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ABSTRACT

By using a detailed agricultural and climate dataset over Burkina-Faso and simple assumptions regarding

the form of an insurance contract, the authors investigate the potential economic efficiency for farmers of a

weather-index insurance system in this country. To do so, the results of more than 3000 simulated contracts

applied to 30 districts, 21 yr (1984–2004), and five crops (cotton, millet, sorghum, maize, and groundnut) are

explored. It is found that such an insurance system, even based on a simple weather index like cumulative

rainfall during the rainy season, can present a significant economic efficiency for some crops and districts. The

determinants of the efficiency of such contracts are analyzed in terms of yield/index correlations and yield

variability. As a consequence of these two main determinants, the farmer’s gain from an insurance contract is

higher in the driest part of the country. In the same way, maize and groundnuts are the most suitable to

implement an insurance system since their respective yields show a large variance and a generally high

correlation with the weather index. However, the implementation of a real weather-index insurance system in

West Africa raises a number of key practical issues related to cultural, economic, and institutional aspects.

1. Introduction

In the Sudano–Sahelian part of Western Africa, rain-fed

crop production remains the principal source of house-

holds’ food and income: 70% of the income according to

Abdulai and CroleRees (2001) in southern Mali, 67%

according to Wouterse and Taylor (2007) in central Bur-

kina Faso. This production is highly dependent on cli-

mate, as means to control the crop environment are

largely unavailable to farmers. Irrigation is rarely an

option [4% of cultivated land in sub-Saharan Africa

according to the World Bank (2007)] and the use of

mechanization, fertilizers, and other off-farm inputs is

low (Ingram et al. 2002). Hence, West African farmers

are vulnerable to climate variability: large variability in

monsoon rains often results in large variability in crop

yields. This vulnerability is aggravated by a food deficit

crisis resulting from a rapidly growing population com-

bined with an insufficient increase in yields of millet and

sorghum, the main source of food and income of the

Sahelian people, over the last few decades (De Rouw

2004), leading to a decrease of food production per capita

(World Bank 2007). Hence, the long-term and large-scale

drought of the 1970s and 1980s (e.g., Dai et al. 2004),

which stands as the greatest regional climatic signal over

the second half of the last century in terms of precipita-

tion (Trenberth et al. 2007), had dire consequences for

local populations. Although rainfall has somewhat re-

covered since the late 1990s, drought conditions still

have not ended in the region, and rainfall variability has
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increased during the last decades (Dai et al. 2004). In

addition, although substantial uncertainties remain in

the projected evolution of rainfall over West Africa

(Cook and Vizy 2006), it is anticipated that future global

climate change will negatively affect the region’s agri-

culture and development (e.g., Adger et al. 2007).

To protect themselves against adverse effects of climate

variability, West African farmers engage in a variety of

risk management and coping strategies, for example,

through income diversification, crop diversification, live-

stock holdings, crop storage, and informal credits (cf.

Sakurai and Reardon 1997, and references therein).

However, as shown by Sakurai and Reardon (1997),

these strategies are not always sufficient. Drought in-

surance might be a way to mitigate these adverse events,

by providing an indemnity to farmers in dry years.

Moreover, farmers tend to adopt farming practices that

minimize the risk of crop failure rather than improve the

average yield (De Rouw 2004). By covering the risk of

climatically induced crop failure, agricultural insurance

could encourage farmers to adopt riskier but more pro-

ductive strategies.

Traditional agricultural insurance, based on damage

assessment, suffers from an information asymmetry

between the farmer and the insurer, especially moral

hazard, and from the cost of damage assessment. As a

consequence, such insurance schemes are limited to very

specific risks (e.g., frost or hail) or rely on massive sub-

sidies by public authorities, as in the United States

or Canada (Hartell et al. 2006). Naturally, low-income

countries’ governments do not have the financial re-

sources to distribute such subsidies. Moreover, these

subsidies create an economic distortion and may push

farmers to take excessive risks (McLeman and Smit 2006).

An emerging alternative is insurance based on a

weather index (e.g., Skees et al. 1999), which is used as

a proxy for crop yield. In such a scheme, the farmer, in a

given geographic area, pays an insurance premium every

year, and receives an indemnity if the weather index of

this area falls below a determined level (the strike).1 It

does not suffer from the two shortcomings mentioned

above: the weather index provides an independent, ob-

jective, and relatively inexpensive assessment of crop

damages. However, its weakness is the basis risk (i.e.,

the imperfect correlation between the weather index

and the yields of farmers contracting the insurance). The

basis risk can be considered the sum of two risks: first,

the risk resulting from the index not being a perfect

predictor of yield in general (the model basis risk); and

second, the spatial basis risk—the index may not capture

the weather effectively experienced by the farmer, all

the more so if the farmer is far from the weather sta-

tion(s) measuring the index.

