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ABSTRACT

Aims. The physical interpretation of spectro-interferometric data is strongly model-dependent. On one hand, models involving elab-
orate radiative transfer solvers are too time consuming in general to perform an automatic fitting procedure and derive astrophysical
quantities and their related errors. On the other hand, using simple geometrical models does not give sufficient insights into the physics
of the object. We propose to stand in between these two extreme approaches by using a physical but still simple parameterised model
for the object under consideration. Based on this philosophy, we developed a numerical tool optimised for mid-infrared(mid-IR)
interferometry, the fast ray-tracing algorithm for circumstellar structures (FRACS) which can be used as a stand-alone model, or as
an aid for a more advanced physical description or even for elaborating observation strategies.
Methods. FRACS is based on the ray-tracing technique without scattering, but supplemented with the use of quadtree meshes and the
full symmetries of the axisymmetrical problem to significantly decrease the necessary computing time to obtain e.g. monochromatic
images and visibilities. We applied FRACS in a theoretical study of the dusty circumstellar environments (CSEs) of B[e]supergiants
(sgB[e]) in order to determine which information (physicalparameters) can be retrieved from present mid-IR interferometry (flux and
visibility).
Results. From a set of selected dusty CSE models typical of sgB[e] stars we show that together with the geometrical parameters
(position angle, inclination, inner radius), the temperature structure (inner dust temperature and gradient) can be well constrained
by the mid-IR data alone. Our results also indicate that the determination of the parameters characterising the CSE density structure
is more challenging but, in some cases, upper limits as well as correlations on the parameters characterising the mass loss can be
obtained. Good constraints for the sgB[e] central continuum emission (central star and inner gas emissions) can be obtained whenever
its contribution to the total mid-IR flux is only as high as a few percents. Ray-tracing parameterised models such as FRACSare
thus well adapted to prepare and/or interpret long wavelengths (from mid-IR to radio) observations at present (e.g. VLTI/MIDI) and
near-future (e.g. VLTI/MATISSE, ALMA) interferometers.

Key words. Methods: numerical, observational – Techniques: high angular resolution, interferometric – Stars: mass loss, emission-
line, Be, massive, supergiants

1. Introduction

When dealing with optical/IR interferometric data, one needs to
invoke a model for the understanding of the astrophysical ob-
ject under consideration. This is because of (1) the low coverage
of the uv-plane and most of the time because of the lack of the
visibility phase, and (2) because our aim is to extract physical
parameters from the data. This is particularly true for the Mid-
Infrared Interferometric Instrument (MIDI, Leinert et al.2003)
at the Very Large Telescope Interferometer (VLTI), on which
our considerations will be focused. Some pure geometrical in-
formation can be recovered through a simple toy model such as
Gaussians (see e.g. Leinert et al. 2004; Domiciano de Souza
et al. 2007).

However, this approach does not give any insights into the
physical nature of the object. One would dream of having a
fully consistent model to characterise the object under inspec-
tion. In many cases, if not all, a fully consistent model is out
of reach and one uses at least a consistent treatment of the ra-
diative transfer. Models based for instance on the Monte Carlo
method are very popular (see e.g. Ohnaka et al. 2006; Niccolini
& Alcolea 2006; Wolf et al. 1999) for this purpose. Still, the

medium density needs to be parameterised and it is not deter-
mined in a self-consistent way. For massive stars for instance, it
would be necessary to take into account non-LTE effects includ-
ing both gas and dust emission of the circumstellar materialas
well as a full treatment of radiation hydrodynamics. Fitting in-
terferometric data this way is as yet impossible because of com-
puting time limitations.

Of course, solving at least the radiative transfer in a self-
consistent way is already very demanding for the computa-
tional resources. Consequently, model parameters cannot be de-
termined in a fully automatic way and the model fitting process
must be carried out mostlyby hand, or automatised by systemat-
ically exploring the parameter-space , the “chi-by-eye” approach
mentioned in Press et al. (1992). The followers of this approach
consider the “best fitting” model as their best attempt: a model
that is compatible with the data. It is admittedly not perfect, but
it is in most of the cases the best that can be done given the dif-
ficulty of the task. It is remarkable that a thoroughχ2 analysis
of VLTI /MIDI data of the Herbig Ae star AB Aurigae has been
performed by di Folco et al. (2009) which remains to date one of
the most achieved studies of this kind. From theχ2 analysis, for-
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mal errors can be derived and at least the information concern-
ing the constraints for the physical parameters can be quantified.
Qualitative information about the correlation of parameters can
be pointed out.

The next step after the toy models for the physical char-
acterisation of the astrophysical objects can be made from the
pure geometrical model towards the self-consistency by includ-
ing and parameterising the object emissivity in the analysis.
For instance, Lachaume et al. (2007) and Malbet et al. (2005)
use optically thick (i.e. emitting as black bodies) and infinitely
thin discs to model the circumstellar environment of pre-main-
sequence and B[e] stars. Of course this approach has some re-
striction when modelling a disc: for instance it cannot handle
nearly edge-on disc and an optically thin situation.

We propose an intermediate approach: between the use of
simple geometrical models and sophisticated radiative transfer
solvers. Indeed, it is a step backwards from the “self-consistent”
radiative transfer treatment, which is in most cases too advanced
with regard to the information provided by the interferometric
data. For this intermediary approach, we assume a prescribed
and parameterised emissivity for the medium. Our purpose isto
derive the physical parameters that characterise this emissivity.
In the process, we compute intensity maps and most particularly
visibility curves from the knowledge of the medium emissivity
with a fast ray-tracing technique (a few seconds depending on
map resolution), taking into account the particular symmetries
of a disc configuration. Then, the model fitting process can be
undertaken in an automatic way with standard methods (see e.g.
Levenberg 1944; Marquardt 1963). The techniques we present
are designed to be quite general and not tailored to any particular
emissivity except for the assumed axisymmetry of the problem
under consideration.

Our purpose is twofold. On one hand - as already mentioned
- we aim to estimate physical parameters and their errors char-
acterising the circumstellar dusty medium under consideration
with as few restrictive assumptions as possible; at least within
the obvious limitations of the present model. On the other hand
our purpose is to provide the user of a more detailed model, such
as a Monte Carlo radiative transfer code, with a first characteri-
sation of the circumstellar matter to start with.

In Sect. 2 we describe the general framework of the proposed
ray tracing technique. In particular how to derive the observable
from the astrophysical object emissivity. In Sect. 3 we describe
the numerical aspects that are specific to the present ray-tracing
technique. In particular, the use of a quadtree mesh and the sym-
metries that allow us to speed up the computation are detailed.
In Sect. 4 we focus our attention on the circumstellar disc of
B[e] stars and describe a parametric model of the circumstel-
lar environment. In Sect. 5 we analyse artificial interferometric
data generated both from the parametric model itself and from a
Monte Carlo radiative transfer code (Niccolini & Alcolea 2006).
Our purpose is not to fit any particular object, but to presentour
guideline to the following question: which physical information
can we get from the data ? A discussion of our results and the
conclusions of our work are given in Sects 6 and 7 respectively.

2. The ray-tracing technique

We describe here the FRACS algorithm, developed to study
stars with CSEs from mid-IR interferometric observables
(e.g. visibilities, fluxes, closure phases). Although FRACS could
be extended to investigate any 3D CSE structures, we focus
here on the particular case of axisymmetrical dusty CSEs. This
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Fig. 1. Coordinate systems. The shaded ellipse represents a disc
viewed by the observer.

study is motivated by the typical data one can obtain from disc-
like CSE observed with MIDI, the mid-IR 2-telescope beam-
combiner instrument of ESO’s VLTI (Leinert et al. 2003).

