{\}, \{x_1\}, \{x_2\}, \Omega\} \).

B. Basic Probability Assignment (BPA)

A Basic Probability Assignment (BPA) on \(\Omega \), also called
Basic Belief Assignment (BBA), is a function, \(m^\Omega : 2^\Omega \rightarrow
[0, 1] \), such that:

\[
\sum_{A \in 2^\Omega} m^\Omega(A) = 1
\]

The number \(m^\Omega(A) \) represents the belief value assigned to
the subset \(A \) of \(\Omega \). The subsets \(A \subset \Omega \) such that \(m^\Omega(A) > 0 \)
are called focal sets of \(m^\Omega \). A BPA having a singleton \(\{x\} \)
\((x \in \Omega) \) as a unique focal set represents full knowledge.
A BPA having only singletons as focal sets is equivalent to
probabilities. A BPA having \(\Omega \) as a unique focal set represents
complete ignorance and is called vacuous.

C. Belief and plausibility functions

The belief \(Bel \) and plausibility \(Pl \) functions for a subset \(A \)
are defined as following:

\[
Bel(A) = \sum_{B \subseteq A} m^\Omega(B) \\
Pl(A) = \sum_{B \supseteq A \neq \emptyset} m^\Omega(B) \quad \forall A \subseteq \Omega, \forall B \subseteq \Omega
\]

\(Bel(A) \) measures the total assignment of belief to \(A \)
and all its subsets. The plausibility function measures the
extent to which we fail to disbelieve the hypothesis of \(A \).
\([Bel(A), Pl(A)]\) can be viewed as the confidence interval
which describes the uncertainty of \(A \).

D. Combination rules

Consider two distinct pieces of evidence \(m^\Omega_i \) and \(m^\Omega_j \)
from two different sources \(i \) and \(j \). In TBM, the principal
combination rules are the conjunctive and disjunctive combination
rules [21]. The Dempster rule of combination is defined as
the conjunctive combination of two normal BPAs followed by
normalization. This rule is also called the orthogonal sum
of evidence. It is defined as follows:

\[
m^\Omega_{i\cap j}(H) = \frac{\sum_{A \cap B = H, \forall A, B \subseteq \Omega} m^\Omega_i(A)m^\Omega_j(B)}{1 - k}
\]

With: \(k = \sum_{A \cap B = \emptyset, \forall A, B \subseteq \Omega} m^\Omega_i(A)m^\Omega_j(B) \)

The number defined by \(k \) is called the conflict factor
between the two pieces of evidence \(i \) and \(j \).
As mentioned by some reliability researchers [6], [14], Demp-
ster combination rule sometimes generates wrong conclusions
in the case of serious conflict between evidences. In this case,
it is recommended to investigate the given information or to
collect more information. Several combination rules have been
defined and they often differ by the way the evidence mass of
an empty intersection is allocated [27], [28].
E. Operations on Joint Spaces

Consider a BPA $m^{\Omega_{x}\Omega_{y}}$ defined on the Cartesian product $\Omega_{x}\Omega_{y}$. The marginal BPA $m^{\Omega_{x}\Omega_{y}|\Omega_{x}}$ on Ω_{x} is defined by:

$$m^{\Omega_{x}\Omega_{y}|\Omega_{x}}(A) = \sum_{B \subseteq \Omega_{x}\Omega_{y}/Proj(B|\Omega_{x})=A} m^{\Omega_{x}\Omega_{y}}(B)$$

(4)

∀ A \subseteq \Omega_{x}

Where $Proj(B \perp \Omega_{x}) = \{x \in \Omega_{x}/\exists y \in \Omega_{y}, (x, y) \in B\}$. The inverse operation is a particular instance of vacuous extension. Consider a BPA $m^{\Omega_{x}}$ defined on Ω_{x}. Its vacuous extension on $\Omega_{x}\Omega_{y}$ is defined by:

$$m^{\Omega_{x}\Omega_{y}}(B) = \left\{ \begin{array}{ll}
 m^{\Omega_{x}}(A) & \text{if } B = A \times \Omega_{y} \\
 0 & \text{otherwise.}
\end{array} \right.$$

(5)

