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Abstract. The decomposition of images into their meaningful compo-
nents is one of the major tasks in computer vision. Tadmor, Nezzar and
Vese [1] have proposed a general approach for multiscale hierarchical de-
composition of images. On the basis of this work, we propose a multiscale
hierarchical decomposition of functions on graphs. The decomposition is
based on a discrete variational framework that makes it possible to pro-
cess arbitrary discrete data sets with the natural introduction of nonlocal
interactions. This leads to an approach that can be used for the decom-
position of images, meshes, or arbitrary data sets by taking advantage of
the graph structure. To have a fully automatic decomposition, the issue
of parameter selection is fully addressed. We illustrate our approach with
numerous decomposition results on images, meshes, and point clouds and
show the benefits.

1 Introduction

It is well-accepted by now that vision is inherently a multiscale phenomenon. A
visual task comes to representing and interpreting visual scenes with its singu-
larities. As a consequence, a mathematical multiscale representation is essential
to analyze images and decomposing an image into its meaningful components
is one of the major tasks in computer vision and image processing. Images usu-
ally contain two types of main components: structure and texture. Structure is
mainly the sharp edges in the image, which separate different objects. Texture
is in general a repetitive pattern or the presence of oscillations (that can be
noise). A typical image decomposition problem that is often considered is image
denoising [2] where an image f is separated into a clean part u and a noisy part
v. A popular scheme that proposed such a decomposition was the total variation
decomposition of Rudin, Osher and Fatemi (ROF) [3] which was introduced as
an effective denoising tool:

inf
u

{
∫

Ω

|∇u|+ λ‖v‖2L2 , f = u+ v

}

(1)

where λ is a scale parameter. With the ROF model, as pointed out by Meyer
[2], image denoising leads to image decomposition where the minimization of the
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previous functional leads to a decomposition of f into a part u that extracts the
edges of f , and a part v that captures the texture. Moreover, denoising at dif-
ferent scales λ generates a multiscale representation. In [1], Tadmor, Nezzar and
Vese proposed a new multiscale image decomposition which offers a hierarchical
and adaptive representation for different features in images. An image is hierar-
chically decomposed into the sum of simpler atoms uk, where uk extracts more
refined information from the previous scale uk−1. To this end, the atoms uk are
obtained as dyadically scaled minimizers of the ROF functional at increasing λk

scales. Recently, the integration of nonlocal interactions in images [4] has shown
to be very effective for capturing repetitive patterns in images and has led to
numerous developments for image denoising (see [5] an reference therein). As it
has been shown by Elmoataz et al. in [6], the formalism of difference equations
on graphs provides a unifying view of local and nonlocal processing of functions
on graphs (from images to high dimensional data). However, the integration of
nonlocal interactions [7] has been few investigated for image decomposition.

Contributions. In this work, we propose to generalize the multiscale hierarchical
decomposition of Tadmor, Nezzar and Vese (TNV) [1] proposed for images to
a multiscale hierarchical decomposition of functions on arbitrary graphs. This
naturally enables, first, to integrate nonlocal information in the decomposition
process and second, to generalize it to the decomposition of functions on graphs.
With the proposed approach, it is then possible to obtain a decomposition inte-
grating nonlocal information for images, point clouds, or meshes (see [8] for an
alternative aproach) once a graph representation is associated to the data under
consideration.

Paper organization. In Section 2, we recall the multiscale hierarchical decom-
position of images introduced in [1]. The formulation in this latter section is
continuous. In Section 3, we introduce the discrete variational of [6] and give the
numerical algorithms used for the solution. We then move on to the extension of
the multiscale hierarchical decomposition to general data lying on graphs using
the former framework. The approaches taken to construct weighted graphs are
given. We then address the issue of parameter selection and give a general selec-
tion procedure. In the last Section, we illustrate the capabilities of the decompo-
sition by applying it to different kinds of data defined on graphs. Grayscale, color,
synthetic and natural images are considered as well as 3-dimensional meshes and
point clouds.