2.1. Intensity map

Intensity maps of the object are the primary outputs of the model
that we need to compute the visibilities and fluxes that are di-
rectly compared to the observations. For this purpose, we in-
tegrate the radiation transfer equation along a set of rays (ray-
tracing technique) making use of the symmetries of the problem
(see Sect. 3 for details).

The unit vector along the line of sight is given by ˆn =
ŷ sini + ẑ cosi, i being the inclination between thez-axis and
the line of sight and ˆx, ŷ the unit vector along thex et y-axis of
a cartesian system of coordinates (see Fig. 1), referred to as the
“model system” below. The problem is assumed to be invariant
by rotation around thez-axis. We define a fictitious image plane
by giving two unit vectorsŶ = −ŷ cosi + ẑ sini and X̂ = −x̂.
This particular choice is made making use of the axisymmetry
of the problem. Note that for this particular coordinate system
(X, Y) the disc position angle (wheneveri , 0) is always defined
as 90◦. The actual image plane, with theY′ andX′ axis corre-
sponding respectively to North and East, is obtained by rotating
the axis of our fictitious image plane by an angle PAd− π2 , where
PAd is the position angle of the disc with respect to North.

The dust thermal emissivity at wavelengthλ and position
vectorr is given by

ηλ(r) = κabs
λ (r) Bλ(T (r)) , (1)

whereκabs
λ

(r) is the absorption coefficient andBλ(T (r) the Planck
function at the medium temperatureT (r) at r. κabs

λ
is defined as

n(r) Cabs
λ

, whereCabs
λ

is the absorption cross section andn(r) the
number density of dust grains atr .

We neglect the scattering of the radiation by dust grains, op-
timising our approach to long wavelengths (from mid-IR to ra-
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dio). This assumption simplifies the radiative transfer equation
by removing the scattering term.

We obtain the intensity map at position (X, Y) in the image
plane (inclined byi) and at wavelengthλ by integrating the trans-
fer equation along the particular ray that passes through the con-
sidered point of the image plane. Definingrs(X, Y, i) (simply rs
for short) as the position vector along a ray, given in the model
system of coordinates by

rs(X, Y, i) =

















−X
−Y cosi + s sini
Y sini + s cosi

















, (2)

and by introducing the optical depth at wavelengthλ and posi-
tion s along the ray by

τλ(X, Y, i; s) =

√
R2

out−R2
∫

s

κext
λ (rs′ ) ds′ , (3)

we obtain

Iλ(X, Y, i) =

√
R2

out−R2
∫

−
√

R2
out−R2

κabs
λ (rs) Bλ [T (rs)] e−τλ(X, Y, i; s) ds , (4)

where the extinction coefficientκext
λ

(r) ≈ κabs
λ

(r) because scatter-
ing is neglected.

We assume that the CSE is confined within a sphere of radius

Rout, s varies consequently from−
√

R2
out − R2 to

√

R2
out− R2

(R2 = X2 + Y2) in Eq. (4) and in the definition of a ray Eq. (2).
This hypothesis can be relaxed without altering the presentcon-
siderations and the domain of integration of Eq. (4) suitably cho-
sen.

If some radiation sources (e.g. black body spheres) are in-
cluded in the analysis, an additional term must be added in
Eq. (4) whenever a particular ray intersect a source. For a
source with specific intensityIs

λ
this additional term is given by

Is
λ

e−τλ(X,Y,i;s
(s)), s(s) being the distance at which the ray given byX,

Y andi (see Eq. 2) intersects the outermost (along the ray) source
boundary. In that case the lower integration limit in Eq. (4), that

is −
√

R2
out − R2, must also be replaced bys(s).

2.2. Interferometric observables

From the monochromatic intensity maps at wavelengthλ (Eq. 4)
we obtain both the observed fluxesFλ and visibilitiesVλ for an
object at distanced,

Fλ(i) =
1
d2

∞
∫

−∞

∞
∫

−∞

Iλ(X, Y, i) dXdY , (5)

and

Vλ(B,PA) =
1

d2 Fλ(i)

∞
∫

−∞

∞
∫

−∞

Iλ(X, Y, i) e−2 jπ B
λ [ X

d cos(∆)+ Y
d sin(∆)] dXdY ,

(6)
whereVλ is obtained for a given baseline specified by its pro-
jected length B (on the sky, i.e. (X′, Y′) coordinates) and its polar
angle PA from North to East (direction of theY′ axis).∆ and j
represent, respectively, PAd − PA and

√
−1.

3. Numerical considerations

We seek to produce intensity maps within seconds1 and we aim
for our numerical method to be sufficiently general in order to
deal with a large range of density and temperature structures.
Given these two relatively tight constraints, the numerical inte-
gration of Eq. (4) is not straightforward.

For example we have tested that the 5th order Runge-Kutta
integrators of Press et al. (1992) with adaptive step-size (as dis-
cussed in Steinacker et al. 2006) doest not suit our constraints.
Indeed, the step adaption leads to difficulties if sharp edges
(e.g. inner cavities) are present in the medium emissivity.

3.1. Mesh generation

Regarding the above mentioned constraints and the different nu-
merical approaches tested, we found that Eq. (4) is more effi-
ciently computed with an adaptive mesh based on a tree data
structure (quadtrees/octrees). The mesh purpose is twofold: first,
it must guide the computation of Eq. (4) and distribute the in-
tegration points along the rays according to the variationsof
the medium emissivity; second, within the restriction of axis-
symmetrical situations, the mesh must handle any kind of emis-
sivity. Quad/octree meshes are extensively used in Monte Carlo
radiative transfer codes (e.g. see Bianchi 2008; Niccolini&
Alcolea 2006; Jonsson 2006; Wolf et al. 1999); the mesh gen-
eration algorithm is thoroughly described in Kurosawa & Hillier
(2001).

The mesh we use is acartesian quadtree.Cartesian refers
here to the mesh type and not to the system of coordinates we
use. Indeed, the mesh is implemented as a nested squared do-
main (cells) in theρ− |z| plane (ρ =

√

x2 + y2). The whole mesh
is enclosed by the largest cell (the root cell in the tree hierarchy)
of sizeRout in ρ and|z|. The underlyingphysical coordinate sys-
tem is cylindrical (withz > 0) and the mesh cells correspond
to a set of two (forz > 0 andz < 0) tori, which are the actual
physical volumes.

The mesh generation algorithm consists in recursively divid-
ing each cell in four child cells until the following conditions are
simultaneously fulfilled for each cell in the mesh (see Kurosawa
& Hillier 2001, for more details):
#
Vξ

[

κabs
λ

(r)
]α

d3r

#
Vtot

[

κabs
λ

(r)
]α

d3r
< η and (7)

#
Vξ

[T (r)]β d3r

#
Vtot

[T (r)]β d3r
< η , (8)

whereVξ is the volume of cellξ, Vtot is the volume of the root cell
andα, β andη are parameters controlling the mesh refinement.

In the present workα andβ have been fixed to 1, but higher
values can be useful for some particular situations where the
generated mesh must be tighter than the mesh generated directly
from theκabs

λ
andT variations. Typically, these situations show

up for high optical depths (in this paper, optical depth values do
not exceed≃ 1 at 10µm along the rays). The practical choice
of α, β andη is obtained from a compromise between execu-
tion speed and numerical accuracy of the Eq. (4) integration

1 The actual computation time reached is less than 10 s for a 104 pixel
map on an Intel T2400 1.83 GHz CPU.
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Fig. 2. Quadtree mesh for a disc configuration. The disc param-
eters are those of model (b) described in Sect. 5.2 (see also
Tables 2 and 4). The mesh refinement parameterη (Eqs. 7 and 8)
has been set to the high value 10−3 in order to obtain a coarse
mesh more easily represented.

