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Abstract

Biological processes measured repeatedly among a series of individuals

are standardly analyzed by mixed models. They use common regression

function and error model, both depending on individual random param-

eters. Regression functions defined by parametric Stochastic Differential

Equations (SDEs) model adequately biological processes. This results

in a mixed-effects model defined by an SDE. We focus on the param-

eter maximum likelihood estimation of this model. As the likelihood is

not explicit, we propose the use of a stochastic version of the Expectation-

Maximization algorithm combined with the Particle Markov Chain Monte

Carlo method. We prove the convergence of the proposed algorithm to-

wards the maximum likelihood estimator. We illustrate the performance

of this estimation method on simulated datasets. We consider two ex-

amples: the first one is based on an Ornstein-Uhlenbeck process with

two random parameters and an additive error model; the second one is

based on a time-inhomogeneous SDE (Gompertz SDE) with a stochastic

volatility error model and three random parameters. We highlight the

superiority of our estimator over an estimator based on the EM algorithm

coupled with standard MCMC algorithms.

Key Words: SAEM algorithm, Mixed models, Stochastic Differential Equa-

tions, Particle Filter, PMCMC algorithm, SMC algorithm, Stochastic volatility,

Time-inhomogeneous SDE.

1 Introduction

Biological processes are usually measured repeatedly among a collection of indi-

viduals or experimental animals. It is reasonable to assume that all experimen-

tal subject responses follow the same biological model, but model parameters

vary among individuals. These parameters are thus considered as individual

non-observed random data. Furthermore, the biological processes are often

measured with noise, due to the experimental device. The parametric statisti-

cal approach commonly used to analyze these longitudinal data is mixed-effects

model methodology (Pinheiro and Bates, 2000). These models have the capacity

to discriminate between inter-subjects variability (the variance of the individ-

ual regression parameters) and residual variability (measurement noise). The

choice of the regression function depends on the biological context. Dynamical

biological processes are frequently described by deterministic models defined as
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systems of ordinary differential equations. However, these functions may not

capture the exact process, as responses for some individuals may display local

"random" fluctuations. These phenomena are not due to error measurements

but are induced by an underlying biological process that is still unknown or

unexplained today. For example, for a neuron in a cell tissue receiving informa-

tion from a large number of other neurons, it has been observed that neuronal

response (membrane potential) is highly variable, "random" and irregular, even

under stable conditions. Thus we may assume that there is a random compo-

nent in the physiological model, that leads to the class of stochastic differential

equations (SDEs). Hence, this paper deals with parameter estimation for a

mixed model defined by an SDE process (called SDE mixed model).

Though complex, parametric inference for discretely observed general SDEs

has been widely investigated. When the transition probability of the diffu-

sion process is explicitly known, Dacunha-Castelle and Florens-Zmirou (1986)

propose a consistent maximum likelihood estimator. In the general case, Genon-

Catalot and Jacod (1993) and Kessler (1997) propose estimators based on the

minimization of suitable contrasts. For fixed sampling interval, Bibby and

Sørensen (1995) propose martingale estimating functions. In a biological con-

text, Ditlevsen et al. (2005) propose an estimation method based on simulation.

Picchini et al. (2008) propose estimators based on the Hermite expansion of the

transition densities. When combining the case of discrete and noisy observa-

tions, parameter estimation is a more delicate statistical problem. It is classical

to estimate the unobserved signal by using filtering techniques. Favetto and

Samson (2010) propose to compute the exact likelihood using the Kalman filter

of a discretely, partially and noisily observed bi-dimensional Ornstein-Uhlenbeck

process. They also propose to combine the well-known EM algorithm (Demp-

ster et al., 1977) with the Kalman filter. However, their approach is limited to

the case of linear SDEs and Gaussian innovations. Moreover, the extension of

these methods to mixed SDEs is not straightforward.

Indeed, parametric estimation of mixed-effects models is complex. The like-

lihood of mixed models is intractable in a closed form when the regression

function is nonlinear. Several estimation methods have been proposed to avoid

this difficulty when the regression function is deterministic (Davidian and Gilti-

nan, 1995; Wolfinger, 1993; Pinheiro and Bates, 2000; Kuhn and Lavielle, 2005).