2 Multiscale Hierarchical Decomposition of Images

The Tadmore Nezzar Vese multiscale hierarchical decomposition [1] builds upon
the total variation minimization introduced in [3]. Given a noisy image f de-
fined on continuous domain Ω, the authors in [3] consider the minimization (1)
in order to recover the original denoised image. The starting point in [1] is an
alternative point of view about the standard ROF denoising methodology. In-
spired by the work of Meyer [2], Eq. (1) is interpreted as a decomposition: the
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original noise-free image f is decomposed into a cartoon part u and an oscil-
latory or textured part v. The cartoon part should capture only the geometric
features of the original image (i.e. sharp edges and boundaries) while the texture
one should capture the repeated and meaningful small patterns. The trade-off
between geometry and texture is dictated by the parameter λ which now plays
the role of a scale separation parameter. The small meaningful patterns known
as texture are in fact scale dependent: what might be seen as texture at a fixed
scale could in fact contain important details when considered under a refined
scale. To overcome this possible limitation, the authors in [1] propose to iterate
the process in (1). Starting with an initial image f and an initial scale λ0, a first
decomposition is performed on f . Let u0 be the regularized image and v0 the
residual so that f = u0 + v0. Then, another decomposition is performed, this
time on the residual v0 with a refined scale λ1 > λ0 leading to the following
decomposition: v0 = u1 + v1. We now have f = u0 + u1 + v1. For a fixed index
k and a sequence of refined scales λ0 > λ1 > . . . > λk we obtain the following
decomposition:

f = u0 + . . .+ uk + vk . (2)

Results about the convergence as k −→ ∞ as well as upper and lower bounds for
the choice of λ are provided in [1] for the geometric sequence λi = 2i. Unfortu-
nately, it is difficult to explicitly compute these bounds. Tadmor et al [1] argue
that the choice of the parameter λ0 is not important. If λ0 is too small, the first
decomposition levels, will be very smooth and details will not be reconstructed
while λi is not large enough. While this is true for images with 4-adjacency grid
graphs, it may be problematic for high dimensional data living on graphs mainly
for two aspects: the dimension of the data can be high as well the nature of the
processing (local or nonlocal). Therefore, a bad choice of λ0 can produce higher
computational cost for the decomposition since more levels are required. In [9],
the hierarchical decomposition has been successfully applied to deblurring and
denoising images as well as for segmentation.

3 Multiscale Hierarchical Decomposition on Graphs

In this Section, we recall the discrete variational framework introduced in [6] for
the processing of general data defined on arbitrary graphs. Based on the ideas
presented in [1], we use this framework to produce a multiscale decomposition
of general data defined on graphs.

3.1 Digital Variational Framework

Definitions and Notations Let G = (V,E,w) be a general weighted graph
consisting of a set of vertices V = {α1, . . . , αN} and set of weighted edges E ⊂
V ×V with a similarity measure w : V ×V → [0, 1]. For an edge (α, β) connecting
the vertices α and β, w(α, β) represents a similarity measure between the vertices
often based on an a priori distance measure. w is supposed symmetric and
satisfies w(α, β) = 0 if (α, β) /∈ E. The graph G is assumed to be undirected,



4 Hidane, M., Lézoray, O., Ta, V.-T., Elmoataz, A.

with no self-loops and no multiple-edges.
Let f : V → R be a real-valued function. To measure the regularity of f , the
authors in [6] use the following difference operator df :

(df)(α, β)
def
= ∂βf(α)

def
=

√

w(α, β)(f(β)− f(α)), ∀(α, β) ∈ E . (3)

The discrete gradient operator is then defined at vertex α as follows:

∇wf(α)
def
= [∂βf(α) : β ∼ α]T

= [∂β1
f(α), . . . , ∂βk

f(α)]T , ∀(α, βi) ∈ E . (4)

Its Euclidean norm represents a local measure of the variation of f at a given
vertex:

|∇wf(α)| =

√

∑

β∼α

(∂βf(α))2

=

√

∑

β∼α

w(α, β)(f(β)− f(α))2 . (5)

Another important operator is the nonlocal curvature graph operator which is
defined as follows [6]:

κf
w(α) =

1
2

∑

β∼α

γf
w(α, β)(f(α)− f(β)) , (6)

γf
w(α, β) = w(α, β)(|∇wf(β)|

−1 + |∇wf(α)|
−1) . (7)

Discrete Energy Let f0 be a real function defined on a weighted graph G =
(V,E,w). Usually f0 is a corrupted version of a clean function g. The problem of
recovering g from f0 is a typical inverse problem. A standard method to solve this
inverse problem is to consider it as a variational one. The variational formulation
consists in the minimization of an energy functional involving a regularization
term and a fidelity term. The energy considered here is :

Ew(f, f
0, λ) =

∑

α∈V

|∇wf(α)|+
λ
2 ‖f − f0‖2 , (8)

where
‖f − f0‖2 =

∑

α∈V

|f(α)− f0(α)|2 . (9)

The first term of the right hand side in (8) is the regularization one, while the
second one forces the solution to be closed to the initial data. The factor λ
dictates the trade-off between these two terms. Then the minimization consists
in finding:

arginf{Ew(f, f
0, λ), f : V → R} . (10)
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For w = 1 the energy is the one proposed in [10], in the case of images modeled
by 4 or 8-adjacency grid graphs. For w 6= 1 the formulation becomes an adaptive
version of the digital TV filter [10]. If f0 has its values in R

n then we consider
an energy regularization for each component. In this case, the use of a global
similarity measure plays the role of a correlation between the different channels
and thus avoids the drawbacks of marginal processing [11].

3.2 Numerical Resolution

Restoration/Decomposition Equations In this Section, we derive the resto-
ration/decomposition equations that will serve to decompose general data de-
fined on graphs. The discrete formulation of the energies leads to a set of alge-
braic equations which are the discrete equivalent of the Euler-Lagrange equation.
Since the energy (8) is strictly convex, the optimal solution is given by taking
the derivative:

∂Ew(f, f
0, λ)

∂f(α)
= 0, ∀α ∈ V. (11)

In practice, in order to avoid zero division, we replace the Euclidean norm of the
discrete gradient operator by a regularized version:

|∇wf(α)|ǫ =
√

|∇wf(α)|2 + ǫ2 ,

where ǫ is a small fixed number, typically ǫ = 10−4. This amounts to consider
the following energy function:

Ew(f, f
0, λ) =

∑

α∈V

|∇wf(α)|ǫ +
λ
2 ‖f − f0‖2 . (12)

This regularized energy is still strictly convex, and thus the solution is again
given by taking the derivatives. In the sequel, we will drop the ǫ subscript, and
|∇wf | will mean |∇wf |ǫ.
The restoration/decomposition equations are then written (see [6]):

2κf
w(α) + λ(f(α)− f0(α)) = 0, ∀α ∈ V. (13)

Algorithms We use the linearized Gauss Jacobi method to find an approximate
solution:















f (0) = f0

f (t+1)(α) =
λf0(α) +

∑

β∼α γf(t)

w (α, β)f (t)(β)

λ+
∑

β∼α γf(t)

w (α, β)
, ∀α ∈ V,

(14)

where γf
w is defined in (7). Starting with the initial data f0, each iteration of (14)

relates the new value f (t+1)(α) to f0(α) and to a weighted average of the filtered
data in the neighborhood of α. The contribution of f0 is constant and dictated
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by the scale parameter λ. As the decomposition of the successive residuals is
performed, the scales are getting greater and the fidelity term has more impact
on the decomposition.
For an unweighted graph, the algorithm (14) corresponds to the one proposed
in [10] for the restoration of noisy images.

