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Abstract

The wild bootstrap is studied in the context of regression models with heteroske-
dastic disturbances. We show that, in one very specific case, perfect bootstrap
inference is possible, and a substantial reduction in the error in the rejection prob-
ability of a bootstrap test is available much more generally. However, the version of
the wild bootstrap with this desirable property is without the skewness correction
afforded by the currently most popular version of the wild bootstrap. Simulation
experiments show that this does not prevent the preferred version from having the
smallest error in rejection probability in small and medium-sized samples.
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1. Introduction

Inference on the parameters of the linear regression model
y=XG+u,

where y is an n-vector containing the values of the dependent variable, X an
n X k matrix of which each column is an explanatory variable, and  a k-vector
of parameters, requires special precautions when the disturbances uw are hetero-
skedastic, a problem that arises frequently in work on cross-section data. With
heteroskedastic disturbancess, the usual OLS estimator of the covariance of the
OLS estimates 3 is in general asymptotically biased, and so conventional ¢ and
F tests do not have their namesake distributions, even asymptotically, under the
null hypotheses that they test. The problem was solved by Eicker (1963) and
White (1980), who proposed a heteroskedasticity consistent covariance matrix es-
timator, or HCCME, that permits asymptotically correct inference on g in the
presence of heteroskedasticity of unknown form.

MacKinnon and White (1985) considered a number of possible forms of HCCME,
and showed that, in finite samples, they too, as also ¢ or F' statistics based on
them, can be seriously biased, especially in the presence of observations with high
leverage; see also Chesher and Jewitt (1987), who show that the extent of the bias
is related to the structure of the regressors. But since, unlike conventional ¢ and
F tests, HCCME-based tests are at least asymptotically correct, it makes sense to
consider whether bootstrap methods might be used to alleviate their small-sample
size distortion.

Bootstrap methods normally rely on simulation to approximate the finite-sample
distribution of test statistics under the null hypotheses they test. In order for
such methods to be reasonably accurate, it is desirable that the data-generating
process (DGP) used for drawing bootstrap samples should be as close as possible

to the true DGP that generated the observed data, assuming that that DGP
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satisfies the null hypothesis. This presents a problem if the null hypothesis admits
heteroskedasticity of unknown form: If the form is unknown, it cannot be imitated

in the bootstrap DGP.

In the face of this difficulty, the so-called wild bootstrap was developed by Liu
(1988) following a suggestion of Wu (1986) and Beran (1986). Liu established the
ability of the wild bootstrap to provide refinements for the linear regression model
with heteroskedastic disturbances, and further evidence was provided by Mammen
(1993), who showed, under a variety of regularity conditions, that the wild boot-
strap, like the (y, X) bootstrap proposed by Freedman (1981), is asymptotically
justified, in the sense that the asymptotic distribution of various statistics is the
same as the asymptotic distribution of their wild bootstrap counterparts. These
authors also show that, in some circumstances, asymptotic refinements are avail-
able, which lead to agreement between the distributions of the raw and bootstrap

statistics to higher than leading order asymptotically.

In this paper, we consider a number of implementations both of the Eicker-White
HCCME and of the wild bootstrap applied to them. We are able to obtain one
exact result, where we show that, in the admittedly unusual case in which the
hypothesis under test is that all the regression parameters are zero (or some other
given fixed vector of values), one version of the wild bootstrap can give perfect

inference if the disturbances are symmetrically distributed about the origin.

Since exact results in bootstrap theory are very rare, and applicable only in very
restricted circumstances, it is not surprising to find that, in general, the version
of the wild bootstrap that gives perfect inference in one very restrictive case suf-
fers from some size distortion. It appears, however, that the distortion is never
more than that of any other version, as we demonstrate in a series of simulation

experiments.

For these experiments, our policy is to concentrate on cases in which the asymp-

totic tests based on the HCCME are very badly behaved, and to try to identify
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bootstrap procedures that go furthest in correcting this bad behaviour. Thus, ex-
cept for the purposes of obtaining benchmarks, we look at small samples of size 10,
with an observation of very high leverage, and a great deal of heteroskedasticity

closely correlated with the regressors.

It is of course important to study what happens when the disturbances are not
symmetrically distributed. The asymptotic refinements found by Wu and Mam-
men for certain versions of the wild bootstrap are due to taking account of such
skewness. We show the extent of the degradation in performance with asymmetric
disturbances, but show that our preferred version of the wild bootstrap continues
to work at least as well as any other, including the popular version of Liu and

Mammen which takes explicit account of skewness.