Such weather-index insurances and weather deriva-

tives (similar to risk-transfer mechanisms on the financial

markets) have been used by energy suppliers in North

America since the late 1990s, to hedge against a loss in

profitability induced by abnormal weather (Hartell et al.

2006). Today, an increasing number of such index-based

risk-transfer products are being provided for developing

countries’ farmers. Barnett et al. (2008) list 21 index in-

surance projects that have been planned, or implemented

in pilot stages, in low- or middle-income countries, that

are hedging against different risk events, with different

index measures and target users. In terms of rainfall-

based drought insurance for smallholder farmers, the

only operational example so far has been in India since

2003, where it has encountered a growing success:

250 000 policies were sold in India in 2005–06, with a

premium volume of $17 million (U.S. dollars), according

to Barnett and Mahul (2007).

In parallel to this development, increasing attention

has been given to the subject in the literature. Mahul

(2001), in a theoretical framework, derives an optimal

insurance contract against a climatic risk in the presence

of an uninsurable and dependent aggregate production

risk. Barnett et al. (2008) analyze the opportunities pre-

sented by index-based risk-transfer products to limit

poverty traps. Most other papers have a more specific

geographical focus. Turvey (2001) studies weather de-

rivatives to hedge rain- and heat-based weather risk for

agriculture in Ontario, Canada. Vedenov and Barnett

(2004) analyze the efficiency of weather derivatives as

insurance instruments for corn, cotton, and soybeans in

six districts located in the United States. Giné et al.

(2007) analyze the statistical distribution of indemnities

in the case of the weather-index insurance system im-

plemented in India in 2003. They suggest that this con-

tract acts like disaster insurance, providing rare but very

high payouts during the most extreme rainfall events.

Skees et al. (2007) consider how the use of index-based

risk-transfer products could improve microlending in

Peru and Vietnam. Chantarat et al. (2007) suggest using

weather-index insurance to improve drought response

for famine prevention in Kenya. Finally, Deng et al.

(2007) analyze a weather-based index insurance to pro-

tect against dairy production losses caused by heat stress.

In addition to these papers in refereed journals, a number

of reports and feasibility studies are available (e.g., Skees

et al. 2001; Hartell et al. 2006; Hess et al. 2005; Osgood

et al. 2007; and Barrett et al. 2007) that also provide useful

1 It should be noted, however, that weather-index insurance

contracts can also be constructed, similarly, against excessive high

levels of an index.
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information, albeit with a sometimes more practical-

oriented frame of mind. For instance, Osgood et al.

(2007) seek to design index-based insurance contracts

for the pilot project in Malawi, by minimizing farmers’

income variance given an insurance price constraint.

In the present study, we adopt a more theoretical and

general approach, and try to evaluate the potential of

weather-index insurance in West Africa for several

crops over a whole country. To do so, we use historical

climate and crop data to try and design, ex post, insur-

ance contracts that are optimal from the farmer’s point

of view, under some simple and common assumptions

regarding the form of the insurance contract, a partici-

pation constraint by the insurer, and the utility function

of a representative farmer. We chose Burkina Faso as

a case study because of the availability of an extended

crop and weather dataset over this country, covering the

recent decades (1984–2004) with a high spatial resolu-

tion (45 districts). We identify optimal insurance con-

tracts, designed at the district scale, for five crops: cotton,

millet, sorghum, maize, and groundnut.

We stress that this analysis should not be seen as a

project study: our intention is not to deliver an opera-

tional insurance product, but to use a simple modeling

framework to explore the potential of index insurance in

Burkina-Faso. The questions we address are the follow-

ing: Is it possible, a posteriori, to design realistic insurance

contracts that would benefit the farmers? Where, and for

what crops, can we define contracts that are of most

benefit to the farmers? What determines this potential

economic gain? The practical issues associated with the

implementation of drought insurance in Sahelian agri-

culture, in particular the constraints that arise from cul-

tural, economic, and institutional aspects, are beyond the

scope of such an analysis. We will discuss them in the

concluding section.

2. Material and methods

a. Agricultural and weather data

The agricultural database from the General Depart-

ment of Agricultural Forecasts and Statistics of Burkina-

Faso (AGRISTAT) provides us with annual production,

area under cultivation, and yield for several crops in

Burkina-Faso: millet, sorghum, cotton, groundnuts, maize,

etc. from 1984 to 2004 (available online at http://agristat.bf.

tripod.com/). Data are given at the district level, of which

there are 45 (see map on Fig. 2). However, the database

suffers from some missing values, with different numbers

of missing values for different crops.

In the frame of the African Monsoon Multidisciplinary

analysis (AMMA; http://amma-international.org/) project,

the AGRHYMET Centre (http://www.agrhymet.ne/) pro-

vides us with 1971–2006 rainfall data at a 10-day resolution

from its network of rain gauges over the Sahel. From the

map on Fig. 1, one can see that Burkina-Faso is densely

sampled, with nearly 150 weather stations over the

country. We associate rainfall stations in Burkina-Faso

with the corresponding districts according to their spatial

coordinates. Mean annual rainfall across the country

ranges from roughly 400 mm in the north to 1100 mm in

the south.