Among them, Kuhn and Lavielle (2005) propose to couple the SAEM algorithm,

a stochastic version of the EM algorithm, with a Markov Chain Monte Carlo

(MCMC) procedure to simulate the unobserved random individual parameters.
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When the regression function is a diffusion process, mixed model estimation

is made more complicated by the difficulties of SDE estimation. Parametric

estimation of SDE with random parameters (without measurement noise) has

been studied by Ditlevsen and De Gaetano (2005) and Picchini et al. (2010).

From a Bayesian point of view, Oravecz et al. (2009) study the estimation of

an Ornstein-Uhlenbeck process with random parameters. SDE mixed model

estimation, including measurement noise modeling, is more complex and hence

it has received little attention. Overgaard et al. (2005) and Tornøe et al. (2005)

propose estimators based on an extended Kalman filter, but the algorithm con-

vergence is not proved. Donnet and Samson (2008) propose a maximum like-

lihood estimator based on the SAEM algorithm, coupled with an MCMC al-

gorithm. They prove the convergence of their algorithm. Donnet et al. (2010)

propose a general MCMC algorithm for a Bayesian estimation of mixed SDEs

model. However, MCMC samplers do not take advantage of the temporal be-

havior of the hidden dynamic process, especially of its Markovian property. In

this context, MCMC samplers typically consist of building an MCMC kernel

updating each time component of the hidden process, individually. This leads

to slow mixing algorithms that deteriorate the properties of the estimation al-

gorithms (frequentist or Bayesian ones).

In this paper, we propose to combine the SAEM algorithm with a particle filter

approach as an alternative to MCMC techniques. Particle filters, also called

Sequential Monte Carlo (SMC) techniques, represent a promising alternative to

classical filters such as the Kalman filter or the Hamilton-Kitagawa filter and

to MCMC samplers. They can deal with nonlinear models and non-Gaussian

random variables. In contrast to Hidden Markov Model filters, which work

on a state space discretized to a fixed grid, particle filters focus sequentially

on the higher density regions of the state space. Different particle filters are

proposed in the literature. Doucet et al. (2001) provide a state of the art on

these methods, discussing both applications and theoretical convergence of the

algorithms. SMC methods have been proposed as a powerful tool to estimate

the parameters of nonlinear state space models (see Kantas et al., 2009, for an

overview). Recently, Andrieu et al. (2010) have proposed Particle Markov Chain

Monte Carlo (PMCMC) methods, which combine MCMC and SMC techniques,

and take advantage of the strength of its two components. To our knowledge,

PMCMC methods have been used for parameter estimation only in a Bayesian

context and for models without random individual parameters. We propose to

focus on maximum likelihood estimation for SDE mixed models by combining
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a PMCMC algorithm with the SAEM algorithm. We prove the convergence

of the SAEM-PMCMC algorithm towards the maximum likelihood estimator.

The proof is based on convergence results of the Robbins-Monro type stochastic

approximation scheme (Delyon et al., 1999) and the convergence result of the

PMCMC algorithm (Andrieu et al., 2010). Our algorithm SAEM-PMCMC is

applied to two simulated examples, an Ornstein-Uhlenbeck mixed SDE model

observed with additive noise, and a stochastic volatility mixed model with a

time-inhomogeneous SDE. The SAEM-PMCMC algorithm is also compared

with the SAEM-MCMC algorithm proposed by Donnet and Samson (2008).

We show the increase in accuracy for the SAEM-PMCMC estimates.

The paper is organized as follows. In Section 2, we present the SDE mixed

model. In Section 3, the estimation method is detailed and the convergence of

the algorithm is proved. Section 4 shows numerical results based on simulated

data. In Section 5 we conclude and discuss the advantages and limitations of

our approach.

2 Mixed model defined by stochastic differential

equation

2.1 Model and notations

Let y = (yij)1≤i≤n,0≤j≤Ji
denote the data, where yij is the noisy measurement

of the observed process for individual i at time tij ≥ ti0, for i = 1, . . . , n,

j = 0, . . . , Ji. Let yi,0:Ji
= (yi0, . . . , yiJi

) denote the data vector of subject i.