3.3 Digital Multiscale Hierarchical Decomposition on Graphs

In this Section, we propose a digital version of the multiscale hierarchical decom-
position TNV, based on the framework introduced above. This digital version
allows us to extend the TNV methodology to arbitrary graphs, including meshes
and point clouds. The graph processing has another important advantage: it
makes it possible to naturally consider nonlocal interactions between data [6]
and thus enforces the nonlinearity of the decompositions.
Let us first review some aspects of the construction of weighted graphs. Data
defined on graphs fall into two categories: organized and unorganized. For the
former, the graph structure is known a priori while for the latter, a neighbor-
hood graph should be considered. In this paper, we use the k-nearest neighbors
graph where the nearest neighbors are selected according to a distance measure
between vertices. Let V be a set of vertices, E ⊂ V × V a set of edges and f0 a
real function defined on V . The function f0 is used to define a distance measure
d(α, β) between each adjacent vertices α and β. For example, if f0 is the function
that assigns to each vertex its coordinates in the Euclidean space, we can use
the Euclidean distance as a distance measure. If the graph represents an image
domain and f0 is the intensity function, one can consider the Euclidean distance
between the intensity components for each pixel. If the data are organized, one
can introduce feature vectors for each vertex and consider the distances between
these feature vectors. A classical example is the introduction of patches around
each pixel in the case of image denoising (see [6]). The graph now consists in of
set of vertices, a set of edges and a distance measure d. A similarity measure w
is defined, based on the distance d. w should be a non-increasing function that
maps the range space of d to the interval [0, 1]. The ones we use in this paper
are:
1) w(α, β) = 1

1+d(α,β)

2) w(α, β) = e
−d2(α,β)

σ2

The estimation of σ is addressed later in this paper. In particular, we will con-
sider local estimation of σ for each pixel in the case of image decomposition.
We have now a weighted graph G = (V,E,w) and a function f0 on V . We
perform a first decomposition using equation (8) at an initial scale λ0 and then
iterate the process as in TNV, following the same geometric progression of scales.
The graph framework extends the TNV method. It has the following advantages,
in contrast to the TNV approach:
1) The nonlocal processing is embedded in the graph structure.
2) It introduces adaptation within the graph weights.
3) It allows the decomposition of any data on graphs (meshes, curves, ...).
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The decomposition equations are already in digital form consisting in a system
of nonlinear equations (13) for each decomposition step. For a fixed index k,
we end up with the same decomposition as in (2). Once general graph topolo-
gies and weights are considered, our approach generalizes and extends the TNV
approach.

3.4 Parameter Selection

In this Section, we propose a method to select the parameters of the digital
multiscale hierarchical decomposition. The parameters that we consider here are
the initial scale λ0 and σ, the kernel bandwidth in the case of an exponential
weight. For images, we propose a local estimation of σ at each vertex.

Image Data For the nonlocal decomposition of images, we consider neighbor-
hood graphs, mainly the k-nearest neighbors graph. In this case, we look for the
k-nearest neighbors inside a window surrounding each pixel. This latter graph is
coupled with a 4-adjacency grid graph, which will be denoted as k-NNG4 in the
sequel. For images we take k = 25 or k = 10. This choice allows for nonlocal pro-
cessing while keeping the associated computational cost low. The edge weights
w(α, β) play an important role in controlling the diffusion around each pixel. An
efficient weight function should incorporate local informations embedded in the
graph structure and the data. The exponential weight function is a good candi-
date for this. For each pixel, a 5×5 patch window is considered. More generally,
for a N × N patch surrounding a pixel α, we take σα to be an estimation of
the standard deviation of the intensity values in the patch. Such an approach
amounts to consider the intensities as local independent random variables and
to estimate their standard deviation. This standard deviation will serve to con-
trol the diffusivity of the regularization. We use an empirical estimation for the
variance. If α is a pixel and Bα is the patch of size Nα surrounding α, then the
estimate is:

σα =

√

1

Nα

∑

k∈Bα

(f0(k)−Mα)2 , (15)

where Mα is the empirical mean computed inside the patch:

Mα =
1

Nα

∑

k∈Bα

f0(k) . (16)

Then, w(α, β) = e
−d2(α,β)

σασβ . Other estimates can be used, in particular the median-
based estimate used in [12].
For the parameter λ0, a first approach could consist in using the analytical
formula given in [10]. However, as the aim of the first minimization is to isolate
the cartoon part, the parameter λ0 can hardly be tied to an unconstrained
minimization as in the denoising case. Our aim here is the decomposition of the
image and we do this by considering a global standard deviation estimated as
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in (15). This time we consider the entire image and let λ0 be a multiple of 1
σ
. In

our numerical experiments, we take λ0 = 1
2σ , so the texture below scale 1

λ0
= 2σ

is unresolved in the first residual v0. Here again more robust estimates can be
used. For the case of color images, we use a single regularization for each color
channel while the 1-Laplace operator is the same for all the components thus
taking into account the correlation between the different channels.