Some readers may think it odd that we do not, in this paper, provide arguments
based on Edgeworth expansions to justify and account for the phenomena that
we illustrate by simulation. The reason is that the wild bootstrap uses a form
of resampling, as a result of which the bootstrap distribution, conditional on the
original data, is discrete. Since a discrete distribution cannot satisfy the Cramér
condition, no valid Edgeworth expansion past terms of order n~/2 (n is the sample
size) can exist for the distribution of wild bootstrap statistics; see for instance
Kolassa (1994), Chapter 3, Bhattacharya and Ghosh (1978) Theorem 2, and Feller
(1971), section XVI.4. Nonetheless, in Davidson and Flachaire (2001), we provide
purely formal Edgeworth expansions that give heuristic support to the conclusions

given here on the basis of simulation results.

In Section 2, we discuss a number of ways in which the wild bootstrap may be
implemented, and show that, with symmetrically distributed disturbances, a prop-
erty of independence holds that gives rise to an exact result concerning bootstrap
P values. In Section 3, simulation experiments are described designed to measure
the reliability of various tests, bootstrap and asymptotic, in various conditions,

including very small samples, and to compare the rejection probabilities of these
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tests. These experiments give strong evidence in favour of our preferred version

of the wild bootstrap. A few conclusions are drawn in Section 4.

2. The Wild Bootstrap

Consider the linear regression model

Yo = 0101 + Xppflo +ug, t=1,...,m, (1)

in which the explanatory variables are assumed to be strictly exogenous, in the
sense that, for all ¢, x;;7 and X;s are independent of all of the disturbances us,
s = 1,...,n. The row vector X;o contains observations on k& — 1 variables, of
which, if £ > 1, one is a constant. We wish to test the null hypothesis that the
coefficient 01 of the first regressor x4 is zero.

The disturbances are assumed to be mutually independent and to have a common
expectation of zero, but they may be heteroskedastic, with E(u?) = 02. We write
u; = oyvy, where E(v?) = 1. We consider only unconditional heteroskedasticity,
which means that the 02 may depend on the exogenous regressors, but not, for
instance, on lagged dependent variables. The model represented by (1) is thus
generated by the variation of the parameters 8, and 3z, the variances o2, and the
probability distributions of the v;. The regressors are taken as fixed and the same
for all DGPs contained in the model. HCCME-based pseudo-t statistics for testing
whether 3; = 0 are then asymptotically pivotal for the restricted model in which
we set 31 = 0 if we also impose the weak condition that the o2 are bounded away
from zero and infinity.

We write @, for the n-vector with typical element z;;, and X, for the n x (k —1)
matrix with typical row X;2. By X we mean the full n x k matrix [£1 X3]. Then

the basic HCCME for the OLS parameter estimates of (1) is

(XTX)'XTX(X'X)™, (2)
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where the n x n diagonal matrix 2 has typical diagonal element 42, where the i
are the OLS residuals from the estimation either of the unconstrained model (1)
or the constrained model in which 5y = 0 is imposed. We refer to the version (2)
of the HCCME as HC)y. Bias is reduced by multiplying the 4; by the square root
of n/(n — k), thereby multiplying the elements of §2 by n/(n — k); this procedure,
analogous to the use in the homoskedastic case of the unbiased OLS estimator
of the variance of the disturbances, gives rise to form HC; of the HCCME. In
the homoskedastic case, the variance of 4, is proportional to 1 — h;, where h; =
X, (X'X)"' X/, the t*" diagonal element of the orthogonal projection matrix on
to the span of the columns of X. This suggests replacing the @ by /(1 — hy)'/?
in order to obtain £2. If this is done, we obtain form HCj of the HCCME. Finally,
arguments based on the jackknife lead MacKinnon and White (1985) to propose
form HCS3, for which the 4, are replaced by u:/(1 — ht). MacKinnon and White
and also Chesher and Jewitt (1987) show that, in terms of size distortion, HCj is
outperformed by HC1, which is in turn outperformed by HC5 and HC5. The last
two cannot be ranked in general, although HC3 has been shown in a number of
Monte Carlo experiments to be superior in typical cases.

As mentioned in the Introduction, heteroskedasticity of unknown form cannot
be mimicked in the bootstrap distribution. The wild bootstrap gets round this

problem by using a bootstrap DGP of the form

Yt =X, +ul, (3)

where B is a vector of parameter estimates, and the bootstrap disturbance terms

are
Uf = fe(ty)et, (4)

where f;(@) is a transformation of the OLS residual 4., and the € are mutually

independent drawings, completely independent of the original data, from some
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auxiliary distribution such that
E(e,)=0 and E(e)=1. (5)

Thus, for each bootstrap sample, the exogenous explanatory variables are reused
unchanged, as are the OLS residuals 4 from the estimation using the original
observed data. The transformation f;(-) can be used to modify the residuals, for
instance by dividing by 1 — hy, just as in the different variants of the HCCME.
In the literature, the further condition that E(e3) = 1 is often added. Liu (1988)
considers model (1) with £ = 1, and shows that, with the extra condition, the first
three moments of the bootstrap distribution of an HCCME-based statistic are in
accord with those of the true distribution of the statistic up to order n~% Mammen
(1993) suggested what is probably the most popular choice for the distribution of
the €;, namely the following two-point distribution:

Fl: o= { —(V/5-1)/2 with probability p = (V5 +1)/(2V/5)

6
(V5+1)/2 with probability 1 — p. ©)

Liu also mentions the possibility of Rademacher variables, defined as

) ! with probability 1/2
Fproa= { —1  with probability 1/2. (7)

This distribution, for estimation of an expectation, satisfies necessary conditions
for refinements in the case of unskewed disturbances. Unfortunately, she does
not follow up this possibility, since (7), being a lattice distribution, does not lend
itself to rigorous techniques based on Edgeworth expansion. In this paper, we
show by other methods that (7) is, for all the cases we consider, the best choice
of distribution for the ¢;. Another variant of the wild bootstrap that we consider

later is obtained by replacing (4) by

uy = fi(l|)er, (8)

in which the absolute values of the residuals are used instead of the signed residuals.
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Conditional on the random elements 3 and i, the wild bootstrap DGP (3) clearly
belongs to the null hypothesis if the first component of B, corresponding to the
regressor &, is zero, since the bootstrap disturbance terms u; have expectation
zero and are heteroskedastic, for both formulations, (4) or (8), for any distribution
for the ¢; satisfying (5). Since (1) is linear, we may also set the remaining compo-
nents of B to zero, since the distribution of any HCCME-based pseudo-t statistic
does not depend on the value of F2. Since the HCCME-based statistics we have
discussed are asymptotically pivotal, inference based on the wild bootstrap using
such a statistic applied to model (1) is asymptotically valid. In the case of a non-
linear regression, the distribution of the test statistic does depend on the specific
value of (B3, and so a consistent estimator of these parameters should be used in

formulating the bootstrap DGP.

The arguments in Beran (1988) show that bootstrap inference benefits from asymp-
totic refinements if the random elements in the bootstrap DGP are consistent esti-
mators of the corresponding elements in the unknown true DGP. These arguments
do not apply directly to (3), since the squared residuals are not consistent estima-
tors of the o2. In a somewhat different context from the present one, Davidson
and MacKinnon (1999) show that bootstrap inference can be refined, sometimes
beyond Beran’s refinement, if the statistic that is bootstrapped is asymptotically
independent of the bootstrap DGP. It is tempting to see if a similar refinement
is available for the wild bootstrap. In what follows, we show that this is the case

in some circumstances if the wild bootstrap makes use of the F5 distribution, and

that, in a very specific case, it leads to exact inference.

As discussed by Davidson and MacKinnon (1999), it is often useful for achieving
this asymptotic independence to base the bootstrap DGP p* exclusively on esti-
mates under the null hypothesis. Here, that means that we should set 8 = 0 in

the bootstrap DGP (3). Since we may also set (35 to zero, as remarked above, the
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bootstrap DGP can be expressed as

yi = uy, uy = fi(i)er, 9)

where the OLS residuals 4, are obtained from the regression y; = Xj202 + u; that
incorporates the constraint of the null hypothesis. In the case of nonlinear re-
gression, the bootstrap DGP should be constructed using the NLS estimate 3
obtained by estimating the restricted model with 5, = 0.

There is an important special case in which the wild bootstrap using F5 yields
almost perfect inference. This case arises when the entire parameter vector (3
vanishes under the null hypothesis and constrained residuals are used for both
the HCCME and the wild bootstrap DGP. For convenience, we study bootstrap
inference by looking at the bootstrap P value, defined as the probability mass in

the bootstrap distribution in the region more extreme than the realised statistic.

Theorem 1

Consider the linear regression model
=X+ w (10)

where the n x k matrix X with typical row X; is independent of all
the disturbances u;, assumed to have expectation zero, and to follow dis-
tributions symmetric about 0. Under the null hypothesis that 8 = 0,
the x? statistic for a test of that null against the alternative represented
by (10), based on any of the four HCCMEs considered here constructed
with constrained residuals, has exactly the same distribution as the same
statistic bootstrapped, if the bootstrap DGP is the wild bootstrap (9),
with f(u) = u or equivalently f(u) = |u|, for which the ¢; are generated
by the symmetric two-point distribution Fy of (7).