As a result, there are for each crop between 23 (cotton)

and 30 (millet) districts where crop data and rainfall time

series are available over 1984–2004, with 1.2 missing years

on average, and a maximum of 4 missing years. There are

between one and eight rainfall stations per district. When

several stations are available, we simply take the average

value, since we do not have any information on the spatial

distribution of cultivated areas within districts.

Prices for the different crops are taken from the Réseau

des Systèmes d’Information des Marchés en Afrique de

l’Ouest (RESIMAO; the official West African Market

Price Agencies online; http://www.resimao.org). Note

that since we are only interested in risks related to weather,

we assume constant prices throughout the period. This

simplification means that farmers’ income is propor-

tional to yields.

b. Methods and assumptions

As in India, we consider that the insured party is an

individual farmer. We assume a representative farmer

with a Constant Relative Risk Aversion (CRRA) utility

function as the objective criterion, which appears ap-

propriate to describe the farmer’s behavior, as shown by

the statistical tests performed by Chavas and Holt (1996)

and Pope and Just (1991). Under this assumption, the

farmer maximizes the expected utility:

EU(fx
i
g) 5 Mean

fx
i
g1�r

1� r

" #
, (1)

where fxig is the ensemble of possible farmer incomes,

assumed to have the same probability of occurrence, i

indicates a particular realization (a year), and r is the

coefficient of relative risk aversion.2

In year i, the farmer’s income without insurance xi is

x
i
5 a(cpy

i
� c), (2)

where a is the area cultivated, cp is the crop price, c is the

production cost, and yi is the yield in year i. For fyig we

2 The relative risk aversion coefficient of a utility function u(x) is

defined as 2x(›2u/›2x)/(›u/›x) (Chavas and Holt 1996, p. 333).

Note that EU(fxig) tends to Mean[Log(fxig)] when r tends to 1.
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take the historical series of yield available (at most

1984–2004) for each crop and district.

The higher the r, the more risk averse the farmer is.

Since risk aversion can be defined as one’s preference

for a bargain with a certain payoff over another bargain

with an uncertain but possibly higher payoff, the farmer’s

benefit from a given insurance contract will, all other

things being equal, increase with increasing risk aver-

sion. The risk aversion may differ across populations,

but we did not find any empirical study on West African

farmers. According to Gollier (2003), estimates of r

typically range from 2 to 4. We take the conservative

value of r 5 2, so that the benefits from the insurance we

compute can be seen as lower bounds. To test the sen-

sitivity of our results to r, we also perform the compu-

tations with r 5 1 and r 5 3.

From (2), one can compute the certainty-equivalent

income (CEI; i.e., the certain income that provides the

same utility as a given probability distribution of un-

certain incomes):

V(EU) 5 (1� r)EU1/1�r: (3)

In year i, the farmer’s income with insurance xai is

xa
i
5 a(cpy

i
� c� p 1 Indemnity

i
), (4)

where p is the insurance premium, assumed equal to

p 5 1:3Mean[Indemnity
i
]: (5)

Equation (5) means that we compute the contract under

the constraint that the insurer’s margin is 30% of the

average indemnity. Thus, over the years the sum of an-

nual premiums paid by the farmer is 30% higher than

the sum of the indemnities he receives: this is the price of

the risk transfer. This is the current practice in insurance

according to Gollier (2003). Although available docu-

ments for actual weather-index insurance contracts gen-

erally do not provide an accurate description of how

insurers shape the contracts and build their margins,3 this

30% margin hypothesis does not seem unrealistic, and

has the merit of simplicity.

We then use a typical contract shape, similar to those

used in the insurance projects in Malawi and in Ethiopia,4

with two thresholds [Eq. (6) and Fig. 3]. A contract is

FIG. 1. Localization of the rainfall stations of the AGRHYMET network over the Sahel.

3 The insurance margin used in existing weather-index insurance

schemes is generally not disclosed. Osgood et al. (2007, p. 34)

provide a formula used in Malawi to compute a ‘‘pseudo-price’’

representing the cost of the risk for the insurer. The application of

this formula in our context, as well as in Malawi, leads to a margin

of around 10%. However, this is not meant to be the definitive

price, ‘‘e.g., because of taxes and fees.’’ Our higher margin of 30%

should be seen as a more ‘‘complete’’ price, including the admin-

istration cost of the scheme.
4 The contracts used in India are a bit more complicated, with a

third threshold (Giné et al. 2007).
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described by three parameters, S, X, and P: when the

weather-index Ii falls below the first threshold (the

strike S), the farmer receives an indemnity, equal to

the difference between the index and the strike multi-

plied by a tick, P. However, the indemnity cannot be

greater than a maximum value M 5 (S 2 X)P, where X

is a saturation threshold, under which indemnities do

not increase any more. This is meant to account for the

saturation of damages when the index is too low (typi-

cally, total loss of crop production). Hence we have

Indemnity
i
5 Min[Max(0, S� I

i
)P, M]: (6)

For every crop and district, we compute the gains in CEI

for a range of parameters S, X, and P. The optimal

contract corresponds to the set of parameters that maxi-

mize the expected utility [Eq. (1)] and satisfy Eqs. (4),

(5), and (6). If no set of parameters can be found that

increases the farmer’s utility, the solution of the opti-

mization is ‘‘no insurance’’ and the gain of CEI is nil.