Meshes In the case of meshes, the graph structure is known a priori. The
function to regularize is the one that maps each vertex to its coordinates in
the Euclidean space. The decomposition can be seen as a preprocessing task.
Indeed, it has the advantage of separating different detail levels in a structure
generally containing several thousands of points. To introduce adaptation in the
decomposition, we use the weight function w(α, β) = 1

1+d(α,β) . Here d(α, β) is

the Euclidean distance between α and β.

Point Clouds The same methodology can be applied to unorganized sets of
data. This time, the graph structure has to be constructed. When considering a
neighborhood graph, one should check that the resultant graph is connected. If
the k-nearest neighbors graph is choosen, the value of k has to fit this require-
ment.

4 Results

In this Section, we show some results of the proposed digital multiscale hier-
archical decomposition on graphs. The approach is illustrated on grayscale and
color images as well as on meshes and point clouds. The reader may consult
the electronic version of the paper to accurately see the details in the provided
decompositions.

4.1 Images

First, we illustrate the approach with a grayscale image. Figure 1 shows the 5
first levels of decomposition of an initial noisy finger image. Each reconstruction
step is shown in a column in the second to fifth rows and the original image is in
the first row. Level 1 corresponds to the first regularization u0, level 2 to u0+u1,
until level 5, that shows

∑4
i=0 = ui. Last column shows the last residual, in this

case v4+128. Results provided in the first row of Figure 1 correspond to the use
of an unweighted 4-adjacency grid graph, i.e. w(α, β) = 1 for all (α, β) ∈ E with
λ0 set to 0.02. One can see that this configuration produces blurred edges in the
first steps of the decomposition. All the next rows correspond to results with
our proposed extension. Third row presents results with a weighted 8-adjacency
grid graph. The distance between two adjacent vertices is evaluated pixel-wise,
an exponential weight is used with σ = 40, and λ0 is set to 0.02. The use of
a weighted graph enables an adaptive decomposition with less blur but much
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more texture is present in the first levels. Fourth row presents results with a
weighted 25−NNG4. The distance between two adjacent pixels is evaluated by
introducing 5× 5 patches around each pixel. The weight function is exponential
with σ evaluated globally and λ0 = 1

2σ . This time with nonlocal weights, few
texture is preserved in the first levels and the edges of the structure are sharper.
One can also see that the noise part in the initial image has not been obtained
at the last level of the decomposition and can be found in the residual. The last
row of Figure 1 uses the same graph structure as in the former one. The same
exponential weight is used but this time, σ is local to each pixel and evaluated
as detailed in Section 3.4 as well as for λ0. We see that in this latter case, the
texture has completely disappeared from the first level and only the geometric
part has been captured. Also, the reconstruction is more homogeneous, and each
decomposition brings a distinct part of the texture, making the scale separation
more explicit. This illustrates how a careful selection of the parameters (initial λ0

and graph weights) is important to obtain an accurate nonlocal decomposition.

Figure 2 shows the results of the decomposition of a textured image. The
initial image (first row) contains 5 different textures, each one with a different
direction. The purpose here is to isolate the different texture regions across the
levels. We also would like to verify that the coarser scale textures are recon-
structed first. Second row presents a 5-step decomposition using a 4-adjacency
grid graph with unweighted edges and λ0 = 0.005. First level fails to separate
the different textured regions, but some scale separation properties start appear-
ing in level 3. Third row presents results obtained by considering a 10-NNG4,
with weighted edges (exponential), σ is computed locally as in Section 3.4 in-
side a 5 × 5 patch, and λ0 is selected as in Section 3.4. In this example, the
first level succeeds to capture an important aspect of the geometry. The recon-
struction is faster and the scale separation is more explicit than in the previous
row. Finally, the same comparison is performed on a color image in Figure 3.
The decomposition has been considered for each color channel, with the same
1-Laplace operator for all the channels. Results in the first row are obtained
with λ0 = 0.05 on an unweighted 4-adjacency grid graph. Second row presents a
nonlocal decomposition with parameters automatically estimated (inside a 5×5
patch for σα). Here again, the first level of the nonlocal adaptive decomposition
succeeds in capturing the geometrical part of the initial image. Due to the va-
riety of textures present in the initial image, the reconstruction in the case of
the nonlocal decomposition is slower and one should look at finer scales in or-
der to completely recover the initial image. Indeed, with our nonlocal approach,
repetitive structures (such as the window patterns) are considered as texture
and removed from the first level that contains only the sole structure part of the
image.