For sample size n, the bootstrap P value p* follows a discrete distribution

supported by the set of points p; = /2", i = 0,...,2" — 1, with equal
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probability mass 27" on each point. For each nominal level a equal to
one of the dyadic numbers 1/2™, i =0,1,...,2" —1, the probability under
the null hypothesis that the bootstrap P value is less than «, that is, the

probability of Type I error at level «, is exactly equal to «

Proof:

The OLS estimates from (10) are given by § = (X7X) X'y, and any of the
HCCMEs we consider for B can be written in the form (2), with an appropriate

choice of §2. The x? statistic thus takes the form
r=y X(X'02X) ' X Ty. (11)

Under the null, y = u, and each component u; of w can be written as |u¢|s;, where
st, equal to £1, is the sign of u;, and is independent of |u;| because we assume that
ut follows a symmetric distribution. Define the 1 x k row vector Z; as |u¢| X;, and
the n x 1 column vector s with typical element s;. The entire n X k matrix Z with
typical row Z; is then independent of the vector s. If the constrained residuals,

which are just the elements of y, are used to form £2, the statistic (11) is equal to

n -1
s'Z (Z atZtTZt> Z's, (12)

t=1
where a; is equal to 1 for HCy, n/(n — k) for HCy, 1/(1 — hy) for HCy, and
1/(1 — hy)? for HCs.

If we denote by 7* the statistic generated by the wild bootstrap with F5, then 7*

can be written as

—1
n
€'Z <Z atZ,TZt) Z'e, (13)

t=1

where € denotes the vector containing the €;. The matrix Z is exactly the same
as in (12), because the exogenous matrix X is reused unchanged by the wild
bootstrap, and the wild bootstrap disturbance terms u; = £uy, since, under Fy,

€, = £1. Thus, for all ¢, |uf| = |us|. By construction, ¢ and Z are independent
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under the wild bootstrap DGP. But it is clear that s follows exactly the same
distribution as €, and so it follows that 7 under the null and 7* under the wild
bootstrap DGP with F; have the same distribution. This proves the first assertion

of the theorem.

Conditional on the |u;|, this common distribution of 7 and 7* is of course a discrete
distribution, since € and s can take on only 2" different, equally probable, values,
with a choice of +1 or —1 for each of the n components of the vector. In fact, there
are normally only 27! different values, because, given that (13) is a quadratic
form in €, the statistic for —e is the same as for e. However, if there is only one
degree of freedom, one may take the signed square root of (13), in which case the
symmetry is broken, and the number of possible values is again equal to 2™. For

the rest of this proof, therefore, we consider the case with 2™ possibilities.

The statistic 7 must take on one of these 2™ possible values, each with the same
probability of 27™. If we denote the 2™ values, arranged in increasing order, as

T i=1,...,2"

, with 7; > 7; for j > 4, then, if 7 = 7, the bootstrap P value,
which is the probability mass in the distribution to the right of 7, is just 1 —4/2™.
As i ranges from 1 to 2", the P value varies over the set of points p; = /2",
1 = 0,...,2" — 1, all with probability 27". This distribution, conditional on

the |ut|, does not depend on the |u:|, and so is also the unconditional distribution

of the bootstrap P value.

For nominal level «;, the bootstrap test rejects if the bootstrap P value is less
than «. To compute this probability, we consider the rank ¢ of the realised statis-
tic 7 in the set of 2" possibilities as a random variable uniformly distributed over
the values 1,...,2™. The bootstrap P value, equal to 1 —i/2", is less than « if and
only if 4 > 2"(1 — ), an event of which the probability is 27" times the number
of integers in the range [2"(1 — a)] + 1,...2", where |z| denotes the greatest
integer not greater than x. Let the integer £ be equal to |2"(1 — «)|. Then the

probability we wish to compute is 27" (2" — k) =1 — k27"
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Suppose first that this probability is equal to a. Then 2™ is necessarily an integer,
so that « is one of the dyadic numbers mentioned in the statement of the theorem.
Suppose next that « = j/2", j an integer. Then [2"(1 — «)| = 2™ — j, so that
k = 2™ —j. The probability of rejection by the bootstrap test at level « is therefore

1 —k2™™ = j/2™ = . This proves the final assertions of the Theorem. |

Remarks:  For small enough n, it may be quite feasible to enumerate all the
possible values of the bootstrap statistic 7*, and thus obtain the exact value of

the realisation p*.

Although the discrete nature of the bootstrap distribution means that it is not
possible to perform exact inference for an arbitrary significance level «;, the prob-
lem is no different from the problem of inference with any discrete-valued statistic.
For the case with n = 10, which will be extensively treated in the following sec-
tions, 2 = 1024, and so the bootstrap P value cannot be in error by more than

1 part in a thousand.

It is possible to imagine a case in which the discreteness problem is aggravated by
the coincidence of some adjacent values of the 7; of the proof of the theorem. For
instance, if the only regressor in X is the constant, the value of (12) depends only
on the number of positive components of s and not on their ordering. For this
case, of course, it is not necessary to base inference on an HCCME. Coincidence of
values of the 7; will otherwise occur if all the explanatory variables take on exactly
the same values for more than one observation. However, since this phenomenon
is observable, it need not be a cause for concern. A very small change in the values

of the components of the X; would be enough to break the ties in the 7;.