We consider that the yij ’s are governed by a mixed-effects model based on a

stochastic differential equation defined as follows:

yij = g(Xitij
, εij), εij ∼i.i.d. N (0, σ2), (1)

dXit = a(Xit, t, φi)dt+ b(Xit, t, φi, γ)dBit, (2)

Xiti0 |φi ∼ π0(·|φi), (3)

φi ∼i.i.d. N (µ,Ω). (4)

In equation (1), (εij)i,j is a sequence of i.i.d Gaussian random variables of

variance σ2 representing the measurement errors and g is the error model func-

tion, assumed to be known. Several functions g are classically considered. For

example, the function g(x, ε) = x + ε leads to an additive error model. Mul-
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tiplicative error models or stochastic volatility models can be considered with

g(x, ε) = x(1 + ε) or g(x, ε) = f(x) exp(ε) with a known function f .

For each individual i, (Xitij
)0≤j≤Ji

are the values at discrete times (tij)0≤j≤Ji
of

the continuous process (Xit)t≥ti0 = (Xit(φi))t≥ti0 defined by equations (2) and

(3). This process is proper to each individual through the individual parameters

φi ∈ Rp involved in the drift and volatility functions a and b and an individual

Brownian motion (Bit)t≥ti0 . Functions a and b – which may be functions of

time, leading to time-inhomogeneous SDEs – are common to the n subjects.

They are assumed to be sufficiently regular to ensure a unique weak solution

(Oksendal, 2007). Besides, b depends on an unknown additional volatility pa-

rameter γ. The (Bit) and φk are assumed to be mutually independent for all

1 ≤ i, k ≤ n. The initial condition Xiti0
of process (Xit)t≥ti0

, conditionally

to the individual parameter φi is random with distribution π0(·|φi). This dis-

tribution can be a point mass distribution, resulting in a deterministic initial

condition conditionally to the individual random parameters. In the following,

Xi,0:Ji
= (Xiti0

, . . . , XitiJi
) denotes the vector of the i-th process realization at

observation times (tij) for i = 1, . . . , n and X = (X1, . . . ,Xn) denotes the whole

vector of processes at observation times, for all individuals.

The individual parameters φi are assumed to be normally distributed with mean

p-vector µ and covariance-matrix Ω. We denote Φ = (φ1, . . . , φn) the vector of

all individual parameter vectors.

Remark 1. In such models, three fundamentally different types of noise have

to be distinguished: the inter-subject variability Ω representing the variance of

the individual parameters φi, the dynamic noise γ, reflecting the random fluc-

tuations of the real process around the corresponding theoretical dynamic model,

and the measurement noise σ, representing the uncorrelated part of the residual

variability associated with assay and sampling errors for instance.

Note that it is straightforward to extend this setting to a multidimensionnal

process (Xt) and a multidimensionnal observation y.

Notice that considering the discrete realizations Xi,0:Ji
= (Xiti0

, . . . , XitiJi
) of

each individual process, our model belongs to the wide framework of state space

models (with random parameters), the latent processes Xi,0:Ji
being Markovian.

We detail this property in Section 4.
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2.2 Likelihood function

Let θ = (µ,Ω, γ, σ) be the parameter vector which belongs to some open subset

Θ of the Euclidean space Rq with q the number of unknown parameters. Our

objective is to propose a maximum likelihood estimation of θ. We consider that

the likelihood function is well-defined. More precisely, the distribution of Xit

given φi and Xis = xs, s < t, has a strictly positive density with respect to the

Lebesgue measure, which is denoted

x 7→ p(x, t− s, s|xs, φi; θ) > 0. (5)

Note that this density may depend on time s for a time-inhomogeneous SDE.

This allows us to write the likelihood of model (1-4) as

p(y; θ) =

n∏

i=1

∫
p(yi,0:Ji

|Xi,0:Ji
;σ)p(Xi,0:Ji

|φi; γ)p(φi;µ,Ω)dφidXi,0:Ji
, (6)

where p(y|x;σ), p(x|φ; γ) and p(φ;µ,Ω) are density functions of the observations

given the diffusion process, the diffusion process given the individual parame-

ters and the individual parameters, respectively. By independence of the mea-

surement errors (εij), we have p(yi,0:J |Xi,0:Ji
;σ) =

∏Ji

j=0 p(yij |Xitij
;σ) where

p(yij |Xitij
;σ) is the density function associated to the error model (1). The

Markovian property of the diffusion process (Xit) implies

p(Xi,0:Ji
|φi; θ) = π0(Xiti0 |φi)

Ji∏

j=1

p(Xitij
,∆ij , tij−1|Xitij−1 , φi; γ),

where ∆ij = tij − tij−1 is the step size between two observations.