The weather index we consider is the cumulative

seasonal (April–October) rainfall over the district. This

is quite a simple index; however, using more complex

indices, such as results from a water budget model (Ward

et al. 2008) or a crop model, would have required more

detailed meteorological data, which were not available

or easily computable, such as potential evapotranspira-

tion. Similarly, it could have seemed more relevant to

compute a cumulative rainfall index only over critical

parts of the crop cycle. However, this would require a

precise knowledge of the timing of these cycles, and thus

require fine agricultural data such as sowing dates, which

we did not have over this period. In addition, correla-

tions between district yields and monthly rainfall totals

were not stronger, whatever the month, than correla-

tions with the seasonal index. Finally, since this simple

index is not adjusted to fit one particular crop produc-

tion time series, it allows us to consider several different

crops with the same index. Here, it appeared that cu-

mulative rainfall is not a good weather index for cotton:

correlations between cotton yields and annual rainfall

remain low for all districts in Burkina-Faso, and so are

the performances of simulated insurance contracts. This

is consistent with previous studies on the main climatic

drivers of cotton production (Blanc et al. 2008; Sultan

et al. 2009), which found that cumulative rainfall is poorly

correlated to cotton yields. Hence, in the rest of the pa-

per, we only focus on the other four crops.

However, because the mathematical optimization can

lead to unrealistic solutions with frequent large payoffs

and very high premiums, we found it necessary to add two

broad constraints to the optimization to retain realistic

solutions. First, a liquidity constraint: the annual pre-

mium cannot exceed 20% of the farmer’s mean income

(without insurance). The farmer might not be able, or

willing, to allocate too much of his income to an insurance

policy, even if the resulting indemnities are accordingly

important. The other constraint is that the number of

years with payouts must not exceed half of the total time

series. Indeed, the purpose of the insurance contract is

precisely to compensate for the few worst years only.

Moreover, the transaction costs for the insurer, which are

not accounted for in our computation, increase with the

frequency of payouts. We assess the importance of these

constraints for the results by repeating the optimization

with lower values (10% for the liquidity constraint and a

maximum average payout frequency of 25%).

We then consider that a gain of CEI of a few percent

(typically more than 2%) corresponds to a viable contract

for the insured party. Because our approach only yields

an in-sample optimized value of the farmer’s CEI in-

crease, it would be necessary to perform an out-of-sample

evaluation of these optimized contracts. However, the

agronomic data necessary for such an analysis were not

available to us. The 21 yr of crop data available for

Burkina-Faso are too short to be separated into two in-

dependent datasets. Therefore, to get a hint of the extent

to which in-sample overfitting affects our results, we re-

peat the optimization, with the same assumptions but

with a leave-one-out procedure: that is, for each 21-yr

district/crop series, the optimization is repeated over the

21 possible 20-yr series (each year is alternately with-

drawn from the original series). The 21 resulting contracts

are respectively applied to the 21 yr excluded from the

corresponding optimizations (these years then remain

‘‘unseen’’ during the optimizations). The final result is a

combination of 21 yr with indemnities and premiums that

can be compared to the original optimized contract. Over-

fitting would result in leave-one-out contracts being

largely different from the initial ones. Given the time-

consuming nature of such a procedure, however, we only

conduct this analysis on a subset of the data, that is, for

each crop the four districts where the optimized con-

tracts perform best with the best index/yield correlations.

3. Results

a. Gains of CEI from the insurance

Figure 2 shows the gains of CEI on the district scale

for the different crops. It appears that the economic

interest of the insurance contracts varies a lot across

crops and districts. For all crops, most of the viable

contracts are in the northern districts of Burkina-Faso.

The highest gains of CEI are obtained for maize and

groundnuts, the maximum being groundnuts in the

province of Sissili (103.4%). Figure 3 shows an example
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of a successful contract, for sorghum, on the Bam dis-

trict. Years with crop failures are correctly compensated

(Fig. 3, bottom left). The increase of CEI is 5.18%, for

an annual premium of 10 513 Franc de la Communauté

Financière Africaine (FCFA).5 Table 1 shows the mean

gain of CEI over Burkina-Faso for each crop. Over all

districts and crops, the average gain of CEI from insur-

ance is more than 5%. On average, maize and groundnuts

show higher gains than millet and sorghum (Table 1).