(e.g. typical values ofη range from 10−5 to 10−4). When deal-
ing with optically thick situations, a supplementary conditions
can be added to Eqs. (7) and (8) in order to prescribe an upper
limit to the cell optical depth. For instance, making use of the
computation of the integral in Eq. (7), one can add the following
criterion for cellξ (whose centre is (ρξ, zξ) and size∆ξ)

1
2π ρξ ∆ξ

$

Vξ

κext
λ (r) d3r ≤ ∆τlim , (9)

where∆τlim is the prescibed upper limit to the cell optical depth.
For the moderate optical depths reached in this work, with

values ofη down to 10−5 and∆τlim set to 10−2, the criteria of
Eqs. (7) and (8) are the leading conditions to the mesh refine-
ment.

Figure 2 shows the mesh obtained in the particular case of a
B[e] circumstellar disc (see Sect. 4) for models whose parame-
ters are given in Table 2 (see caption for more details).

The volume integrals in Eq. (7) and (8) are estimated by
Monte Carlo integration. For a quantityf (r) and for the cellξ
the integral

#
Vξ

f (r) d3r is approximated by

2π

zξ+
∆ξ

2
∫

zξ−
∆ξ

2

ρξ+
∆ξ

2
∫

ρξ−
∆ξ

2

ρ f (ρ, z) dz dρ ≈
2π∆2

ξ

N

N
∑

k=1

ρk f (ρk, zk) , (10)

where we made explicit use of the mesh coordinates and where
(ρk, zk) with k = 1, · · · ,N are chosen randomly and uniformly
within the cell domain.

3.2. Symmetries

We can make use of the CSE symmetries to reduce the compu-
tation domain of an intensity map from Eq. (4) to only a fourth
of it and consequently reduce the computation time.

Recalling the definition of a ray (Eq. 2), we have two notice-
able identities for any disc physical quantityΦ (e.g.κabs

λ
, κext
λ

, T ,
n, . . . ) depending onr

Φ (rs(X, Y, i)) = Φ (rs(−X, Y, i)) and (11)

Φ (rs(X, Y, i)) = Φ (r−s(X,−Y, i)) , (12)

where Eq. (11) expresses the disc symmetry with respect to the
y − z plane and Eq. (12) the point symmetry with respect to the
origin of the model system of coordinates.

From the above identities it is straightforward to deduce their
counterpart for the intensity map

Iλ(X, Y, i) = Iλ(−X, Y, i) and (13)

Iλ(X, Y, i) = Iλ(X,−Y, i)e
−
+smax
∫

−smax

κext
λ

(rs′ ) ds′

, (14)

where smax =

√

R2
out − R2. Note that the exponential factor in

Eq. (14) has to be evaluated when computingIλ(X, Y, i) anyway;
no extra effort is required to deriveIλ(X, Y, i) from Iλ(X,−Y, i)
except for the multiplication ofIλ(X,−Y, i) by this factor.

3.3. Intensity map

The fictitious image plane is split into a set of pixels whose po-
sitionsX j andYk are given by

X j = ∆X ×
(

j +
1
2
−

N
2

)

, (15)

Yk = ∆Y ×
(

k +
1
2
− N

2

)

, (16)

where∆X = ∆Y is the pixel size inX andY, andN is the number
of pixels inX andY, and where

0 ≤ j, k ≤ (N ÷ 2)+ δ , (17)

whereδ = −1 for N even andδ = 0 otherwise and “÷” stands for
the integer division. Taking into account the symmetries men-
tioned in Sect. 3.2 only a fourth of the pixels need to be consid-
ered.

The evaluation of the integral in Eq. (4) is carried out for
each pixel (X j, Yk) and along the rayrs(X j, Yk, i). The intersec-
tion points of the ray with the cell boundaries corresponds to a
set of distances along the ray defined as

s0 = 0 (18)

sl = sl−1 + ∆sl−1 for 1 ≤ l ≤ ncells , (19)

wherencells is the number of cells encountered along the ray, and
∆sl the distance crossed within thelth cell.

We estimate numerically the optical depthτλ(X, Y, i; s), de-
fined in Eq. (3), via the midpoint rule quadrature by

τλ(X, Y, i; sl) ≈ τ(l)λ =
ncells−1
∑

k=l

κext
λ (rsl+1/2)∆sl , (20)

where we definedsl+1/2 = sl +
∆sl
2 for l = 0, · · · , ncells− 1.
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The numerical estimate ofIλ(X j, Yk, i) is obtained by

Iλ(X j, Yk, i) ≈
ncells−1
∑

l=0

κabs
λ (rsl+1/2) Bλ(T (rsl+1/2)) e−τ

(l)
λ ∆sl . (21)

The results for allj and k can then be obtained from the
discrete counterpart of the symmetry relations (13) and (14)

Iλ(XN−1− j, Yk, i) = Iλ(X j, Yk, i) , (22)

Iλ(X j, YN−k−1, i) = Iλ(X j, Yk, i) e−τ
(0)
λ . (23)

3.4. Interferometric observables

From the numerical estimate ofIλ(X j, Yk, i) given above we ob-
tain (similarly to Eqs. 5 and 6) the numerical fluxes and visibil-
ities, which can be directly compared to the observed data. The
numerical estimate of these quantities is again obtained through
the mid-point rule.

The numerical fluxFλ(i) is computed by

Fλ(i) ≈
1
d2

N−1
∑

k=0

N−1
∑

l=0

Iλ(Xk, Yl, i)∆X∆Y . (24)

The complex visibility is approximated numerically by

Vλ ≈
1

d2 Fλ(i)

N−1
∑

k=0

N−1
∑

l=0

Iλ(Xk, Yl, i) e2 jπ B
λ
· Rkl

d ∆X∆Y , (25)

whereB = (B cos∆, B sin∆) andRkl = (Xk, Yl).

3.5. Artificial data generation

The procedure described below aims to mimic the observables
of the VLTI/MIDI instrument: the fluxFλ (Eq. 24) and the mod-
ulus of the visibility |Vλ| (Eq. 25). The wavelengths and base-
lines chosen for the artificial data generation correspond to ac-
cessible values to VLTI/MIDI with the Unit Telescopes (UTs):
λ j = 7, 8, 9, 10, 11, 12, and 13µm ( j = 1, · · · , nλ; nλ = 7), and
(Bk,PAk) as shown in Table 1 (k = 1, · · · , nB; nB = 18). These
values amount to 126 points covering the uv-plane.

For a given intensity map atλ j, Fλ j and |Vλ j | are taken as
the expectation values of the simulated data. The observed flux
Fobs
λ j

is then generated assuming a Gaussian noise with an RMS
(root mean square) corresponding to 10 % relative errorσF ( j) =
0.1× Fλ j .

The artificial observed visibility amplitudes|Vobs
λ
| are ob-

tained as

|Vobs
λ j

(Bk,PAk)| = |Vλ j(Bk,PAk)| + ∆Vk , (26)

where∆Vk is a wavelength independent shift that mimics the
error in the observed visibilities, introduced by the calibra-
tion procedure commonly used in optical/IR interferometry. For
each (Bk,PAk), ∆Vk is computed assuming a Gaussian noise
with an RMS corresponding to 10 % relative error (typical for
VLTI /MIDI) σV (k) = 0.1×〈|Vλ(Bk,PAk)|〉, where〈|Vλ(Bk,PAk)|〉
is the wavelength mean visibility modulus.

3.6. Model fitting and error estimate

We describe here the procedure adopted in order to simultane-
ously fit observed fluxes and visibilities using FRACS models

Table 1. Projected baselines. These values correspond to the
baselines accessible from pairs of Unit Telescopes (UT) at ESO-
VLTI.

k Bk [m] PAk [deg]
1 37.8 61.7
2 41.3 53.4
3 43.7 44.8
4 46.2 44.5
5 49.5 37.5
6 51.9 30.0
7 61.7 134.6
8 62.0 111.2
9 62.4 122.5
10 81.3 108.2
11 83.0 52.2
12 86.3 96.0
13 89.0 84.4
14 89.9 44.8
15 94.8 36.7
16 113.6 82.4
17 121.2 73.6
18 126.4 64.9

defined by a given set of input parameters. This procedure is ap-
plied to artificial data in the next sections.