4.2 Meshes and Point Clouds

Here we provide numerical experiments illustrating the application of the mul-
tiscale hierarchical decomposition on graphs to meshes and point clouds. For
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u0

∑
1

i=0
ui

∑
2

i=0
ui

∑
3

i=0
ui

∑
4

i=0
ui v4 + 128

Fig. 1. Decomposition of a noisy finger image. Fist row: original image. Second row: 4-
adjacency unweighted grid graph. Third row: 8-adjacency grid graph with exponential
weight. Fourth row: 25-NNG4 with exponential weight and 5 × 5 patches. Fifth row:
25-NNG4 with exponential weight and 5× 5 patches, σα is evaluated at each pixel, λ0

is evaluated automatically. See text for more details.
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u0

∑
1

i=0
ui

∑
2

i=0
ui

∑
3

i=0
ui

∑
4

i=0
ui v4 + 128

Fig. 2. Decomposition of a textured image. Fist row: initial image. Second row: 4-
adjacency grid graph, unweighted. Third row: 10-NNG4, exponential weight, σu is
evaluated at each pixel, λ0 is evaluated automatically. See text for more details.

meshes, the graph structure is given a priori. Figure 4 shows the results of a 10-
step decomposition performed on a 3-dimensional hand mesh. The parameter λ0

was set to 0.1, the distance between two vertices is the Euclidean distance, and
the edges are weighted with: w(α, β) = 1

1+d(α,β) . Rows 1 and 2 show two dif-

ferent views (interior and exterior) of the same hand mesh. The decomposition
performs well on the first level by simplifying the mesh structure. Different de-
tails are recovered as the decompositions are performed. Finally, in Figure 5, we
illustrate the denoising capability of the digital decomposition by applying it to
a noisy toroidal helix. A 20-nearest neighbors graph has been considered, λ0 was
set to 0.1, the distance between two vertices is the Euclidean distance and the
edges are weighted with: w(α, β) = 1

1+d(α,β) where σ was set to the maximum

of all the distances between two connected vertices. The first decomposition has
a strong simplification impact and reveals the structure of the helix. A denoised
toroidal helix is recovered as the successive decompositions are performed.

5 Conclusion

In this paper, we generalized the hierarchical multiscale decomposition of Tad-
mor, Nezzar and Vese [1] to general data defined on graphs. The decomposition
is based on a discrete variational framework. For images, the introducton of non-
local interactions enables a finer decomposition. Moreover, since the proposed
formulation considers arbitrary graphs, unusual domains such as meshes point
clouds can be considered. Finally, we also have addressed the crucial problem of
parameter selection to have a fully automatic decomposition.
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u0

∑
1

i=0
ui

∑
3

i=0
ui

Fig. 3. Decomposition of a color image. Fist row: initial image. Second row: 4-adjacency
grid graph, unweighted. Third row: 10-NNG4, exponential weight, σα is evaluated at
each pixel, and λ0 is evaluated automatically.

Initial u0

∑
3

i=0
ui

∑
6

i=0
ui

∑
9

i=0
ui

Fig. 4. Decomposition of a hand mesh. Initial scale λ0 = 0.1. See text for more details.
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Fig. 5. Decomposition of a noisy toroidal helix. Initial scale λ0 = 0.1, 20-nearest neigh-
bors graph. See text for more details.
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