The exact result of the theorem is specific to the wild bootstrap with Fs. The
proof works because the signs in the vector s also follow the distribution F5.
Given the exact result of the theorem, it is of great interest to see the extent
of the size distortion of the F5 bootstrap with constrained residuals when the

null hypothesis involves only a subset of the regression parameters. This question
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will be investigated by simulation in the following section. At this stage, it is
possible to see why the theorem does not apply more generally. The expressions
(12) and (13) for 7 and 7* continue to hold if the constrained residuals @, are
used for fl, and if Z; is redefined as |@:|(M2X;):, where X is the matrix of
regressors admitted only under the alternative, and My is the projection off the
space spanned by the regressors that are present under the null. However, although
€ in 7* is by construction independent of Z, s in 7 is not. This is because the
covariance matrix of the residual vector @ is not diagonal in general, unlike that
of the disturbances u. In Figure 1, this point is illustrated for the bivariate case.
In panel a), two level curves are shown of the joint density of two symmetrically
distributed and independent variables u; and ug. In panel b), the two variables are
no longer independent. For the set of four points for which the absolute values of
uy and ug are the same, it can be seen that, with independence, all four points lie
on the same level curve of the joint density, but that this is no longer true without
independence. The vector of absolute values is no longer independent of the vector
of signs, even though independence still holds for the marginal distribution of each

variable. Of course the asymptotic distributions of 7 and 7* still coincide.

3. Experimental Design and Simulation Results

It was shown by Chesher and Jewitt (1987) that HCCMEs are most severely
biased when the regression design has observations with high leverage, and that
the extent of the bias depends on the amount of heteroskedasticity in the true DGP.
Since in addition one expects bootstrap tests to behave better in large samples
than in small, in order to stress-test the wild bootstrap, most of our experiments
are performed with a sample of size 10 containing one regressor, denoted x1,
all the elements but one of which are independent drawings from N(0, 1), but
the second of which is 10, so as to create an observation with exceedingly high

leverage. All the tests we consider are of the null hypothesis that 5, = 0 in the
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model (1), with &, the total number of regressors, varying across experiments. In

all regression designs, @ is always present; for the design we designate by k = 2 a

constant, denoted xo, is also present; and for k = 3,.. ., 6, additional regressors x;,
i =3,...,6 are successively appended to ; and x5. In Table 1, the components
of x; are given, along with those of the x;, i = 3,...,6. In Table 2 are given the

diagonal elements h; of the orthogonal projections on to spaces spanned by a1, x1
and xg, 1, 2, and x3, etc. The h; measure the leverage of the 10 observations
for the different regression designs.

The data in all the simulation experiments discussed here are generated under
the null hypothesis. Since (1) is a linear model, we set 32 = 0 without loss of

generality. Thus our data are generated by a DGP of the form
Yt = O3V, t=1,...,n, (14)

where n is the sample size, 10 for most experiments. For homoskedastic data, we
set o = 1 for all ¢, and for heteroskedastic data, we set oy = |x41|, the absolute

value of the ¢!

component of ;. Because of the high leverage observation,
this gives rise to very strong heteroskedasticity, which leads to serious bias of the
OLS covariance matrix; see White (1980). The v; are independent variables of zero
expectation and unit variance, and in the experiments will be either normal or else
drawings from the highly skewed 2(2) distribution, centred and standardised.

The main object of our experiments is to compare the size distortions of wild
bootstrap tests using the distributions F; and F. Although the latter gives ex-
act inference only in a very restricted case, we show that it always leads to less
distortion than the former in sample sizes up to 100. We also conduct a few ex-
periments comparing the wild bootstrap and the (y, X) bootstrap. In order to
conduct a fair comparison, we use an improved version of the (y, X) bootstrap
suggested by Mammen (1993), and subsequently modified by Flachaire (1999), in
which we resample, not the (y, X) pairs as such, but rather regressors (X) and the

constrained residuals, transformed according to HC5. For the wild bootstrap, we
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are also interested in the impact on errors in the rejection probabilities (ERPs) of
the use of unconstrained versus constrained residuals, and the use of the different
sorts of HCCME. Here, we formally define the error in rejection probability as the
difference between the rejection probability, as estimated by simulation, at a given

nominal level, and that nominal level.

We present our results as P value discrepancy plots, as described in Davidson and
MacKinnon (1998). These plots show ERPs as a function of the nominal level a.
Since we are considering a one-degree-of-freedom test, it is possible to perform a
one-tailed test for which the rejection region is the set of values of the statistic
algebraically greater than the critical value. We choose to look at one-tailed tests
because Edgeworth expansions predict — see Hall (1992) — that the ERPs of one-
tailed bootstrap tests converge to zero with increasing sample size more slowly
than those of two-tailed tests. In any event, it is easy to compute the ERP of a
two-tailed test with the information in the P value discrepancy plot. All plots are

based on experiments using 100, 000 replications.
We now present our results as answers to a series of pertinent questions.

e In a representative case, with strong heteroskedasticity and high leverage, is

the wild bootstrap capable of reducing the ERP relative to asymptotic tests?