However, these average figures hide large distribu-

tions. Out of a total of 112, only 34 contracts show a gain

in CEI of more than 2% (Fig. 2). Among these, 14 are

contracts for maize. For certain districts, with the index

we define and under our assumptions, no insurance

contract is possible (the gain of CEI is then zero).

Table 2 shows that, on average, the gain in CEI is re-

duced when applying a leave-one-out procedure. This is,

to a certain extent, expected, as less information (20 out

of 21 yr) is used as input in a cross-validated analysis.

Although the decrease is here probably larger than this

simple effect, meaning that the 21-yr optimized contracts

are to a certain extent overfitted on the historical data, the

gains of CEI remain positive and of the same order of

magnitude—with the notable exception of groundnuts.

For groundnuts, the gain of CEI disappears (and even

turns to a loss): this means that the results over 1984–2004

are largely dependent on this very time period and series.

This does not seem to be the case for the other crops.

For illustration, Fig. 4 shows the income series with

and without insurance on the Bam district for sorghum

(similar to Fig. 3), from the optimized contract (top panel)

and from the leave-one-out contract (bottom panel). One

can see that in this case the timing and amplitude of in-

demnities remain similar. Note that in the leave-one-out

contract the premium value changes from year to year,

since it each time results from a different 20-yr contract.

This supplementary degree of freedom in the optimiza-

tion even allows the final gain of CEI to be greater (6.7%

instead of 5.18%), but this is only the case in this particular

example.

Hence, we feel confident that overfitting of the opti-

mization on the available yield and rainfall data does not

significantly bias our results. Should the rainfall distri-

bution remain stationary beyond the optimization period

used here (1984–2004), this means that the actual gains in

FIG. 2. Gains of CEI over 1984–2004 (%) for different crops on the district scale. Figures in brackets are the counts in each interval. The

gray shades are the same on the four maps. Districts in white correspond to missing data (mainly yields), i.e., 15 districts out of 45.

5 $1 is currently around 500 FCFA.
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CEI after 2004 would not significantly differ from those

presented here. On the contrary, if rainfall does not re-

main stationary in the future, the contracts will have to be

redesigned. However, the problem of weather insurance

actualization over time, particularly in the context of

climate change, is beyond the scope of this study.

b. Sensitivity to optimization parameters

As mentioned in section 2, we performed the optimi-

zation with different values of r. Table 3 shows that the

sensitivity of gains in CEI to r is large: gains nearly triple

when changing r from 2 to 3, and are dramatically reduced

when r 5 1. The decrease mostly affects contracts with

high gains of CEI: for example, the increase in CEI over

the Bam district for maize falls from 82% to 11.5% when

r decreases from 2 to 1. Practically, this means that farm-

level investigations are needed to more precisely estimate

the risk aversion of African farmers and assess their gain

of CEI from drought insurance. However, these changes

in mean gain simply result from the results being simul-

taneously shifted downward (or upward). The differences

between crops remain similar, and the relationships ana-

lyzed in the section 3c still hold true, as r changes.

Table 4 similarly presents the sensitivity of simulated

gains of CEI to the constraints on maximum payout

frequency and premium amount specified in the model.

Results are overall not very sensitive to these assump-

tions: they only act on a limited number of optimized

contracts. The most important constraint seems to be

the one on maximum payoff frequency, as gains of CEI

slightly decrease when this constraint is tightened from

50% to 25%. Similar to the sensitivity to r, contracts

generating a high CEI increase are mostly affected. This

suggests that, in a number of cases, the optimum in-

demnity frequency for the farmer is higher than 25%.

However, the administrative costs for the insurer in-

crease with payout frequency, and insurers would prob-

ably be reluctant to implement contracts that generate

FIG. 3. Contract for sorghum, district of Bam, over 1984–2004. (top left) Dashed lines are the distribution of annual rainfall amounts, full

line shows the shape of the insurance contract (indemnity, in FCFA, as a function of cumulative rainfall, in mm); (top right) full line is

annual rainfall (mm), the dotted lines show the x and s parameters of the contract; (bottom left) light gray bars represent income without

insurance, black bars are indemnities, and dark gray bars show the annual premium (in FCFA); and (bottom right) yields (full line) and

rainfall index (dashed line), expressed in standardized anomalies f[X 2 mean(X )]/std(X )g.
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payouts more than 25% of the time (Osgood et al. 2007).

On the other hand, the contracts must meet the expec-

tations of farmers: in particular, strings of years without

indemnities would progressively dissuade farmers from

paying premiums every year. In theory there is, for a

given insurance price, a balance between low and fre-

quent payouts and higher and less frequent payouts.