In order to quantify the discrepancy between the artificial ob-
servations (|Vobs

λ j
| andFobs

λ j
) and the visibilities and fluxes from a

given model (|Vλ j(Bk,PAk)| andFλ j ) we use theχ2 like quantities

χ2
|V | =

nλ
∑

j=1

nB
∑

k=1

















|Vobs
λ j

(Bk,PAk)| − |Vλ j (Bk,PAk)|
σV (k)

















2

, (27)

and

χ2
F =

nλ
∑

j=1

nB
∑

k=1

















Fobs
λ j
− Fλ j

σF ( j)

















2

. (28)

To take into account both the mid-IR flux and the visibilities
on the same level in the fitting process, we minimise the follow-
ing sum

χ2 = χ2
|V | + χ

2
F . (29)

In the discussion below about the parameter and error deter-
mination we use the reducedχ2 defined byχ2

r = χ
2/(2nBnλ −

nfree) (for nfree free parameters).
From a minimising algorithm the best-fit model parameters

can then be found by determining the minimumχ2
r : χ2

r,min. The
“error” estimate is obtained from a thorough exploration ofthe
parameter space volume, defined by a contour levelχ2

r,min+∆χ
2
r ,

where∆χ2
r has been chosen equal to 1. This volume can be inter-

preted as a confidence region. The quantity defined in Eq. (29)
is a weighted sum ofχ2 variables whose cumulative distribu-
tion function can be approximated by a gamma distribution (see
Feiveson & Delaney 1968) with the same mean and variance.
It is then possible to obtain a rough estimate of the confidence
level associated with the∆χ2

r = 1 confidence region given ap-
proximately by≃ 2σ.

The size of the confidence region is determined by consid-
ering all possible pairs of parameters for a given fitted model
and computingχ2

r maps for each. The procedure to estimate the
errors can be summarised as follows:



6 G. Niccolini et al.: Fast ray-tracing algorithm for circumstellar structures (FRACS)

 8  10  12

0.5

1.0

1.5

2.0

10−12

Mid-IR flux (model a)

λ [µm]

F
λ

[W
m
−2
µ
m
−1

]

 8  10  12

0.2

0.4

0.6

0.8

1.0

1.2

10−11

Mid-IR flux (model b)

λ [µm]

F
λ

[W
m
−2
µ
m
−1

]
Fig. 3.Simulated VLTI/MIDI mid-IR object flux. The numerically generated data (left model a, right model b) are shown as circles
with error bars. The values of the fluxes for the best-fit models are represented as crosses.

– For a givenχ2
r map, i.e. for a given couple of parameters

among thenfree × (nfree − 1)/2 possibilities, we identify the
region bounded by∆χ2

r = 1 around the minimum of this
particular map.

– The boundaries of the projection of these regions on each
of the two parameter axis considered are recorded for each
map.

– The final errors on a given parameter are taken as the highest
boundary values of the projected regions over all maps.

4. Astronomical test case: sgB[e] stars

In the following sections we apply FRACS to a theoretical in-
terferometric study of dusty CSE of B[e] supergiants (sgB[e] in
the nomenclature of Lamers et al. 1998). However, we empha-
sise that FRACS is in no way restricted to this particular class of
objects.

sgB[e] stars reveal in particular a strong near- or mid-IR
excess caused by hot dust emission. There is evidence (e.g.
Zickgraf et al. 1985) that the stellar environment, and in par-
ticular dust, could be confined within a circumstellar disc.Our
purpose is to characterise this class of objects and derive not
only geometrical parameters (e.g. inner dust radius, disc posi-
tion angle and inclination) but also physical parameters such as
temperature gradients, dust formation region, material density,
. . .

The physical description of the CSE chosen for our study is
the wind model with equatorial density enhancement. This isa
classical CSE model commonly adopted for sgB[e] (e.g. Porter
2003).

In order to compute the model intensity maps we need to pa-
rameterise the emissivity of the disc. Consistently with FRACS
assumptions, we consider only dust thermal emission without
scattering by dust grains and the gas contribution to the medium
emissivity. In the rest of this section we characterise the emis-
sivity by describing the dust density law, the absorption cross
section, and the temperature structure of the CSE.

4.1. Mass loss and dust density

Dust is confined between the inner and outer radiusRin andRout
respectively. We assume a stationary and radial mass loss; phys-
ical quantities will consequently depend only on the radialcom-
ponentr and the co-latitudeθ. The disc symmetry axis coincides
with thez axis of the model cartesian system of coordinates. The
mass loss rate and velocity parametrisations are simplifications
of the one adopted by Carciofi et al. (2010), and we refer the
reader to their work for a complete description (see also Stee
et al. 1995, for a similar description).

The mass loss rate per unit solid angle, at co-latitudeθ, is
parameterised as follows

dṀ
dΩ

(θ) =
dṀ
dΩ

(0) (1+ A1 sinm(θ)) , (30)

with the help of two dimensionless parametersA1 andm.
Even though our computations make no explicit use of the

radial velocity fieldvr(θ) (assumed to have reached the termi-
nal velocityv∞(θ) in the region under considerations, i.e.vr(θ) ≈
v∞(θ)), the dust density depends onvr(θ) parameterised in a sim-
ilar fashion

vr(θ) = vr(0) (1+ A2 sinm θ) , (31)

where we have introduced the supplementary dimensionless pa-
rametersA2. From Eqs. (30) and (31) we see thatA1 andA2 are
the relative differences of the values ofdṀ

dΩ (θ) andvr(θ) at the
equator and the pole (relatively to the pole).

From the mass continuity equation one obtains the number
density of dust grains

n(r, θ) = nin

(Rin

r

)2 1+ A2

1+ A1

1+ A1 (sinθ)m

1+ A2 (sinθ)m , (32)

wherenin is the dust grain number density atRin in the disc equa-
torial plane. In Eq. 32, the parameterm controls how fast the
density drops from the equator to the pole, defining an equato-
rial density enhancement (disc-like structure).
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Consistent with the accepted conditions for dust formation
(Carciofi et al. 2010; Porter 2003) we assume that the dust can
survive only in the denser parts of the disc. We thus define a
dusty disc opening angle∆θd determined by the latitudes for
which the mass loss rate has dropped to half of its equatorial
value:

∆θd = 2 arccos

(

A1 − 1
2 A1

)
1
m

. (33)

To summarise, the dust grains only exist (i.e.,n(r, θ) , 0) in
the regions bounded byRin ≤ r ≤ Rout and byπ−∆θd2 ≤ θ ≤ π+∆θd2 .

4.2. Dust opacities

The absorption cross sectionCabs
λ

for the dust grains is ob-
tained from the Mie (1908) theory. The Mie absorption cross
sections are computed from the optical indices of astronomical
silicate (Draine & Lee 1984). Note that since scattering is ne-
glected,Cabs

λ
≈ Cext

λ
, with Cext

λ
being the extinction cross section.

For a power-law size distribution function according
to Mathis et al. (1977) the mean cross sections (e.g. forCabs

λ
)

are given by

Cabs
λ =

amax
∫

amin

a−βCabs
λ

(a) da

amax
∫

amin

a−β da

, (34)

whereamin andamax are the minimum and maximum radii for
the dust grains under consideration andβ is the exponent of the
power-law. The computation of the cross section in Eq. (34) was
performed with the help of the Wiscombe (1980) algorithm.