Let $m^{\Omega_{x}\Omega_{y}}$ denote a BPA on $\Omega_{x}\Omega_{y}$ (with underlying variables $\langle x, y \rangle$), and $m^{\Omega_{x}\Omega_{y}}$ the BPA on $\Omega_{x}\Omega_{y}$ with single focal set $\Omega_{x}\{y\}$. The conditional BPA of x given $y = y$ is defined as:

$$m^{\Omega_{x}|y} = (m^{\Omega_{x}\Omega_{y}} \oplus m^{\Omega_{x}\Omega_{y}}|\Omega_{x})$$

(6)

The conditioning operation for belief functions has the same meaning as in Probability Theory. However, it also admits an inverse operation called the ballooning extension. Let $m^{\Omega_{x}}[B]$ denote the conditional BPA on Ω_{x}, given B. The ballooning extension of $m^{\Omega_{x}}[B]$ on $\Omega_{x}\Omega_{y}$ is the least committed BPA, whose conditioning on B yields $m^{\Omega_{x}[y]}$. It is obtained as:

$$m^{\Omega_{x}[y]}[B]^\Omega_{x}\Omega_{y}(C) = 1_{C} \cdot m^{\Omega_{x}[B]}(A)$$

(7)

1_{C} \begin{array}{ll}
 1 & \text{if } C = (B \times A) \cup (B^{c} \times \Omega_{x}) \\
 0 & \text{otherwise.}
\end{array}

∀ C \subseteq \Omega_{x}\Omega_{y}

In order to optimize the TBM operations and saving time and space, some computation algorithms were given in [15], [29].

IV. THE PROPOSED TBM RELIABILITY ANALYSIS

In this paper, both system and components are allowed to take only two possible states: either working (W) or failed (F) (Binary State assumption). Using BPAs of functioning and failure of system components, the goal is to obtain the reliability of the whole system in the case of a parallel system.

A. Frame of discernment

Due to the Binary State assumption, the frame of discernment Ω_{i} of a component i is given by: $\Omega_{i} = \{F_{i}, W_{i}\}$. F_{i} and W_{i} represent respectively the failure and the working states of the component i. The frame of discernment of components 1, 2 and S are then: $\Omega_{1} = \{F_{1}, W_{1}\}$, $\Omega_{2} = \{F_{2}, W_{2}\}$ and $\Omega_{S} = \{F_{S}, W_{S}\}$.

B. BPAs, belief and plausibility functions of system’s components

BPAs structure is more natural and intuitive way to express one’s degree of belief in a hypothesis where only partial evidence is available. In reliability studies, based on expert’s opinion and experimental data, BPAs of components are computed directly and this computation needs some reliability expert’s efforts. The BPAs assigned to system’s components by expert’s opinion and experimental data can be then expressed by:

$$m^{\Omega_{i}}(\{F_{i}\}) = f_{i}$$

$$m^{\Omega_{i}}(\{W_{i}\}) = w_{i} ; \ i = 1, 2$$

(8)

Using Eq. (2), belief and plausibility functions of components 1 and 2 are computed. For example, If component 1 is considered, then: $Bel(\{F_{1}\}) = m^{\Omega_{i}}(\{F_{1}\})$ and $Pl(\{F_{1}\}) = m^{\Omega_{i}}(\{F_{1}\}) + m^{\Omega_{i}}(\{W_{1}\})$.

C. Evaluation of BPAs, beliefs and plausibility functions of the whole system S

First, the vacuous extension is used to extend $m^{\Omega_{1}}$ and $m^{\Omega_{2}}$ to the product space $\Omega_{1}\Omega_{2}\Omega_{S}$. The resulting BPAs are combined using the Dempster combination rule. Then, the resulting BPAs are combined with $m^{\Omega_{Parallel,\Omega_{S}}}$ which represents the relation between the system S and its components 1 and 2. It is given by:

$$m^{\Omega_{1}\Omega_{2}\Omega_{S}}(\{W_{1}, W_{2}, W_{S}\}, \{F_{1}, F_{2}, F_{S}\}, \{F_{1}, W_{2}, W_{S}\}, \{W_{1}, F_{2}, W_{S}\}, \{W_{1}, W_{2}, F_{S}\}) = 1 \ (9)$$

