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Abstract— EMC Filters are increasingly integrated into power 

applications. To improve their performances it is important to 

model the electromagnetic interference between components to 

optimize their positions in the filter. In this paper, a method is 

proposed to construct the equivalent models of the component 

radiated field. The method proposed is based on the multipolar 

expansion, which provides us reduced models for the field 

radiated by generic structures. These models of the sources will 

be used to compute the mutual inductance between the 

components according to their geometrical placement. 

Keywords- filter; radiated field; source; multipolar expansion; 

mutual inductance. 

I.  INTRODUCTION  
EMC filters are designed to improve the electromagnetic 

compatibility and the immunity level of electric and electronic 
systems, in particular the aspects concerning power quality 
and electromagnetic signature.  For this reason the behavior of 
these filters has to be studied. Concerning these studies, the 
evaluation of the electrical parameters of the filter components 
assumes an important role. Basically, there are two types of 
parasitic parameters: the self-parasitic of the filter components 
and the mutual parasitic that reflect the coupling between 
components. Figure 1 represents the electric model of an EMC 
filter « Π » consisting of   two capacitors Cy1 and Cy2, and an 
inductance LDM.  

 

 
Fig.1 – Filter with parasitic coupling and the self-parasitic. 

  

This model includes the self-parasitic of the filter 
components and the inductive coupling between components 
[1]. The capacitive effects are not considered. Due to the 
significant current values related the filter when compared with 
the voltage one, this simplified model is assumed.  

In figure 1 the following notations are used: 
 

ESL, ESR, C: The self-parasitic parameters, inductance, 
resistance, and the capacitance,                                                  
LDM, EPC, EPR: The inductance, and the related self-parasitic 
capacitance and the resistance, 
M1 and M2: Mutual inductances between LDM and the self-
parasitic inductances ESL1 and ESL2,                                        
M3 : Mutual inductance between the self-parasitic inductances 
ESL1 and ESL2,                                        
M4: Coupling inductance between LDM and the PCB tracks. 

 
As Fig.2 shows, these parasitic parameters can affect the 

EMC filter performances. This figure was withdraw from [2], 
and it presents three curves: the first one called “base” 
represents the filter behavior before implementing the 
electromagnetic interference reduction and the filter 
performance improvement, the second “Minimized coupling” 
was obtained by optimizing the location of the components to 
reduce the coupling between filter components, and the third 
curve “Minimized coupling + ESL cancellation” represents the 
filter  behavior after reducing the mutual parasitic and the 
effect of the equivalent serial inductance ESL.  

The region A calls attention to the differences between the 
first curve “base” and the second curve “Minimized coupling”, 
in particular to the first resonance frequency that matches the 
coupling effect of the filter components (mutual inductances). 
In a similar way, the region B represent the difference between 
the curves “base” and the “Minimized coupling + ESL 
cancellation”, and the impact of the self-parasitic components 
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Fig.2 – Effect of parasitic parameters, extract from [2]. 

Thus, in a converter including passive and active 
components, the component mutual parasitic modeling can be 
considered as a fundamental problem.  

Nevertheless, it should be mentioned that, there is not a 
suitable methodology that takes into account the near-field 
coupling between components when an accurate evaluation of 
filter performances is required.  

The objective of this work is to propose a methodology 
suitable for obtain models that could represent the radiated 
field of the filter components, at a wide range of frequencies, 
useful to evaluate the filter performance. In particular, these 
models will be applied to determine the coupling effects 
between the filter components, basically the mutual 
inductance, considering the influence of parameters, such as 
the distance between components etc.  

 
As the distance between components is much smaller than 

the wavelength related to the frequencies of power electronic 
applications, usually f < 100MHz, a quasi static approach can 
be considered. It is the case of a magnetic source, in which the 
capacitive effects are negligible.  

The method proposed to determine the equivalent radiated 
field model of the filter components by applying the multipolar 
expansion. It can be used to represent the radiation of generic 
structures (coils, capacitors, tracks…), and the spherical 
coordinates (r,θ,φ) are considered in this work.  

Basically, this method will be used to compute the 
coupling effects between discrete filter components 
(capacitors, resistances and inductances). To simulate the 
whole configuration, the coupling between tracks should also 
be taken into account. The Partial Element Equivalent Circuit 
(PEEC) method is used to determine the inductive and 
resistive effects (R, L, M). On the other hand, for the parasitic 
capacitors evaluations, the MoM (Moments method) and the 
Fast Multipolar Method FMM are used [3]. For the tracking 
connection, the equivalent sources corresponding to discrete 
components can be integrated. This can simplify the model 
and improve the memory allocation. 

 

II. MULTIPOLAR EXPANSION 

A. Theory 

The multipolar expansion can be used to represent the 
electromagnetic fields in 3D, assuming that the field is 
computed outside a sphere of radius r that contains the 
equivalent source (figure 3).  