4.3. Temperature structure

The dust temperature is assumed to be unique (i.e. independent
of grain size) and described by a power-law

T (r) = Tin

(Rin

r

)γ

, (35)

whereTin is the temperature at the disc inner radiusRin. We note
thatγ is not necessarily a free parameter because in the optically
thin regime (large wavelength and radius) the temperature goes
asT (r) ∝ r−

2
4+δ with δ ≃ 1 (see Lamers & Cassinelli 1999).

4.4. Central continuum emission

The continuum emission from the central regions is composed
by the emission from the star and from the close ionised gas
(free-free and free-bound emission). This central source emis-
sion is confined to a small region of radiusRs (≪ Rin), which is
unresolved (angular sizes of a few milliarcseconds) by mid-IR
interferometers. Thus, in our modellingRs is simply a scaling
factor of the problem fixed to a typical radius value for massive
stars. The specific intensity (in W m−2 µm−1 str−1) of this central
source is parameterised as follows

Is
λ = Is

λ0

(

λ0

λ

)α

, (36)

whereIs
λ0

is the specific intensity at a reference wavelengthλ0

(= 10µm in the following), andα gives the spectral dependence
of the continuum radiation. In the mid-IR its value is expected

Table 2.Model parameters. This table lists the parameters of 12
different models. The parameter values that change (∆θd, nin and
i) from one model to the other have been inclosed in a box and
separated by a slash. The values of∆θd = 10◦/60◦ given below
correspond via Eq. (33) tom = 183.56/4.86 respectively.

Parameters Values Unit
A1 150 -
A2 −0.8 -
∆θd 10/60 deg
Rs 60 R⊙
Rin 30 Rs

Rout 3000 Rs

nin 0.015/0.15 m−3

T in 1500 K
γ 0.75 -

Is
λ0

6500 W m−2 µm−1 str−1

α 3 -
PAd 125 deg

i 20/50/90 deg
amin 0.5 µm
amax 50 µm
β −3.5 -

to lie betweenα = 4 (pure black body) andα ≃ 2.6 (free-free
emission) for an electron density proportional tor−2 (Panagia &
Felli 1975; Felli & Panagia 1981).

5. Study of the tested models

Following the description in the last sections we describe
here the chosen sgB[e] model parameters used to simulate
VLTI /MIDI observations (visibilities and fluxes) and the cor-
responding analysis, i.e. model fitting, using FRACS. The list
of chosen parameters is summarised in Table 2. Two types of
numerical tests are presented. Firstly, synthetic mid-IR interfer-
ometric data are generated from FRACS itself. In that way, it
is possible to determine what information the mid-IR interfero-
metric data contain under the optimistic assumption that wedo
have thetrue model. Secondly, this study is supplemented by the
comparison of FRACS to a Monte Carlo radiative transfer com-
putation. This confirms that FRACS can indeed mimic, under
appropriate conditions, the results of a more sophisticated code
as seen from the mid-IR interferometric eye.

5.1. Parameter description

The distance to the simulated object has been fixed tod = 1 kpc,
which is a typical distance for Galactic sgB[e].

The inner radiusRin = 30Rs = 1800R⊙ value was cho-
sen by considering the location of the hottest dust grains (see
Lamers & Cassinelli 1999) with a condensation temperature of
1500 K assumed to be theTin value. The value ofRout can-
not be determined from the mid-IR data and has been fixed to
3000Rs = 1.8 × 105 R⊙. The temperature gradientγ was fixed
to 0.75 according to Porter (2003). PAd was fixed to 125◦.

The central source emission is supposed to have a radius
Rs = 60R⊙. We recall that the central region is unresolved by
the interferometer and that its radiation describes both the stellar
and inner gas contribution to the continuum mid-IR emission.
The specific intensity of this central sourceIs

λ0
has been chosen

to be 6500 W m−2µm−1 str−1. If the central source was a pure
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blackbody this value would correspond to the 10µm emission
of a blackbody with an effective temperature around≃ 8000 K.
However, this central emission is not a pure blackbody, and we
adopt the spectral dependence of the central source emission to
be α = 3, which is a compromise betweenα = 4 for a pure
blackbody and a value of≃ 2.6 for free-free emission (Panagia
& Felli 1975; Felli & Panagia 1981).

Spectroscopic observations of Hα and forbidden line emis-
sions from B[e] CSE (Zickgraf 2003) reveal that typical values
for A2 are expected to range from−0.95 to −0.75. We adopt
the value−0.8 in our models. According to Lamers & Waters
(1987), the values ofA1 range from 102 to 104 in most cases
(though values as low as 10 are not excluded). With this high
value of A1 the factor 1+ A1(sinθ)1/m in Eq. (32) ofn(r, θ) is
approximatively given byA1(sinθ)1/m for all pertinent values of
θ, i.e. those close toπ/2 within the disc. This leads to an evi-
dent degeneracy innin × A1 in n(r, θ): we are only sensible to the
product of the two parameters as a scaling factor for the density.
Therefore, the value ofA1 is assumed to be fixed to 150.

To define the dust opacities the chosen value forβ is that
of Mathis et al. (1977), i.e.β = −3.5. Because some sgB[e]
show weak 9.7µm silicate features in their spectrum (e.g. Porter
2003; Domiciano de Souza et al. 2007) we chose to use large
grains in our test models:amin = 0.5µm andamax = 50µm.
However, with this particular choice of large grains, the average
albedo from 7 to 13µm is 6.4 %, with the highest value reached
at 7µm. We have checked with a Monte Carlo (MC) simulations
(see Sect. 5.3) that the effect of scattering on our primary ob-
servables, visibilities, and fluxes is indeed negligeable by com-
paring the results obtained by switching the scattering process
off and on2. The mean relative differences are 3.5 % and 3.0 %
for the visibilities and the fluxes respectively. These values must
be compared to the effect of random noise in the MC simulation,
estimated to be of the same order and to experimental errors,
typically∼ 10 % for the visibilities and fluxes. We underline that
whenever the albedo can be neglected, it is theoretically safe to
compute visibilities and fluxes from the consideration presented
in Sect. 2, in any other situations the effect of scattering on the
observable must be carefully tested.

The parametersnin, m and i were set to different values
defining 12 test models to be analysed from their correspond-
ing simulated data. Twonin values (0.015 m−3 and 0.15 m−3)
have been chosen in order to have an approximate disc-dust
optical depth in the equatorial plane (fromRin to Rout) close
to ≃ 0.1 and≃ 1 in the wavelength range considered (from
7µm to 13µm). These values corresponds to a mass loss rate
of Ṁ ≃ 2.5× 10−7···−6 M⊙ yr−1. Two m values were chosen cor-
responding to a wide and a narrow opening angle, i.e.∆θd = 10◦

and∆θd = 60◦. Three inclinationsi were tested (20◦, 50◦, and
90◦) corresponding to discs seen close to pole-on, intermediate
inclination, and equator-on. These values ofnin, m, i, together
with the parameters fixed above, define 12 test models that will
be studied below.

From these 12 test models we have generated 12 sets of arti-
ficial VLTI /MIDI observations (visibilities and fluxes) following
the procedure described in Sect. 3.5. We do not aim to presentan
exhaustive revue of all types of sgB[e] CSE. Rather, we focussed
on the analysis of the parameter constraints one can hope to ob-
tain from present and near-future mid-IR spectro-interferometry.

2 The computation have been done for model b described in Sect.5.2,
the baselines listed in Table 1 and the wavelengths under consideration
from 7 to 13µm.

The quantitative estimate of these constraints is derived from a
systematic analysis of theχ2

r variations with the parameters.
In our model fitting andχ2

r analysis we concentrate on
10 free parameters (nfree = 10) that can be set into four different
groups:

– Thegeometricalparameters : PAd, i andRin,
– the parameters related to thecentral source: Is

λ0
andα,

– those describing thetemperature structure: Tin andγ,
– and thenumber density of dust grains: A2, ∆θd (or equiva-

lently m) andnin.