Figure 2 shows plots for the regression design with k& = 3, sample size n = 10,
and normal heteroskedastic disturbances. The ERPs are plotted for the conven-
tional ¢ statistic, based on the OLS covariance matrix estimate, the four versions
of HCCME-based statistics, HC;, i = 0,1,2,3, all using constrained residuals.
P values for the asymptotic tests are obtained using Student’s ¢ distribution with
7 degrees of freedom. The ERP is also plotted for what will serve as a base case for
the wild bootstrap: Constrained residuals are used both for the HCCME and the
wild bootstrap DGP, the F; distribution is used for the €;, and the statistic that
is bootstrapped is the HC3 form. To avoid redundancy, the plots are drawn only

for the range 0 < o < 0.5, since all these statistics are symmetrically distributed
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when the disturbances are symmetric. In addition, the bootstrap statistics are
symmetrically distributed conditional on the original data, and so the distribu-
tion of the bootstrap P value is also symmetrical about o« = 0.5. It follows that
the ERP for nominal level « is the negative of that for 1 — . Not surprisingly,
the conventional ¢ statistic, which does not have even an asymptotic justification,
is the worst behaved of all, with far too much mass in the tails. But, although
the HC; statistics are less distorted, the bootstrap test is manifestly much better

behaved.

e The design with & = 1 satisfies the conditions of Theorem 1 when the dis-
turbances are symmetric and the HCCME and the bootstrap DGP are based
on constrained residuals. If we maintain all these conditions but consider the
cases with £ > 1, bootstrap inference is no longer perfect. To what extent is

inference degraded?

P value discrepancy plots are shown in Figure 3 for the designs k =1,...,6 using
the base-case wild bootstrap as described above. Disturbances are normal and
heteroskedastic. As expected, the ERP for k = 1 is just experimental noise, and
for most other cases the ERPs are significant. By what is presumably a coincidence
induced by the specific form of the data, they are not at all large for £k = 5 or
k = 6. In any case, we can conclude that the ERP does indeed depend on the

regression design, but quantitatively not very much, given the small sample size.

e How do bootstrap tests based on the F; and F5 distributions compare? We
expect that F» will lead to smaller ERPs if the disturbances are symmetric,
but what if they are asymmetric? How effective is the skewness correction
provided by F;? What about the (y, X) bootstrap?

In Figure 4 plots are shown for the & = 3 design with heteroskedastic normal
disturbances and skewed x?(2) disturbances. The Fy and F» bootstraps give rather
similar ERPs, whether or not the disturbances are skewed. But the F; bootstrap is

generally better, and never worse. Very similar results, leading to same conclusion,
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were also obtained with the £k = 4 design. For £k = 1 and k = 2, on the other
hand, the F; bootstrap suffers from larger ERPs than for £ > 2. Plots are also
shown for the same designs and the preferred form of the (y, X) bootstrap. It is
clear that the ERPs are quite different from those of the wild bootstrap, in either

of its forms, and substantially greater.

e What is the penalty for using the wild bootstrap when the disturbances are
homoskedastic and inference based on the conventional ¢ statistic is reliable,
at least with normal disturbances? Do we get different answers for Fy, Fb,

and the (y, X) bootstrap?

Again we use the k = 3 design. We see from Figure 5, which is like Figure 4 ex-
cept that the disturbances are homoskedastic, that, with normal disturbances, the
ERP is very slight with F5, but remains significant for Fy and (y, X). Thus, with
unskewed, homoskedastic disturbances, the penalty attached to using the F5 boot-
strap is very small. With skewed disturbances, all three tests give substantially
greater ERPs, but the F5 version remains a good deal better than the F} version,
which in turn is somewhat better than the (y, X) bootstrap.
e Do the rankings of bootstrap procedures obtained so far for n = 10 continue
to apply for larger samples? Do the ERPs become smaller rapidly as n grows?
In order to deal with larger samples, the data in Table 1 were simply repeated
as needed in order to generate regressors for n = 20,30,.... The plots shown
in Figures 4 and 5 are repeated in Figure 6 for n = 100. The rankings found
for n = 10 remain unchanged, but the ERP for the Fy bootstrap with skewed,
heteroskedastic, disturbances improves less than that for the F; bootstrap with
the increase in sample size. It is noteworthy that none of the ERPs in this diagram
is very large.
In Figure 7, we plot the ERP for a = 0.05 as a function of n, n = 10, 20,.. .,
with the £ = 3 design and heteroskedastic disturbances, normal for F; and

skewed for Fy, chosen because these configurations lead to comparable ERPs for
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n around 100, and because this is the worst setup for the Fy bootstrap. It is
interesting to observe that, at least for & = 0.05, the ERPs are not monotonic.
What seems clear is that, although the absolute magnitude of the ERPs is not dis-
turbingly great, the rate of convergence to zero does not seem to be at all rapid,

and seems to be slower for the F5 bootstrap.