The multipolar expansion of the electric and magnetic 
fields is deduced from the solution of the magnetic vector 
potential Ar and the electric vector potential Fr  given by [4]:    
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The notations (cf) and (ca) determine the type of the 
function         . For example, for a progressive wave 
propagating along (+r), when the constant c=4, and          

   
       , it will correspond to the spherical Hankel functions 

[4]. 

If these functions are chosen, the expressions of the 
electric field E and the magnetic field H can be represented by 
the following expressions [4]: 
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with    
 

 
 the intrinsic impedance of the considered 

environment. 
 
 
 

 
 

 
 
 
 
 
 
 

Fig.3 – References adopted in the field computation 
 

The coefficients     
    describe the strength of the 

transverse-electric (TE) components of the radiated field, 
while coefficients     

   describe the strength of the transverse-
magnetic (TM) components. These coefficients are the 
parameters to be identified to characterize the equivalent 
model of the radiated field components. 
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    and     

    are the vector’s spherical harmonics which 
are a solution of Maxwell’s equations in free space, excluding 
the sphere that involves the sources. To compute the vector 
spherical harmonics, the solution of the scalar Helmholtz 
equation is used: 

    
   

           
               

   
 

 

 
          

             (5) 
The solution of the Helmholtz equation is then expressed 

as follows: 
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where Ynm are the normalized spherical harmonics  
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In the aforementioned equations: 
n: degree,                                                                          
m: azimuthal order,                                                                
k : the phase constant, 
r : distance from the center of the coordinate system,                                   
bn : The Bessel functions,                                                                                       
  

  : The Legendre associated functions. 
 

B. Application 

It should be mentioned that, in order to represent the 
component radiated field in spherical harmonics, it is necessary 
to compute the coefficients of the decomposition Qnm. In the 
case of a magnetic source in the near-field, the coefficients 
associated to the magnetic transverse modes are negligible 
because the electric field is considered very low compared to 
the magnetic field. These coefficients are functions of H(r, ,φ), 
and can be obtained by applying [4]: 

       
 

  
   

         
     

                                      (8) 
Depending on the complexity of the object to model, we 

can calculate the radiated H-field by using a 3D model or by 
performing experimental measurements [5]. Some 
components of the multipolar expansion can be directly 
measured using novel magnetic induction sensors, for 
example, the sensors based on the standard CISPR16-1 coils 
[6].  

III. COMPUTING THE MUTUAL INDUCTANCE 

A. Mutual inductance 

Using the equivalent radiated field source model, we can 
determine the coupling between two equivalent sources 
through the computation of the mutual inductance. The Fig.4 
illustrates the configurations regarding the representation of 
two radiating sources (Models 1 and 2). 

 

 
Fig.4 – Representation of two radiating sources. 

The computation of the mutual impedance between source 
1 and source 2 can be expressed in terms of the electrical field 
E and magnetic field H for each source, by [4]: 
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When the spheres which contain each of the sources don’t 
intersect, the mutual impedance can be expressed according to 
the coefficients of the multipolar expansion [4]: 
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The expression of the mutual inductance is: 
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In the expression (10) and (11), i1 and i2 are respectively the 
current that flows in sources 1 and 2. k is the phase constant.  

The coefficients associated to the magnetic transverse 
modes of the multipolar expansion of sources 1 and 2 must be 
expressed in the same reference: a translation is required, e.g. 
the coefficients of the source 2 can be expressed in the 
reference of the source 1. 
 

B. Translation and rotation of the coefficients Qnm 

The rotation of the coefficients Qnm is obtained by applying 
the Euler angle reference formula. It should be mentioned that 
only two angles are necessary because of the spherical 
symmetry. The details of the methodology for determining the 
rotation matrices for complex or real coefficients Qnm are 
presented in [7]-[9]. 

The translation is based on the « Addition Theorem for 
Vector Spherical Harmonics » [8].  
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Fig.5 – Translation of a spherical basis 

The addition theorem links the harmonics evaluated on r to 
those evaluated on r ', where r is measured from the origin of 
the second spherical basis, whose axes are parallel to the first. 
The origin of the second spherical basis is linked to the first by 
r''. These three vectors are connected by the relation r = r '+ r''. 

 
The expression of the translated coefficients Qnm are:  
 

                    
 
    

 
                           (12) 

 

The computation of the coefficient             involves the 
Wigner 3j symbol according to quantum mechanics [9]. 

C. Methodology 

To conclude, for example in the case of two components 1 
and 2, the  Fig.6 represent the method to be used to compute 
the mutual inductance between the components : 

Fig.6 – Method used to compute the mutual inductance between two 
components 

IV. VALIDATION 
To validate the method of computing the mutual inductance 

between two equivalent radiated field of the components, the 
analytical result was compared to the numerical result 

computed by Flux3D® [10]. For this proposal, two similar 
loops configuration were considered, C1 and C2. This is a 
simple case which objective is to validate this method in the 
case of a filter, for two coils.  