To obtain BPAs of system S, the final result is marginalized on Ω_{S}. Belief and plausibility functions are then computed from $m^{\Omega_{S}}$. Formally, the final BPA is defined as follows:

$$m^{\Omega_{S}} = (m^{\Omega_{i}} \oplus m^{\Omega_{i}} \oplus m^{\Omega_{i}} \oplus m^{\Omega_{i}} \oplus m^{\Omega_{i}})$$

The system’s reliability R_{S} is then given by:

$$R_{S} = Bel(\{W_{S}\}, Pl(\{W_{S}\}))$$

The results of BPAs related to parallel configuration are given in Table I. These results can be generalized to a parallel system of n components with BPAs $m(\{F_{i}\})$, $m(\{W_{i}\})$ and $m(\{F_{i}, W_{i}\}) = 1 - m(\{F_{i}\}) - m(\{W_{i}\})$ with $(1 \leq i \leq n)$. In an analogue way, the results for a series system are also shown.

D. Numerical application: two cases

- Case I: Aleatory uncertainty
 Consider a simple parallel system with components 1 and 2. The BPAs of components are given in Table II. Using belief and plausibility measures, the reliability of the system is $R_{S} = 0.98$.
 When there is no epistemic uncertainty ($m^{\Omega_{i}}(\{F_{i}, W_{i}\}) = 0$), the system’s reliability results are identical to the results obtained in the classical probability theory.
- Case II: Aleatory and epistemic uncertainty
Table I: BP As and reliability of parallel and series systems with \(n \) components

<table>
<thead>
<tr>
<th>BPAs</th>
<th>Parallel system</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m^{\Omega_1} { F_S })</td>
<td>(\prod_{i=1}^{n} m{ F_i })</td>
</tr>
<tr>
<td>(m^{\Omega_2} { W_S })</td>
<td>(1 - \prod_{i=1}^{n} (1 - m{ W_i }))</td>
</tr>
<tr>
<td>(m^{\Omega_3} { W_S, F_S })</td>
<td>(1 - \prod_{i=1}^{n} m{ F_i } + \prod_{i=1}^{n} (1 - m{ W_i }))</td>
</tr>
<tr>
<td>Bel{W_S}</td>
<td>(1 - \prod_{i=1}^{n} (1 - m{ W_i }))</td>
</tr>
<tr>
<td>Pl{W_S}</td>
<td>(1 - \prod_{i=1}^{n} m{ F_i })</td>
</tr>
</tbody>
</table>

Table II: BPAs of components 1 and 2

<table>
<thead>
<tr>
<th>Components</th>
<th>(f_i)</th>
<th>(w_i)</th>
<th>(f_i)</th>
<th>(w_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.9</td>
<td>0.3</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.8</td>
<td>0.05</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Here, let’s consider epistemic uncertainty \((m^{\Omega_1}(\{ F_i, W_i \}) > 0) \) for components 1 and 2 as shown in Table II. In this case we obtain an interval value for the reliability \(R_S = [0.9475, 0.985] \).

V. Modeling failure dependencies in TBM and interval-probability approaches

A. Introduction

Nowadays, complex systems use redundant components in order to increase the overall systems reliability. However, redundant systems are usually subject to multiple failure dependencies [30]. CCFs were the most studied failure dependencies models. Reliability researchers have usually explicitly integrated CCFs in the system’s reliability model (FT [9], RBD [31], stochastic Petri nets [8], etc.). Other failure dependencies were integrated implicitly by increasing the failure rates of components [10]. The use of BPAs is proposed to represent failure dependencies and extended operations defined in TBM reliability analysis are used to obtain the whole system’s reliability. Implicit and explicit approaches will be presented. The TBM model is compared with an interval-probability model. The values of reliability of components 1 and 2 that would be used from now on, are the same used for case II shown in Table II.

B. The implicit approach

Let’s consider a simple system \(S \) composed of two components 1 and 2 in parallel. Reliability experts have mentioned that in \(\gamma_1 \) of system’s functioning tests, the failure of component 2 had led to the failure of component 1. The factor \(\gamma_1 \) is called the dependency factor. The objective is to evaluate the system’s reliability \(R_S \) under these assumptions in both TBM and interval-probability approaches.