Therefore, ranges for payout frequency, as well as for

price constraint, should be determined through inter-

views with financial stakeholders and farmers (Osgood

et al. 2007).

c. Determinants of CEI increase

In an index-based insurance scheme, the weather in-

dex is supposed to act as a surrogate for crop yields. This

means that the efficiency of the insurance contract first

depends, a priori, on the strength of the correlation be-

tween the index and the yield. Figure 5a shows that, as

expected, the gain in certainty-equivalent income is

overall an increasing function of the correlation between

index and yield. However, good correlations do not

necessarily imply viable contracts: some contracts with

high correlations do not provide any substantial in-

crease in CEI. For example, the Gourma district, for

millet, has a correlation of 0.76 but a CEI increase of

only 0.1%. Conversely, a contract can provide a signifi-

cant increase in CEI despite a low correlation: for exam-

ple, the Oubritenga district for maize shows a correlation

of 0.35, but a gain of 48.6%. Indeed, what matters more

than the accurate correlation between index and yield,

is the fact that for low-yield years the index defines

an important indemnity. The correlation for high-yield

years does not really matter as long as the index is above

the strike. Conversely, a high correlation does not imply a

great increase in CEI if crop failures are negligible. Hence,

it appears that the relationship between insurance effi-

ciency and index/yield correlation is not straightforward.

The gain in CEI also tends to increase with an in-

creasing coefficient of variation (CV; ratio of standard

deviation to mean) of farmers’ income (Fig. 5b). Note

that since we assume a constant price for crops, income

CV is equivalent to yield CV. Because income variability

can be considered a measure of risk for the farmers,

an insurance system is all the more effective when the

crop yields are more variable. This relationship seems

here even clearer than the relation between gain of

CEI and index/yield correlation. Comparison between

Tables 1 and 5 shows that on average, crops with larger

CV show higher gains of CEI, whereas there is no such

relationship between CEI increase and yield/rainfall

correlations.

To isolate the effect of yield variability on gains of

CEI, we compute optimal contracts on all districts and

crops, using yields as the weather index: that is, we ar-

tificially set the correlation between the index and yields

to one. Figure 5c shows that when the effect of the basis

risk is put aside, the gain in CEI depends more clearly

on yield variability, although for a given CV large dif-

ferences between contracts remain. One should note

that these gains represent the maximum gains in CEI

that could be obtained with a ‘‘perfect’’ weather index

on these districts. Even with such an index, the gain in

CEI would remain below 2% for a number of contracts

(33 out of 112) for which the yield CV is too low. Finally,

the highest values of CEI gains are obtained for districts

and crops that exhibit very low-yield values in particular

years (Fig. 5d). This results from the utility function used

in this study (see section 2b): receiving indemnities in

critically low-yield years generates exponentially higher

gains in CEI.

Correlations between index and yields, and yield vari-

ability, thus seem to be the major determinants of the

economic efficiency of the simulated insurance contracts.

These two variables, in turn, mainly depend on the cu-

mulative rainfall.

Figure 6 shows that the districts where correlations

between rainfall and yield are most satisfactory are gen-

erally northern districts. These are districts where total

rainfall is low. Because low cumulative rainfall limits crop

productivity, yields are, on an interannual time scale,

more correlated with rainfall. Conversely, for southern

districts where rainfall is more abundant, total rainfall

does not strongly limit crop production, thus yield/rainfall

correlations tend to be weaker. As a consequence, Fig. 7a

shows that the relationship between rainfall and index/

yield correlation is overall negative, albeit with a certain

dispersion, even for low cumulative rainfall. Several fac-

tors can explain this dispersion. First, cumulative rainfall is

not a perfect proxy for yields: for a given rainfall amount,

intraseasonal distribution can have significant effects on

TABLE 2. For each crop, average gain of CEI (%) for the four

districts where contracts perform best, (left columns) when opti-

mized over 1984–2004, and (right columns) following a leave-one-

out procedure over the same period.

Millet Sorghum Maize Groundnut

2.41 1.43 3.06 2.32 28.8 21.2 7.01 22.8

TABLE 1. Mean gain of CEI over all districts (%) for each crop.

Millet Sorghum Maize Groundnuts

Mean countrywide

gain in CEI (%),

district-based contracts

2.04 1.27 11.4 6.94
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yields (Winkel et al. 1997). Moreover, rainfall is not the

only climatic variable impacting yields: radiation and

temperature also influence crop productivity. More gen-

erally, climate is not the only driver of crop production:

nonclimatic factors, for instance the occurrence of pests

or farming practices (e.g., sowing date, use of fertilizers)

can have significant impacts on yields. In addition, par-

ticularly for some vast districts, the locations of the

rainfall stations may not correspond to the areas under

cultivation, so that the rainfall index does not really

FIG. 4. With the same color code as Fig. 3, farmers’ income without insurance, indemnities, and annual

premium, for a contract for sorghum on the Bam district, (top) optimized over 1984–2004 or (bottom)

resulting from a leave-one-out procedure over the same period.
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represent the climate experienced by the crops, resulting

in weak correlations between rainfall and yields. This is

illustrated by the negative correlation between the gain

in CEI, for a given crop, and the district area (not

shown): contracts over larger districts tend to provide a

weaker increase in CEI. Finally, correlations on rela-

tively short time series (21 yr here) are unstable. Each

year has an important weight in the correlation coeffi-

cient. Hence any 1-yr mismatch between yields and

rainfall, for one of the reasons mentioned above, can

significantly reduce correlations.