We now move on to consider some lesser questions, the answers to which
justify, at least partially, the choices made in the design of our earlier experiments.
We restrict attention to the F» bootstrap, since it is clearly the procedure of choice
in practice.

e Does it matter which of the four versions of the HCCME is used?

It is clear from Figure 2 that the choice of HC; has a substantial impact on the
ERP of the asymptotic test. Since the HCy and HC; statistics differ only by a
constant multiplicative factor, they yield identical bootstrap P values, as do all
versions for k = 1 and k = 2. For k£ = 1 this is obvious, since the raw statistics
are identical, and for k = 2, the only regressor other than x; is the constant, and
so hy does not depend on t. For k > 2, significant differences appear, as seen in
Figure 8 which treats the k& = 4 design. HC3 has the least distortion here, and
also for the other designs with & > 2. This accounts for our choice of HC5 in the
base case.

e What is the best transformation f;(-) to use in the definition of the bootstrap
DGP? Plausible answers are either the identity transformation, or the same
as that used for the HCCME.

No very clear answer to this question emerged from our numerous experiments on
this point. A slight tendency in favour of using the HCj3 transformation appears,
but this choice does not lead to universally smaller ERPs. However, the quanti-
tative impact of the choice is never very large, and so the HC5 transformation is
used in our base case.

e How is performance affected if the leverage of observation 2 is reduced?
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Because the ERPs of the asymptotic tests are greater with a high leverage observa-
tion, we might expect the same to be true of bootstrap tests. In fact, although this
is true if the HC) statistic is used, the use of widely varying h; with HCj3 provides
a good enough correction that, with it, the presence or absence of leverage has lit-
tle impact. In Figure 9, this is demonstrated for &£ = 3, and normal disturbances,
and the effect of leverage is compared with that of heteroskedasticity. The latter is
clearly a much more important determinant of the ERP than the former. Similar
results are obtained if the null hypothesis concerns a coefficient other than ;.
In that case, the h; differ more among themselves, since ®; is now used in their
calculation, and HC| gives more variable results than HC'3, for which the ERPs
are similar in magnitude to those for the test of 5; = 0.
e How important is it to use constrained residuals?

For Theorem 1 to hold, it is essential. Simulation results show that, except for the
k =1 and k = 2 designs, it is not very important whether one uses constrained
or unconstrained residuals, although results with constrained residuals tend to be
better in most cases. The simulations do however show clearly that it is a mistake
to mix unconstrained residuals in the HCCME and constrained residuals for the

bootstrap DGP.

4. Conclusion

The wild bootstrap is commonly applied to models with heteroskedastic distur-
bances and an unknown pattern of heteroskedasticity, most commonly in the form
that uses the asymmetric F; distribution in order to take account of skewness
of the disturbances. In this paper we have shown that the wild bootstrap im-
plemented with the symmetric Fy distribution and constrained residuals, which
can give perfect inference in one very restricted case, is never any worse behaved
than the F} version, or either version with unconstrained residuals, and is usually

markedly better. We therefore recommend that this version of the wild bootstrap

~19 —



should be used in practice in preference to other versions. This recommendation
is supported by the results of simulation experiments designed to expose potential
weaknesses of both versions.

It is important to note that conventional confidence intervals cannot benefit from
our recommended version of the wild bootstrap, since they are implicitly based
on a Wald test using unconstrained residuals for the HCCME and, unless special
precautions are taken, also for the bootstrap DGP. This is not a problem for many
econometric applications, for which hypothesis tests may be sufficient. In those
cases in which reliable confidence intervals are essential, we recommend that they
be obtained by inverting a set of tests based on the preferred wild bootstrap.
Although this can be a computationally intensive procedure, it is well within the
capacity of modern computers and seems to be the only way currently known to
extend refinements available for tests to confidence intervals.

A final caveat seems called for: Although our experiments cover a good number
of cases, some caution is still necessary on account of the fact that the extent of
the ERP of wild bootstrap tests appears to be sensitive to details of the regression
design and the pattern of heteroskedasticity.

