S. Allassonnière, E. Kuhn, and A. Trouvé, Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study, Bernoulli, vol.16, issue.3, 2009.
DOI : 10.3150/09-BEJ229

C. Andrieu, A. Doucet, and R. Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.50, issue.3, pp.1-33, 2010.
DOI : 10.1111/j.1467-9868.2009.00736.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Andrieu and G. O. Roberts, The pseudo-marginal approach for efficient Monte Carlo computations, The Annals of Statistics, vol.37, issue.2, pp.697-725, 2009.
DOI : 10.1214/07-AOS574

M. Beaumont, Estimation of population growth or decline in genetically monitored populations, Genetics, issue.164, pp.1139-1160, 2003.

R. Casarin and J. Marin, Online data processing: Comparison of Bayesian regularized particle filters, Electronic Journal of Statistics, vol.3, issue.0, pp.239-258, 2009.
DOI : 10.1214/08-EJS256

URL : https://hal.archives-ouvertes.fr/inria-00138007

M. Davidian and D. Giltinan, Nonlinear models to repeated measurement data, 1995.

D. Moral, P. , J. Jacod, and P. Protter, The Monte-Carlo method for filtering with discrete-time observations, Probability Theory and Related Fields, vol.120, issue.3, pp.346-368, 2001.
DOI : 10.1007/PL00008786

B. Delyon, M. Lavielle, and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm, Ann. Statist, vol.27, pp.94-128, 1999.

A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Jr. R. Stat. Soc. B, vol.39, pp.1-38, 1977.

S. Ditlevsen and A. Gaetano, Stochastic vs. deterministic uptake of dodecanedioic acid by isolated rat livers, Bulletin of Mathematical Biology, vol.67, issue.3, pp.547-561, 2005.
DOI : 10.1016/j.bulm.2004.09.005

S. Donnet, J. Foulley, and A. Samson, Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations, Biometrics, vol.10, issue.3, pp.733-741, 2010.
DOI : 10.1111/j.1541-0420.2009.01342.x

URL : https://hal.archives-ouvertes.fr/hal-00360111

S. Donnet and A. Samson, Parametric inference for mixed models defined by stochastic differential equations, ESAIM: Probability and Statistics, vol.12, pp.196-218, 2008.
DOI : 10.1051/ps:2007045

URL : https://hal.archives-ouvertes.fr/hal-00263515

A. Doucet, N. De-freitas, and N. Gordon, An Introduction to Sequential Monte Carlo Methods, Sequential Monte Carlo methods in practice, pp.3-14, 2001.
DOI : 10.1007/978-1-4757-3437-9_1

F. Jaffrézic and J. Foulley, Modelling variances with random effects in non linear mixed models with an example in growth curve analysis, XXIII International Biometric Conference, pp.16-21, 2006.

G. Kitawaga, Monte carlo filter and smoother for non-gaussian nonlinear state space models, J. Comp. Graph. Statist, issue.5, pp.1-25, 1996.

P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Applications of Mathematics, vol.23, 1992.

E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models, Computational Statistics & Data Analysis, vol.49, issue.4, pp.1020-1038, 2005.
DOI : 10.1016/j.csda.2004.07.002

B. Oksendal, Stochastic differential equations: an introduction with applications, 2007.

Z. Oravecz, F. Tuerlinckx, and J. Vandekerckhove, A Hierarchical Ornstein???Uhlenbeck Model for Continuous Repeated Measurement Data, Psychometrika, vol.89, issue.3, pp.395-418, 2009.
DOI : 10.1007/s11336-008-9106-8

R. Overgaard, N. Jonsson, C. Tornøe, and H. Madsen, Non-Linear Mixed-Effects Models with Stochastic Differential Equations: Implementation of an Estimation Algorithm, Journal of Pharmacokinetics and Pharmacodynamics, vol.29, issue.5???6, pp.85-107, 2005.
DOI : 10.1007/s10928-005-2104-x

U. Picchini, A. D. Gaetano, and S. Ditlevsen, Stochastic differential mixed-effects models. Scand, J. Statist, vol.37, pp.67-90, 2010.

J. Pinheiro and D. Bates, Mixed-effect models in S and Splus, 2000.

M. Pitt and N. Shephard, Auxiliary variable based particle filters In Sequential Monte Carlo methods in practice, Stat. Eng. Inf. Sci, pp.273-293, 2001.

G. O. Roberts and O. Stramer, On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm, Biometrika, vol.88, issue.3, pp.603-621, 2001.
DOI : 10.1093/biomet/88.3.603

A. Samson, M. Lavielle, and F. Mentré, The SAEM algorithm for group comparison tests in longitudinal data analysis based on non-linear mixed-effects model, Statistics in Medicine, vol.13, issue.27, pp.4860-4875, 2007.
DOI : 10.1002/sim.2950

URL : https://hal.archives-ouvertes.fr/hal-00263511

L. Tierney, Markov Chains for Exploring Posterior Distributions, The Annals of Statistics, vol.22, issue.4, pp.1701-1762, 1994.
DOI : 10.1214/aos/1176325750

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=