Over the Sudano–Sahelian region, as average total

rainfall decreases with latitude, rainfall variability in-

creases (Lebel et al. 2003). Consequently, the stronger

correlations between rainfall and yield as rainfall total

decreases also tend to result in more variable yields.

Figure 7b shows that the relation between rainfall and

yield variability is also negative. Given the latitudinal

gradient in rainfall across the country, this explains why

the most efficient contracts tend to be in the northern

part of Burkina-Faso (Fig. 2), where yields are more

variable and more correlated to rainfall. This also sug-

gests that designing an efficient weather-index insurance

system for the southern districts could be difficult, be-

cause yields are less variable and less correlated to

rainfall.

4. Discussion and conclusions

By using a detailed agricultural and climate dataset

over Burkina-Faso and very simple assumptions re-

garding the form of an insurance contract, we investi-

gated the potential feasibility and interest for farmers in

a weather-index insurance system in this country. To do

so, we explored the results of more than 3000 simulated

contracts applied to 30 districts, 21 yr (1984–2004), and

five crops (cotton, millet, sorghum, maize, and ground-

nut). From this large simulation database we found that

such an insurance system, even based on a simple

weather index like cumulative rainfall during the rainy

season, can present a significant economic efficiency:

farmers’ CEI increases by more than 5% on average

(over all districts and crops), albeit with great variability

among contracts from no CEI increase to more than a

100% increase. The two factors that most influence the

viability of such contracts are the correlations between

yields and the weather index, and the coefficient of

variation of yields. Consequently, we found that the

farmers’ gain from an insurance contract is higher in the

driest part of the country, which is more prone to

droughts and exposed to crop failures. In the same way,

among the different crops we considered, maize and

groundnuts seemed to be the most suitable for imple-

menting an insurance system since their respective yields

show a large variance and a generally high correlation

with the weather index. We showed that expected utility

increase for farmers depends a lot on their assumed risk

aversion. Farm-level surveys are thus needed to better

assess this aversion and constrain modeling results.

Although our analyses used the same data to optimize

contracts and to evaluate payouts and farmer income, a

more conservative cross-validated analysis of a subset of

the data suggests that overfitting of the optimized con-

tracts did not bias the estimated gain in CEI significantly.

To go further in the assessment of index insurance

potential, an essential step would be to use farm-level

yield data. Indeed, here we considered contracts on a

district level (7000 km2 on average), with a district av-

erage yield being representative of a typical individual

yield within this district. However, an area-averaged yield

is not a perfect surrogate for individual farmers’ yields.

In particular, spatially averaging yields tends to smooth

nonclimatic effects and local heterogeneities, and thus

to increase the correlations between yield and rainfall

(Sultan et al. 2009). According to the results in section 3,

this would lead to our analysis overestimating the gains

of CEI for the farmers. On the other hand, yields ag-

gregation also tends to reduce year-to-year variability:

this points to an underestimation of CEI gains in our

analysis. Investigating the relative importance of these

biases would require historical data of individual yields

across (at least) one district. Moreover, such data would

TABLE 3. For each crop, average gain of CEI (%) over all dis-

tricts, when the optimization is performed with different values of

risk aversion R.

Coefficient of

risk aversion Millet Sorghum Maize Groundnuts

R 5 1 0.30 0.15 2.10 1.15

R 5 2 2.04 1.27 11.4 6.94

R 5 3 6.01 3.11 30.16 23.09

TABLE 4. For each crop, average gain of CEI (%) over all dis-

tricts, when the optimization is performed with different values of

f_max and p_max (f_max 5 maximum proportion of years with

payouts; p_max 5 maximum ratio of premium to farmer’s average

income).

Optimization

constraints Millet Sorghum Maize Groundnuts

f_max 5 50%,

p_max 5 20%

2.04 1.27 11.4 6.94

f_max 5 50%,

p_max 5 10%

2.04 1.03 10.36 6.89

f_max 5 25%,

p_max 5 20%

1.95 0.88 8.2 6.33
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allow the assessment of the spatial basis risk in more

detail (i.e., the risk of farmers experiencing different

weather from that registered by the index) by analyzing

the spatial covariance of yields among farmers. How-

ever, we are not aware of such a farm-level yield data-

base currently available in a region like West Africa.