In this paper, we have tried to investigate worst case scenarios for wild bootstrap
tests. This should not lead readers to conclude that the wild bootstrap is an
unreliable method in practice. On the contrary, as Figure 6 makes clear, it suffers
from very little distortion for samples of moderate size unless there is extreme
heteroskedasticity. In most practical contexts, use of the Fy-based wild bootstrap

with constrained residuals should provide satisfactory inference.
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Table 1. Regressors

o
o
)

1 3 Ty s g

© 00 N O Ui W

—_
o

0.616572 0.511730 0.210851  -0.651571  0.509960
10.000000  5.179612 4.749082 6.441719  1.212823
-0.600679 0.255896  -0.150372  -0.530344  0.318283
-0.613076 0.705476 0.447747  -1.599614 -0.601335
-1.972106  -0.673980  -1.513501 0.533987  0.654767

0.409741 0.922026 1.162060  -1.328799  1.607007
-0.676614 0.515275  -0.241203  -1.424305 -0.360405

0.400136 0.459530 0.166282 0.040292 -0.018642

1.106144 2.509302 0.899661  -0.188744  1.031873

0.671560 0.454057  -0.584329 1.451838  0.665312
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Table 2. Leverage measures

Obs k=1 k=2 k=3 k=4 k=5 k=6
1 0.003537  0.101022  0.166729  0.171154  0.520204  0.560430
2 0.930524  0.932384  0.938546  0.938546  0.964345  0.975830
3 0.003357  0.123858  0.128490  0.137478  0.164178  0.167921
4 0.003497  0.124245  0.167158  0.287375  0.302328  0.642507
5 0.036190  0.185542  0.244940  0.338273  0.734293  0.741480
6 0.001562  0.102785  0.105276  0.494926  0.506885  0.880235
7 0.004260  0.126277  0.138399  0.143264  0.295007  0.386285
8 0.001490  0.102888  0.154378  0.162269  0.163588  0.218167
9 0.011385  0.100300  0.761333  0.879942  0.880331  0.930175
10 0.004197  0.100698  0.194752  0.446773  0.468841  0.496971

Notes: For k = 1, the only regressor is x;, for £k = 2 there is also the

constant, for k = 3 there are the constant, 1, and xs, and so forth.
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Legends for Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Figure 9.

Absolute values and signs of two random variables

ERPs of asymptotic and bootstrap tests

Base case with different designs

Symmetric and skewed errors, Fy, Fs, and (y, X) bootstraps
Homoskedastic errors

ERPs for n = 100

ERP for nominal level 0.05 as function of sample size

HC3 compared with HCy and HCs

Relative importance of leverage and heteroskedasticity

— 95—



Y




-€0

—— (8oH) densjooq prrp



—SG0°0—

000

—S0°0

- 01°0

4
&)
4
)
4
)

9
G
v
€
G
!



——"Pomays ‘(x *A)
ceeeeeeeeess OLIJOWITIAS Avm Suv

pomoys ‘L
OLIJOWIWIAS ‘&,

OLIJOWWIAS ‘L,f

¢c0—

—0¢0—

—S1°0—

—01°0—

— S0°0

—01°0

—S1°0

—0c¢0



PoMmoYS BAVA‘ hmuv .................. POMAY[S ‘T

............. OLIJOUTUIAS AN« nmv —————— OLIJOWWAS ‘G

............. pPoMOYS ‘T ---------- OLIJOWWAS ‘L,



60 80 L0 90 G0 ¥O0O €0 <¢0 T0
_ _ _ _ _ _ _ _ _ cz 0—
....................... O1}SePASOUWIOY ‘PoMaYs ‘T e=y'00T=u | 02°0—
O11SRPAYSOWOY ‘pamays ‘LJ
............. OT)SEPASOWOY ‘OTIOUWIWIAS ‘T - S10—
............. O11SePONSOWOY ‘OLIJOUWIWAS ‘L7
—0T°0—
.................................................................................................. L MO©|
..... OO.O
.................. OT)SBPAYS0I9319Y nﬁwkw@&w ﬁmrhﬂ — GO0
OI1SRPAYSOI0SY ‘pamays ‘L
- 010

OI)SRPOYSOI0OY ‘OLIJOWIWAS ‘T

.......... OI1SRPAYSOI019Y ‘OLIJOWIWAS ‘L,J




00T

e o DPOMOIYS ‘T

06 08 0L 09 05 O 0 0z O
| | | | | | | | | OHO|
- G00—
° ° ° ° ° ° o °
. o 0070
D o) o o °
© o - G00
O
Ag ‘T
o o OLIPWWAS ‘L 5 L 0T°0



10

00—

00°0

600

010

¢1°0

0¢0



............ 98RIoAS] OU ‘01239 ‘OH [ —— o8eIoA9] ‘owoY ‘€) [
....... 98RIOAJ[ ‘01039 ‘O ff -+------- OFRIDAI[ OU ‘01O ‘&) [
................ o8eIoAs] ou ‘owoy ‘¢Hff —— 98eIoAd] ‘01%9Y ‘¢H [