1) **TBM model**: In this approach, the BPAs of components 1 and 2 are given as stated in Eq. 8. The proposed TBM approach is to code the dependence between components 1 and 2 by the conditional BPAs:

\[
m^{\Omega_1}[F_2|\{ F_1 \}] = \gamma_1 \quad m^{\Omega_1}[F_2|\{ W_1, F_1 \}] = 1 - \gamma_1
\]

The ballooning extension is used to decondition the BPAs in Eq.10 to \(\Omega_1 \Omega_2 \). Then, the BPAs obtained are extended to \(\Omega_1 \Omega_2 \Omega_S \) and combined with the BPAs of the simple parallel configuration and the BPAs of components 1 and 2. The final result of the system’s reliability after marginalization on \(\Omega_S \) is given in Eq. 11 and can be observed in Figure 1 as a function of \(\gamma_1 \). The factor \(\gamma_1 \) can be viewed as a correlation factor which assigns an additional BPA to the failure of component 1 knowing failure of component 2.

\[
\frac{R_S}{R_S} = \frac{w_1 + w_2 - w_1 w_2 - \gamma_1 w_1 f_2}{1 - k_1 f_2 \gamma_1 (f_2 - f_2 w_1 - f_1 f_2)}
\]

Where the conflict factor \(k_1 \) is given by:

\[
k_1 = \gamma_1 f_2 w_1.
\]

2) **Interval-probability model**: The idea of this approach is to use the concepts of interval arithmetic to calculate the reliability. In this case, each probability is represented by an upper and a lower probability noted as \(\overline{P}(X) \) and \(\underline{P}(X) \) respectively [6]. Then, the probability can be noted as \(P(X) = [\underline{P}(X), \overline{P}(X)] \). It can be noted that the \(Bel(X) \) and \(Pl(X) \) corresponding to a BPA can be represented as coherent imprecise probabilities \([\underline{P}(X), \overline{P}(X)] = [Bel(X), Pl(X)] \). Nevertheless, the opposite is not true, as there are some coherent imprecise probabilities that cannot be defined with a corresponding BPA. The corresponding interval-probabilities to the BPAs of components 1 and 2 given in Eq. 12 are:
\[P(F_i) = [f_i, 1 - w_i] \]
\[P(W_i) = [w_i, 1 - f_i] \quad \text{for} \quad i = 1, 2 \]

The conditional BPAs in Eq. 10 corresponds in the interval-probability approach to:

\[P(F_1/F_2) = [\gamma_1, 1] \]

The application of Bayes’ rule gives the system’s failure probability: \[P(F_S) = P(F_1 \cap F_2) = P(F_1/F_2)P(F_2) \]. Then, the system’s reliability is given in Eq. 12 and shown in Figure 1 as a function of \(\gamma_1 \).

\[R_S = w_2, \quad R_f = 1 - \gamma_1 f_2 \quad (12) \]

3) Discussion: From the Eq. 12, we can see that the interval-probability approach is not sensible to the variation of \(f_1 \) or \(w_1 \). In this case, the reliability is based only on the conditional probability \(P(F_1/F_2) = \gamma_1 \) and the values of \(f_2 \) and \(w_2 \). The TBM approach does take into account all the information about the system and its components as it combines all the BPAs stated, but it introduces a conflict factor \(k_1 \) that is caused by the introduction of the conditional BPA (cf. Eq. 10).

To make a similar approach to interval-probability using the TBM, a third approach was analyzed in which the BPA assigned to the component 1 was ignored. In this case, there is no conflict factor because information about component 1 is only taken into account one time with the conditional BPA. The final BPA is obtained by only combining the BPAs assigned for the system configuration, component 2 and dependency factor. Finally, we obtain the same values of reliability as in the interval-probability model (Eq. 12).

It can be concluded that the advantage of the TBM model is that it takes into account the reliability data of component 1 which is not considered in the interval-probability approach due to the use of Bayes’ rule.

