D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson et al., Optical coherence tomography, Science, vol.254, issue.5035, p.1178, 1991.
DOI : 10.1126/science.1957169

A. F. Fercher, Optical coherence tomography, Journal of Biomedical Optics, vol.1, issue.2, p.157, 1996.
DOI : 10.1117/12.231361

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging, Journal of the Optical Society of America B, vol.9, issue.6, p.903, 1992.
DOI : 10.1364/JOSAB.9.000903

J. F. De-boer, T. E. Milner, M. J. Van-gemert, and J. S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Optics Letters, vol.22, issue.12, p.934, 1997.
DOI : 10.1364/OL.22.000934

K. Schoenenberger, B. W. Colston, J. Duncan, J. Maitland, L. B. Silva et al., Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography, Applied Optics, vol.37, issue.25, p.6026, 1998.
DOI : 10.1364/AO.37.006026

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De-boer, In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography, Optics Letters, vol.27, issue.18, p.1610, 2002.
DOI : 10.1364/OL.27.001610

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography, Optics Letters, vol.27, issue.20, p.1803, 2002.
DOI : 10.1364/OL.27.001803

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat et al., Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 13 ??m, Optics Express, vol.13, issue.11, p.3931, 2005.
DOI : 10.1364/OPEX.13.003931.m004

L. Vabre, A. Dubois, and A. C. Boccara, Thermal-light full-field optical coherence tomography, Optics Letters, vol.27, issue.7, p.530, 2002.
DOI : 10.1364/OL.27.000530

URL : https://hal.archives-ouvertes.fr/hal-00627979

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre et al., Ultrahigh-resolution full-field optical coherence tomography, Applied Optics, vol.43, issue.14, p.2874, 2004.
DOI : 10.1364/AO.43.002874

URL : https://hal.archives-ouvertes.fr/hal-00533151

A. Dubois, G. Moneron, and A. C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2??m wavelength region, Optics Communications, vol.266, issue.2, p.738, 2006.
DOI : 10.1016/j.optcom.2006.05.016

URL : https://hal.archives-ouvertes.fr/hal-00520541

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope, Applied Optics, vol.41, issue.4, p.805, 2002.
DOI : 10.1364/AO.41.000805

URL : https://hal.archives-ouvertes.fr/hal-00627977

N. Ugryumova, S. V. Gangnus, and S. J. Matcher, Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography, Optics Letters, vol.31, issue.15, p.2305, 2006.
DOI : 10.1364/OL.31.002305

S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography, Optics Letters, vol.29, issue.17, p.2025, 2004.
DOI : 10.1364/OL.29.002025

. Fig, Polarization-sensitive full-field OCT images of shrimp tail muscles (b) are en face intensity-based images acquired at depths of 30 and 100 m, respectively. (c), (d) are the corresponding linear-birefringence-induced phase-retardation images. The couples