A. First case 

We consider two loops, C1 and C2 with a radius “Rspire” 
of 10 cm, separated by r, both located on the Oz-axis as shown 
in the Fig.7. The smaller sphere of validity is the sphere which 
surface includes the source. In our case the radius of the 
sphere was assumed to be equal to the radius loop. 

 
Fig.7 – Two similar coils placed on the z axis  

In this case, the method of computing the mutual 
inductance in flux3D® is based on the computation of the flux 
through the surface of one of the two loops.  

We have computed the mutual inductance between the 
loops, according to the distance r using the method of 
spherical harmonics for n=3 and n=5, and on the simulation of 
the flux through the surface of one of the two loops. The result 
is compared with those computed directly by Flux3D®. The 
comparison between the results is shown in the Fig.8. 
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Fig.8 – The comparison between spherical harmonics mutual inductance result 
and Flux3D® up to the near-field distance limit at 200MHz (1m) 

To use the equivalent models of each loop to compute the 
mutual inductance, it is important that spheres included each 
source don’t intersect, for that reason a minimum distance of 
(Rcoil1 + Rcoil2)= 0.2m between their centers must be 
respected.  

As shown in Fig.8, the results between the method using a 
truncated multipolar expansion and the numerical method in 
Flux3D® are comparable.  

To compute the mutual inductance for a small distance 
between the two loops, the number of terms required to 
describe the complexity of the source increases. For that 
reason, at distance of r=0.2m the error is greater for n=3 than 
n=5 as show in the Fig.9.  

 
Fig.9 – The relative error compared to Flux3D® 

B. Second case 

In the second case the numerical method is validated when 
the theorem to rotate the coefficients Q2nm of the loop C2 is 
applied.  A rotation of 45° around the y axis corresponds to the 
2nd Euler angle as shown in Fig.10 

 
Fig.10 – Two similar coils in oz axis where the coil C2 is rotate of 45° than the 

the coil C1. 

To compute the mutual inductance between the two loops, 
in the spherical basis of the loop C1, it was necessary to rotate 
the coefficients Q2nm of the loop C2 before translating them to 
the spherical basis of loop C1. The comparison results of the 
spherical harmonics method and Flux3D® are represented in 
Fig.11. 

 
Fig.11 – The comparison between numerical and spherical harmonics results 

of mutual inductance 

The results of the mutual inductance between the two coils 
are similar to the previous case, at r =0.2m, where the error is 
greater for n=3 than n=5. 

V. PROPOSED MEASUREMENT METHOD 
The method for measuring the mutual inductance between 

two loops C1 and C2, of inductors L1 and L2 is based on the 
measurement of the coefficient of coupling K. The coefficient 
of coupling is expressed in function of the inductors L1 and L2, 
the input and output voltage by the following relation [11]: 
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K: coefficient of coupling,                                                                          
M: mutual inductance,                                                                
VS: input voltage, 
VE : output voltage. 
 

This relation is valid when L1>10*R [11], with R the 
resistance of the loop. For this reason, it is interesting to study 
the behavior of the impedance of loop in function of frequency.  

This method will be used in the case of two identical loops 
located on the Oz-axis to measure the coefficient of coupling 
in function of the distance r between the two loops. 

 

VI. CONCLUSION 
This method allows us to create, at first, the equivalent 

sources which represent the radiated field component using the 
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multipolar expansion representation. The equivalent sources 
will then be used to compute the coupling between them, 
which was represented by a mutual inductance as a function of 
the distance that separates them.  

Although some simple configurations were used to validate 
the proposed methodology, some anti-canonical structures are 
planned to be evaluated by the authors in the near future. 
Moreover, other kind of multipolar expansions, like the 
cylindrical one can be more suitable for modeling components 
such as tracks or cables, and it will also be considered. For 
example, in the case of the coupling between a track and a 
component, the spherical harmonics method is not very 
adequate and other harmonics method should be used.  

The method proposed could be helpful when coupled with 
the PEEC method in the evaluation of equivalent circuit of 
power electronics devices (R-L-M-C). This will allow 
considerable gain in memory space concerning the full model 
configuration used in EMC filter numerical simulations.  

It remains to validate the method of measurement, first in 
the case of two loops and then in a more complex case, for 
example to measure the coupling between two coils. 

Another perspective for this work is to use the method 
presented in [5] to determine the components of the spherical 
harmonics by measuring the induced flux through coils placed 
around the system.  

This method for measuring the flux induced in large coils 
placed around the system allows a “spatial integration” to 
reduce the effect of the sensor position errors, unlike to the 
punctual measurement method where the sensor of magnetic 
field moves around the object to measure the field at many 
points [5]. 
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