The remaining parameters of the model are in general
loosely constrained by mid-IR interferometric observations so
that we kept them fixed to the values described above.

5.2. Model fitting and χ2
r analysis of the 12 test models

We describe here the data analysis procedure adopted to study
our 12 test models. The results of our analysis are summarised
in Tables 3 and 4, and their physical interpretation is presented
in Sect. 6.

As a first step we chose 2 of the 12 models, hereafter called
models (a) and (b), to be exhaustively studied from a complete
model fitting procedure. As an example we show the simulated
observed mid-IR fluxes and visibilities for model (a) and (b)in
Figs. 3, 4, and 5. The parameters of models (a) and (b) are those
of Table 2 with∆θd = 60◦, i = 50◦ andnin fixed to the val-
ues 0.015 m−3 and 0.15 m−3 respectively. These two models are
those presenting some of the best constrained model parameters
for the dust CSE. On the other hand, the contribution of the cen-
tral regions to the total flux and visibilities is quite different in
models (a) and (b) (see discussion in Sect. 6).

The study of models (a) and (b) have thus been performed
as for real interferometric observations. The best-fit values of
the parameters have been obtained by the Levenberg-Marquardt
algorithm with a stopping criterion corresponding to a relative
decrease inχ2

r of 10−3.
The errors on each model parameter have been obtained fol-

lowing the methods described in Sect. 3.6. Theχ2
r maps have

been computed with a resolution of 21× 21 around the best-
fit values of the parameters. The map sizes have been adjusted
in order to enclose the∆χ2

r = 1 contour. This adjustment was
performed until an upper limit for the map size of 100 % of the
best-fit parameter values was reached. This amounts to the com-
putation of 3.969×104 different models. The results, namely the
mean relative error up to 100 %, for these two particular models
are summarised in Table 3.

The other ten models (numbered from 1 to 10 in Table 4)
have been used in order to get some quantitative (but limited)
information about how the uncertainties of the fitted parame-
ters evolve as a function of three disc characteristics: itsoptical
depth (τ by means ofnin parameter), its inclination (i) and its
opening angle (∆θd, controlled bym). To perform this study we
have decided to limit the exploration of the space parameterin
a relative range of 25 % on both sides from the model param-
eters. In order to reduce the computation time, the maps were
not generated around the best-fit parameters which would have
required to compute several thousands models more but around
the true parameters themselves. This procedure has the supple-
mentary advantage that we do not rely on any specific minimi-
sation algorithm. We checked that estimating the best-fit param-
eters from the true ones is reasonable within a few percents us-
ing the Levenberg-Marquardtalgorithm with a stopping criterion
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Table 3. Relative errors (given in %) on the parameters for models (a)et (b) (see text for description of models). For each of the
10 free parameters considered in the analysis, the values ofthe relative error corresponding to the 12 different models are given.
Indeed, these relative errors are “mean values” for the errors because the error bars are not symmetric with respect to the best-fit
values. The parenthesis around the relative error ofA2 recall that this parameter is bounded.

Models\Parameters A2 m Rin nin T in γ Is
λ0

α PAd i
(a) (53) ≥ 100 1.9 46 15 7.1 27 13 4.3 6.2
(b) (59) ≥ 100 4.5 100 20 12 ≥ 100 96 9.4 7.2

Table 4.Constraints on the model parameters. For the 12 models considered here (differing in their value ofτ, ∆θd andi), numbered
from 1 to 10 (except for model a and b), we classified the parameters into 3 different relative error ranges : below 10 %, between 10
and 25 % and above 25 %. BecauseA2, m, nin, Is

λ0
are determined for all the models with an error greater than 25 % they have been

discarded from the table for the sake of clarity .

Models\parameters Constraints [%]
τ ∆θd [deg] i [deg] ≤ 10 10→ 25 ≥ 25

1 0.1 60 20 Rin, γ T in, α PAd, i
2 1. 60 20 Rin T in, γ α, PAd, i
3 0.1 10 20 - Rin T in, γ, α, PAd, i
4 1. 10 20 Rin, γ T in α, PAd, i

(a) 0.1 60 50 Rin, γ, PAd, i T in, α
(b) 1. 60 50 Rin, PAd, i T in, γ α

5 0.1 10 50 - Rin T in, γ, α, PAd, i
6 1. 10 50 Rin, γ, PAd, i T in α

7 0.1 60 90 Rin, γ, PAd T in, i, α
8 1. 60 90 Rin, PAd T in, γ, i α

9 0.1 10 90 PAd Rin T in, γ, α, i
10 1. 10 90 Rin, γ, PAd, i T in α

corresponding to a relative decrease inχ2
r of 10−3. The resolution

of theχ2
r maps have been reduced to 15× 15. The total number

of models to be computed is as large as 1.0125× 105.

5.3. Comparison with a Monte Carlo simulation

We generated synthetic data with the help of a Monte Carlo
(MC) radiative transfer code (Niccolini & Alcolea 2006) for
model b (see above) for the seven wavelengths considered in the
problem and the baselines of Table 1. Again, the adopted pro-
cedure to generate the mid-IR interferometric data followsthe
considerations of Sect. 3.5. In the MC code, the source of pho-
tons is described by a blackbody sphere of radiusRs = 60R⊙
and an effective temperature ofTeff = 8000 K. The temperature
of the CSE is not prescribed but computed from the Lucy (1999)
mean intensity estimator. This choice ofTeff gives at the inner
radius of model b a dust temperature of≃ 1150 K lower than the
sublimation temperature. In this way, we can test if in the fitting
process using FRACS, a spurious effect might not lead the min-
imisation algorithm to reach the upper limit forTin of 1500 K,
corresponding to the adopted dust sublimation temperature.

We obtained the best fitting parameters for the CSE model
described in Sect. 4 with FRACS. For a comparison with the MC
code,α has been set and fixed to 4 corresponding to the value of
a blackbody. Depending of the disc optical depth, the tempera-
ture structure may show two separate regimes correspondingto
(1) the inner regions with the strongest temperature gradient, op-
tically thick to the stellar radiation and (2) the outer regions opti-
cally thin to the disc radiation with a flatter temperature gradient.
In order to determine if mid-IR interferometric data are sensitive
to two temperature regimes, we tested the effect of two parame-
terisations of the temperature structure: the unique power-law of
Eq. (35) and a generalisation to two power-laws with a transition

radius,RT, and a second exponentγ′

T (r) = Tin

(

Rin

RT

)γ

×
(RT

r

)γ′

, (37)

for r ≥ RT.
The best-fitting parameters for both parameterisations are

shown in Table 5. The images of the disc at 10µm generated
with the MC code and their corresponding FRACS counterpart
(best-fitting model) are shown in Fig. 6 for comparison.

6. Discussion

We first discuss the uncertainties in the parameters derivedfor
the 12 models studied in Sect. 5.2. For each model we divided
the parameters into three groups associated to a given levelof
constraints expressed by the relative errors: below 10 %, between
10 % and 25 %, and above 25 %. This information is summarised
in Table 4. The exact relative errors for the two models studied
in detail (models a and b) are shown in Table 3. Then, we anal-
yse the results of Sect. 5.3 obtained from the best-fit of the data
simulated with the MC radiative transfer code.

6.1. Central source

Table 4 shows that the central source parameters (Is
λ0

and α)
can only be constrained with relative uncertainties≥ 10 % for
all test models. A deeper and more quantitative investigation of
these parameters can be obtained from models (a) and (b). From
Table 3 it can be seen thatIs

λ0
andα are much better constrained

for model (a) (27 % and 13 %, resp.) than for model (b)(relative
errors≃ 100 %).

