Nonlocal Multiscale Hierarchical Decomposition on Graphs

Abstract : The decomposition of images into their meaningful components is one of the major tasks in computer vision. Tadmor, Nezzar and Vese [1] have proposed a general approach for multiscale hierarchical decomposition of images. On the basis of this work, we propose a multiscale hierarchical decomposition of functions on graphs. The decomposition is based on a discrete variational framework that makes it possible to process arbitrary discrete data sets with the natural introduction of nonlocal interactions. This leads to an approach that can be used for the decomposition of images, meshes, or arbitrary data sets by taking advantage of the graph structure. To have a fully automatic decomposition, the issue of parameter selection is fully addressed. We illustrate our approach with numerous decomposition results on images, meshes, and point clouds and show the benefits.
Type de document :
Communication dans un congrès
European Conference on Computer Vision, 2010, Heraklion, Crete, Greece. LNCS 6214, pp.638-650, 2010, 〈10.1007/978-3-642-15561-1_46〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00521070
Contributeur : Image Greyc <>
Soumis le : lundi 24 février 2014 - 10:51:53
Dernière modification le : jeudi 8 novembre 2018 - 15:26:02
Document(s) archivé(s) le : samedi 24 mai 2014 - 10:35:37

Fichier

eccv10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Moncef Hidane, Olivier Lezoray, Vinh Thong Ta, Abderrahim Elmoataz. Nonlocal Multiscale Hierarchical Decomposition on Graphs. European Conference on Computer Vision, 2010, Heraklion, Crete, Greece. LNCS 6214, pp.638-650, 2010, 〈10.1007/978-3-642-15561-1_46〉. 〈hal-00521070〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

84