C. The explicit approach

In this approach, a virtual component \(M \) with two states \(E \) and \(I \) is considered. This component serves to model dependencies explicitly. The state \(E \) of \(M \) indicates the presence of CCFs. In this case, the components 1 and 2 are both in failure state \((F_1, F_2)\) or in working state \((W_1, W_2)\). The state \(I \) indicates the absence of CCFs. In this case, components 1 and 2 may have all possible states.

1) TBM model: BPAs of components 1 and 2 are given as stated in Eq. 8. Furthermore, the two previous assumptions are coded by the conditional BPAs:

\[m_{\omega_1, \omega_2}^{\Omega_1} = E[\{(F_1, F_2), (W_1, W_2)\}] = 1 \quad (13) \]
\[m_{\omega_1, \omega_2}^{\Omega_1} = I[\{(F_1, F_2), (F_1, W_2), (W_1, W_2), (W_1, F_2)\}] = 1 \quad (14) \]

The frame of discernment of \(M \) is then given by: \(\Omega_M = \{E, I\} \) and the BPAs related to \(M \) are given in Eq. 15.

\[m_{\omega_1}^{\Omega_M} = E = \delta_1, \quad m_{\omega_1}^{\Omega_M} = I = 1 - \delta_1 - \delta_2 \quad (15) \]

2) Interval-probability model: In this case, the values of \(P(F_1) \) and \(P(W_1) \) are the same used for the implicit approach. As \(\delta_1 \) and \(\delta_2 \) are variable and it is not known which one is greater than the other for a given combination of values, the interval values of \(P(E) \) and \(P(I) \) are expressed using the \(\min \) and \(\max \) functions as follows:

\[P(E) = [\min(\delta_1, 1 - \delta_2), \max(\delta_1, 1 - \delta_2)] \]
\[P(I) = [\min(\delta_2, 1 - \delta_1), \max(\delta_2, 1 - \delta_1)] \]

Also note that \(\delta_1 + \delta_2 \leq 1 \). For the conditional probability \(P(F_1 \cap F_2/E) \), the largest possible interval is used so that every possible value is taken into account.
\[P(F_1 \cap F_2 / E) = \min(f_1, f_2), \max(1 - w_1, 1 - w_2) \]
\[P(F_1 \cap F_2 / I) = P(F_1)P(F_2) \]

In this case, the total probability theorem is used to calculate \(P(F_s) \):

\[P(F_s) = P(F_1 \cap F_2) \]
\[P(F_s) = P(F_1 \cap F_2 / E)P(E) + P(F_1 \cap F_2 / I)P(I) \]

Finally, knowing that \(R_s = 1 - P(F_s) \), the system’s reliability is given in Eq. 17 and shown in Figure 2 as a function of \(\delta_1 \).

\[R_s = 1 - \max(1 - w_1, 1 - w_2)\max(\delta_1, 1 - \delta_2) - \\
- (1 - w_1)(1 - w_2)\max(\delta_2, 1 - \delta_1) \]
\[\overline{R}_s = 1 - \min(f_1, f_2)\min(\delta_1, 1 - \delta_2) - \\
- f_1f_2\min(\delta_2, 1 - \delta_1) \quad (17) \]

3) Discussion: For the case analyzed, it can be noted that the TBM model gives a more precise interval for the system’s reliability. On the other hand, the interval-probability model becomes much more imprecise as \(\delta_1 \) grows. It can also be seen that the results obtained with the TBM are included in the results of the interval-probability model.

VI. CONCLUSIONS AND FUTURE WORK

The TBM theory has recently attracted the attention of reliability engineering community. This paper proposes a TBM based model and compares it with an interval-probability based model. It takes into account failure dependencies in reliability evaluations under both epistemic and aleatory uncertainties. The proposed TBM reliability model was applied to evaluate the reliability of a parallel system with two components and the dependencies were implicitly and explicitly modeled. As we can see from the results, with the TBM approach, the epistemic uncertainties and the dependencies present in our systems can be modeled. As it combines all of the BPAs to obtain the results, it takes into account all of the information known for the system. Future work would be focused on other ways of coding the dependencies hypothesis and different methods for incorporating them in the evaluation or reliability of complex systems.

REFERENCES