The key quantity for a good constraint for the central source
parameters (Is

λ0
andα) is simply the relative contribution of the
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Table 5. best-fitting FRACS parameters from artificial data generated with a Monte Carlo code. The column “true values” refers
to the MC input parameters, except forTin, γ, andγ′ which are determined from the results of the MC simulation. The columns
“two power-law” and “one power-law” list the best-fit parameters obtained with FRACS assuming two and one power-law for the
temperature respectively. Theχ2

r,min values are respectively 0.73 and 0.79 for two and one power-law.

Parameters Units true values two power-law one power-law
A2 - -0.8 -0.791 -0.782
m - 4.86 5.59 4.74
Rin Rs 30 29.8 29.9
nin m−3 0.15 0.189 0.169
T in K 1150a 1090 1070
γ/γ′ - 0.725/0.478a 0.719/0.613 0.676
RT Rin 5.24a 2.87 -
Is
λ0

W m−2 µm−1 str−1 6.62× 103 6.48× 103 5.04× 103

PAd deg 125 125 124
i deg 50.0 50.6 50.2

a These values are not prescribed parameters, but are determined from the results of the Monte Carlo simulation. The values reported here are
best-fit parameters of the mean disc temperature (see text for more details).

flux of the central source to the total flux of the object (source
and disc). Indeed, the models in Table 3 only differ by this rela-
tive flux contribution of 5.3 % in model (a) (τ = 0.1), while it is
only 0.7 % in model (b) (τ = 1).

Our analysis thus shows that interferometric data can con-
strainIs

λ0
andα with a relative precision of≃ 15 %− 30 % even

when the central source contributes to (only) a few percent of
the total mid-IR flux.

6.2. Geometrical parameters

The parameters PAd, i, andRin are those usually estimated from
simple geometrical models (e.g. ellipses, Gaussians). However,
their determination from geometrical models is quite limited, in
particular fori, for which only an estimate can be derived from
the axis-ratio of an ellipse, for example. In addition, the esti-
mate ofi from a simple analytical model such as a flat ellipse is
only valid for configurations far from the equator (intermediate
to low i). The use of a more physical and geometrically consis-
tent model such as FRACS allows us to relax this constraint and
makes the determination ofi possible for all viewing configura-
tions.

As expected, PAd andi are better determined if the inclina-
tion of the disc with respect to the line of sight is away from
pole-on (highi). In Fig. 8 we can clearly see this behaviour from
theχ2

r maps involving PAd andi. Moreover, the uncertainties on
PAd and i do not seem to be strongly dependent onτ (equiva-
lently nin) and∆θd (equivalentlym) for all models.

The inner dust radiusRin is not strongly dependent on any
parameter (τ, ∆θd or i), being very well constrained (better than
10 %) for most tested models.

6.3. Temperature

The parameters related to the temperature structure of the CSE,
Tin andγ, are well constrained in most models, with relative er-
rors below 20 % and 12 % for both models (a) and (b). Indeed,
γ has a strong impact on the IR emission across the disc, and
consequently this parameter has a direct influence on the visibil-
ities (see Figs. 4, 5).Tin has a lower influence, compared toγ,
on the shape of the monochromatic image (radial dependence of
intensity) and can be mainly considered as a scaling factor to it.
On the other hand, the mid-IR flux imposes stronger constraints

onTin. From Table 4 we see that the CSE’s temperature structure
is not highly dependent onτ (nin) and∆θd for tested models.

6.4. Number density of dust grains

The parameters related to the density law, that is to saym, nin
andA2, seems to be rather poorly constrained from the mid-IR
data alone. From the results of model (a) and (b) corresponding
to an intermediary inclinationi = 50◦, we found that onlynin is
constrained somewhat moderately with a mean relative errorof
46 %. Form andA2, according to the results of Table 3 it seems
that nevertheless, upper limits to their values can be determined.
Note that becauseA2 is bounded (−1 ≤ A2 ≤ 0) the mean rel-
ative errors, 53 % and 59 % for model (a) and (b) respectively,
correspond approximatively to the limit values ofA2, which is
consequently not constrained.

Table 4 confirms this trend form, nin andA2 at least for the
situations explored via the models presented here. From allmaps
computed within±25 % of the true value, we always found that
the mean relative error to these parameters is larger than 25%
with no hint that it could be close to these limits.

From Fig. 9, comparing theχ2
r maps for all pairs ofnin, m and

A2, we can see that the∆χ2
r contours get sharper around the min-

imum value for model (a) (corresponding to lower optical depths
along the line of sight) than for model (b). Indeed, the constraints
on nin andm are improved for lower optical depths, or equiv-
alently for lower disc masses. Indeed, when the disc mass (or
optical depth) decreases, the flux (mid-IR flux, intensity maps)
emitted by the disc reflects the mass of the disc, while for high
optical depths we only probe the regions of the disc very close
to the projected surface revealed to the observer.A2, however,
is unaffected by the change in disc mass and remains undeter-
mined anyway. From Fig. 9 it can be seen thatnin, m andA2 are
strongly correlated. This is expected from the expression of the
density (see Eq. 32) depending on these parameters. However,
this dependence and the final correlation between these param-
eters are related through the computation of the visibilities and
the mid-IR flux, as well as the comparison to the data and is,
therefore, not straightforward.

To improve the situation concerningnin, m andA2, the mid-
IR data can be supplemented by other types of observations such
as for instance spectroscopic data, from which one can better de-
termineA2 (e.g. see Chesneau et al. 2005). We tested the effect
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of fixing the value ofA2, or equivalently of assuming thatA2 is
fully determined, in the process of estimating the errors ofthe
other parameters. For model (a), the relative errors onnin and
m go down to 33 % and 71 % respectively while for model (b),
nin andm are determined with an accuracy reaching 95 % and
78 % respectively. The precision to which other parameters are
determined is not affected by the determination ofA2.

We also tested the influence of the determination ofnin, m
andA2 on other parameters by fixing their values and estimatng
the relative errors on the remaining parameters for model (a)
and (b). OnlyIs

λ0
andTin are more strongly affected by the deter-

mination ofnin, m andA2: for model (a) (resp. model b)Is
λ0

gets
determined down to 19 % (resp. 80 %) andTin down to 9 % (resp.
18 %). The influence is stronger with lower disc mass (model a
compared to model b). This effect can be explained because if
we have a good determination of the disc mass because we know
nin, m, andA2, the determination of the parameters that scale the
source and disc fluxes is improved accordingly for the visibility
and the mid-IR flux.

nin, m andA2 shape the density structure of the circumstellar
medium. Though they are not well constrained, they certainly
have a strong influence on the temperature structure, which in
turn is very well constrained. For the particular case of sgB[e]
circumstellar discs, a natural evolution of FRACS is to include
the direct heating of the medium by the central source of radia-
tion assuming that the disc is optically thin to its own radiation.
The temperature structure would not be parameterised, and its
good determination would certainly put better constraintsonnin,
m andA2, while keeping an affordable computation time for the
model-fitting procedure. This will be the purpose of a subsequent
work.

Finally, one can derive a ranking of the parameter constraints
according to two criteria: first the parameter must be constrained
within the prescribed limits (100 % for model a and b and 25 %
for model 1 to 10) and second the mean relative error must be as
low as possible. The best-fitted parameters, most of the timeac-
cording to these criteraria are by decreasing order of best deter-
mination:Rin, PAd, γ, Tin, i, α, Is

λ0
, nin, m andA2. This tendency

can be seen in Table 4.

6.5. best-fit to the MC simulation

The χ2
r,min values obtained for the two types of temperature

parametrisations (one and two power-laws) are quite similar:
0.79 and 0.73 respectively. Regarding the data, both tempera-
ture parametrisations are indeed acceptable. In addition,these
results show that we can actually obtain very good fits from
data sets based on more physically consistent scenarios. A com-
plete error analysis and study of the parameter determination has
been presented in the previous sections for data generated from
FRACS and will not be repeated here. In particular, parameter
confidence intervals, from which errors were derived, have al-
ready been estimated. Here, we will instead focus on thetrue er-
rors, i.e. the differences between the true model parameters and
the best-fitting values for the parameters (see Table 5). Thetwo
types of errors must not be confounded. Thetrue errors reflect
the capability of FRACS to mimic the mid-IR interferometric
data regarding the information it provides. Of course, withthe
sparse uv-plane coverage inherent to this kind of data as well as
the experimental noise, one should not expect a full agreement
of the fitted and the true parameters: they are indeed different.