One important simplification in our calculations was

to assume linearity between crop yields and farmer’s

income. Because African rural households already engage

in a variety of risk management and coping strategies to

reduce income variability (e.g., income diversification,

crop diversification, livestock holdings, informal credits),

this assumption probably makes our estimate of insur-

ance benefit to farmers optimistic, and should be revis-

ited using farm-level and household data. Historical

data on crop prices would also allow us to account for

the relationship between prices and yields, which may

also smooth farmers’ income: generalized crop failure

over a given area can be expected to drive crop prices

upward. However, this also depends on the balance

between the spatial scale of crop market integration and

of the area affected by crop failure.

Similarly, our modeling did not assume any change in

yield from insurance. However, by covering the risk of

climatically induced crop failure, index insurance is of-

ten intended as a means to encourage farmers to adopt

riskier but more productive farming practices, such as

using fertilizers or quality seeds. Thus, a more accurate

estimate of insurance benefit to the farmers should ac-

count for changes in farming practices and for higher

TABLE 5. Arithmetic mean over all districts of yields, CV[s(X )/

mean(X )], and yield/rainfall correlation for each crop.

Millet Sorghum Maize Groundnuts

Mean yield (kg ha21) 645 775 959 726

CV 0.30 0.25 0.38 0.35

Yield/rainfall correlation 0.30 0.34 0.34 0.33

FIG. 5. Gain in CEI for all districts and crops (a) as a function of correlation between index and yield; (b) as a function of the coefficient

of variation [s(X)/mean(X)] of yield; (c) as a function of the coefficient of variation of yield, for contracts based on a virtual weather index

that perfectly correlates to the yield series; and (d) as a function of the minimum value (in kg ha21) of the yield time series.
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yields, which in our case suggests that our results may be

underestimated.

By design, our modeling approach leaves aside a

number of important operational and practical issues.

The main one is probably linked to the social accept-

ability of an agricultural insurance system in rural West

Africa. It remains unclear to what extent a formal sys-

tem of insurance, with official contracts and monetary

costs, can be understandable and look attractive and

reliable to smallholder farmers in a rural and largely

nonliterate environment. This is likely to depend on how

the insurance project will be concretely proposed and

delivered. One has to define the most efficient interface

between the farmers and the insurer (the village, a union

of producers, individual farmers, etc.), given, in partic-

ular, the inevitable power imbalance between farmers

and insurers. The farmers’ willingness to pay may also

depend on their perception of weather, in particular

drought. West African farmers perceive drought as a

combination of several parameters: rainy season length,

timing and duration of dry spells, rain frequency, etc.

(Ingram et al. 2002; Roncoli et al. 2003). If this percep-

tion does not coincide with the historical rainfall index

used to price the contracts (here, e.g., cumulative rain-

fall), the farmers may perceive the system as unreliable.

Moreover, the farmers’ perception may not be easily

compatible with quantitative contract parameters (S, P)

expressed in millimeters of rain (Lilleor et al. 2005).

Other practical issues include, for example, the pay-

ment of premiums. In theory, the increase in production

from insurance is supposed to cover premiums. How-

ever, household expenses often quickly consume all cash

income in smallholder farming. Premiums may have to

be prefinanced through loans and index insurance con-

sidered in the frame of a broader agricultural aid system,

combined with credit and input supply. For instance, in

the pilot project in Malawi, insurance is essentially

meant to provide farmers with access to credit and thus

to improved inputs (Osgood et al. 2007). The insurance

covers the risk faced by lenders that the farmer may not

be able to pay back his credit (because of crop failure).

In the Sahel, farmers’ cash resources are most con-

strained at the end of the dry season, before the new

rainy season: premiums should thus be due earlier in the

year. Similarly, if contracts are not priced using seasonal

forecast information, insurance transactions should be

carried out before forecast are performed, to avoid in-

tertemporal adverse selection (Hess and Syroka 2005).

On the other hand, Carriquiry and Osgood (2008) note

that if contracts are appropriately designed, there are

FIG. 6. Correlation between index and yields, over 1984–2004, by districts. Districts in white correspond to missing data (mainly yields),

i.e., 15 districts out of 45.
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important synergies between forecasts and insurance and

effective input use.

Finally, this study is only based on optimizing the

farmer’s utility: it does not take into account the par-

ticular interests of the insurer, partly because it is not

clear what formal rules insurers use to design their

contracts. For instance, one should examine the sensi-

tivity of the insurance benefit for the farmers to the in-

surers’ margin. Another important condition for the

insurer is to have a portfolio of contracts where risks are

uncorrelated or ideally negatively correlated. In the

present case, this would depend on the other risks cov-

ered by the insurer in other regions, and the possible

correlation between the index in Burkina-Faso (rainfall)

and these other hazards.

These numerous practical issues naturally warrant

further investigation, but it could not be achieved within

the modeling framework of this study. Our results thus

provide a first-order assessment of the potential of

weather-index insurance in Burkina-Faso as a first step

for possibly more applied future studies.
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