From Table 5, we see that the geometrical parameters, PAd, i
andRin, can be almost exactly recovered as expected. The source
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Fig. 7.Temperature of the CSE. The solid line represents the best
fit (last column in Table. 5) with a unique power-law, the dashed
line the best-fit with two power-laws (fourth column in Table5)
and the dot-dashed line the MC results. The shaded region repre-
sents the possible domain for a unique power-law by taking into
account the errors estimated in Table 3.

specific intensityIs
λ0

, and the parameters related to the density,
A2, nin andm can be recovered fairly well and have best-fitting
values close to the true parameters.

The values ofTin, RT, γ andγ′ reported as “true” in Table 5
are indeed the values of a fit to the average (over the co-latitude
for a givenr) computed temperature in the disc. The true rela-
tive differences forTin do not exceed 7 % independently of the
adopted parameterisation of the temperature (one or two power-
laws). The best-fitting values ofγ, the inner temperature gradi-
ent, obtained with FRACS are very close to the true values with
two and one power-law with true relative error of 1 % and 7 %
respectively. This already suggests that the mid-IR data provide
information on the inner andhottest region of the CSE, in par-
ticular on the inner temperature gradientγ.

Fitting the temperature computed with the MC code with
a simple power-law, we obtainγ ≃ 0.64. This value is close
to those of the best fitting models, especially with a unique
power-law (6 % relative difference). For comparison, the actual
mean temperature gradient as derived from the MC simulation
is ≃ 0.60. For this particular data set, the values ofγ′ andRT
recovered by FRACS differ by 28 % and 45 % respectively from
the actual values. This again confirms the sensibility of theinter-
ferometric data to the temperature structure mostly in the inner
(r <∼ RT) regions of the disc. The best-fitting models (fourth and
last columns in Table 5) as well as the MC results are shown in
Fig. 7. Regarding the errors (estimated from the results given in
Table 3) shown as a shaded area, we can see that both tempera-
ture parameterisations are essentially the same and show a better
agreement with the MC results in the inner than in the outer re-
gions of the disc.

We considered a “truncated” model with two power-laws
(with parameter values listed in the third column of Table 5)in
which the CSEs emission forr ≥ RT, the “outer” regions, has
been set to 0. We then compared the visibilities and the fluxes
of this truncated model to the same modelincluding the outer
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region emission. We obtained relative differences, averaged over
all considered wavelengths and baselines (Table 1), of 18 % and
17 % respectively. These relative differences are larger, but are
still close to the noise level. For this reason, one cannot expect
to obtain much information on the outer temperature gradient γ′,
at least for the particular configuration we considered.

7. Conclusion

We proposed and described here a new numerical tool to inter-
pret mid-IR interferometric data. Even though we focussed on
the special case of circumstellar disc observations, the numeri-
cal techniques have been developed with the aim to be as general
as possible. The methods we employ rely on both parameterised
physical models and the ray-tracing technique. The need forsuch
a tool is evident because the nature of interferometric dataim-
poses an interpretation through a model of the object to obtain
any kind of information. On one hand, Monte-Carlo radiative
transfer methods require too much computation time to asso-
ciate the model-fitting to an automatic minimum search method.
On the other hand, purely geometrical function fitting (suchas
ellipses or Gaussians) are too simple to envisage to obtain phys-
ical constraints on the observed disc. Hence, a tool like FRACS
fills a blank in the model fitting approach for mid-IR interfero-
metric data interpretation. The main advantages of FRACS are
its speed and its flexibility, allowing us to test different physical
models. Moreover, an exploration of the parameter space canbe
performed in different manners and can lead to an estimate of
the sensitivity of the fit to the different model parameters, i.e. a
realistic error estimate.

We applied these techniques to the special astrophysical case
of B[e] star circumstellar environments by generating artificial
data in order to analyse beforehand what constraints can be ob-
tained on each parameter of the particular disc model in this
work. The techniques will then be applied to real interferometric
data of a sgB[e] CSE in a sequel to this paper.

We showed in our analysis that the “geometrical” parame-
ters such asRin, PAd andi can be determined with an accuracy
<∼ 15 %. Mid-IR interferometric data give access to a mean tem-
perature gradient: the temperature structure (Tin andγ) can be
very well determined (within<∼ 20 % and<∼ 10 % respectively).
It is possible to have access to the central source emission (with
an accuracy>∼ 30 %) when it has a significant contribution to the
total flux of the object (a few % are sufficient). The remaining
parameters of our disc model, namelynin, m andA2 are not very
well constrained by MIDI data alone.nin is at best determined
with an accuracy of about>∼ 50 % in some cases. IfA2 can be
estimated through spectroscopic observations, then the picture
about thenin andm determination improves somewhat.

FRACS can be used mainly for two purposes. First, it can be
used by itself to try and determine physical quantities of the cir-
cumstellar matter. Admittedly, it is not a self-consistentmodel,
i.e. the radiative transfer is not solved because the temperature
structure is parameterised. From the usual habits in the interpre-
tation of interferometric data it is nevertheless a step beyond the
commonly use of toy models or very simple analytical models.
This approach has indeed been very successful in the millimetric
wavelength range (e.g. see Guilloteau & Dutrey 1998). Second,
it can be viewed as a mean to prepare the work of data fitting
with a more elaborate model (such as a Monte Carlo radiative
transfer code for instance) and to provide a good starting point.

FRACS is a tool that can help in the process of inter-
preting and/or preparing observations with second-generation
VLTI instruments such as the Multi-AperTure mid-Infrared

SpectroScopic Experiment (MATISSE) project (Lopez et al.
2006). In this respect, FRACS is not restricted to the mid-IR, and
sub-millimeter interferometric data obtained with the Atacama
Large Millimeter Array (ALMA) for instance can be tackled.
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Belokogne for fruitful discussions and careful proof reading.

The Monte Carlo simulation have been carried out on a computer financed
by the BQR grant of the Observatoire de la Côte d’Azur.
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Fig. 4. Visibilities of the artificial sgB[e] circumstellar environment (model a). The visibility variations with the wavelength are
shown for each baseline specified by the value of the projected baseline and the position angle on the sky. The circles represent the
simulated observations, and the solid curves represent thebest-fit model.
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Fig. 5.Visibilities of the artificial sgB[e] circumstellar environment (model b).
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Fig. 6. Disc images at 10µm. (a) Image computed with the help of the Monte Carlo radiative transfer code. (b) Image of the best-
fitting model with two power-laws (parameters of the fourth column in Table. 5) obtained with FRACS.
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Fig. 8.Evolution ofm and PAd with the inclinationi. Left: χ2
r maps for the couplem and PAd ; right: χ2 maps for the couplem and

i. Contours are drawn forχ2
r,min + ∆χ

2
r , with ∆χ2

r = 0.3, 1, 3. From top to bottom the inclinationi takes the value 20◦, 50◦ and 90◦.
The results correspond to model 4, 6, and 10. The limits of themaps have been set to±25 % of the true values of the parameters.
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Fig. 9.χ2
r maps for the parametersnin, A2 andm. The results presented here are those of model (a) (τ = 0.1, left part) and model (b)

(τ = 1, right part). Contours are drawn forχ2
r,min + ∆χ

2
r , with ∆χ2

r = 0.3, 1, 3. The three possible maps corresponding to the
combination of these parameters are represented. These three parameters are better constrained in model (a).