The integral (6) has generally no-closed form. The only case with an explicit

likelihood is a mixed SDE model defined by a Wiener process with drift

dXit = φidt+ γdBit,

and an additive Gaussian error model g(x, ε) = x + ε. In this case, as Xt|φ is

Gaussian with expectation depending linearly on φ, the vector data y is also

Gaussian. In the other cases, including linear SDEs, the integral (6) has no-

closed form. For example, the case of the linear Ornstein-Uhlenbeck mixed

model is detailed in Section 4.
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3 Estimation method

Maximizing (6) with respect to θ yields the corresponding Maximum Likelihood

Estimate (MLE) θ̂ of the mixed SDE model (1-4). As the likelihood is not

explicit, it has to be numerically evaluated or maximized. This requires to

know the transition densities (5). Thus we consider the following assumption:

(M0) The SDE defined by (2) is assumed to have an explicit transition density

p(x, t− s, s|xs, φi; θ).

The extension to general SDEs will be investigated in future works.

The estimation is complex because the n random parameters φi and random

trajectories (Xi,0:Ji
) are not observed. This statistical problem can be viewed

as an incomplete data model. The observable vector y is thus considered as

part of a so-called complete vector (y,X,Φ).

3.1 Estimation algorithm (SAEM algorithm)

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is useful

in situations where the direct maximization of the marginal likelihood θ →
p(y; θ) is more complex than the maximization of the conditional expectation

of the complete likelihood

Q(θ|θ′) = E [log p(y,X,Φ; θ)|y; θ′] ,

where p(y,X,Φ; θ) is the likelihood of the complete data (y,X,Φ). The EM al-

gorithm is an iterative procedure: at the m-th iteration, given the current value

θ̂m−1 of the parameters, the E-step is the evaluation of Qm(θ) = Q(θ | θ̂m−1)

while the M-step updates θ̂m−1 by maximizing Qm(θ). For cases where the

E-step has no closed form, Delyon et al. (1999) propose the Stochastic Ap-

proximation EM algorithm (SAEM) and replace the E-step by a stochastic

approximation of Qm(θ). The E-step is thus divided into a simulation step

(S-step) of the non-observed data (Xm,Φm) with the conditional distribution

p(X,Φ |y; θ̂m−1) and a stochastic approximation step (SA-step):

Qm(θ) = Qm−1(θ) + αm

[
log p

(
y,Xm,Φm; θ̂m−1

)
−Qm−1(θ)

]
,

where (αm)m∈N is a sequence of positive numbers decreasing to zero. The ad-

vantage of the SAEM algorithm is the low-level dependence on the initialization
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θ̂0, due to the stochastic approximation of the E-step.

To fulfill the convergence conditions of the SAEM algorithm (Delyon et al.,

1999), we consider the exponential case. More precisely, we assume:

(M1) The parameter space Θ is an open subset of Rq. The complete likelihood

p(y,X,Φ) belongs to the exponential family i.e.

log p(y,X,Φ; θ) = −ψ(θ) + 〈S(y,X,Φ), ν(θ)〉 ,

where ψ and ν are two functions of θ, S(y,X,Φ) is known as the minimal

sufficient statistics of the complete model, taking its value in a subset S
of Rd and 〈·, ·〉 is the scalar product on Rd.

In this case, the SA-step of the SAEM algorithm reduces to the approximation

of E [S(y,X,Φ)|y; θ′].

At step S, a simulation under the conditional distribution p(X,Φ|y; θ̂m−1) is re-

quired. However, this distribution is likely to be a complex distribution, result-

ing in the impossibility of a direct simulation of the non-observed data (X,Φ).

For such cases, Kuhn and Lavielle (2005) suggest to realize the simulation step

via a Markov Chain Monte Carlo (MCMC) scheme, resulting in the SAEM-

MCMC algorithm. The S-step consists in constructing a Markov chain with

p(X,Φ|y; θ̂m−1) as ergodic distribution at the m-th iteration. However, stan-

dard MCMC algorithms have reached their limits in high dimensional contexts

and we propose to replace them by the Particular MCMC algorithm proposed

by Andrieu et al. (2010). We detail the S-step in the following subsection.

3.2 Simulation of the latent variables (X, Φ) conditionally

to the observations y

Conditionally to the observations y, the individuals are independent and the

simulation of each (Xi,0:Ji
, φi) conditionally to yi,0:JI

can be performed sepa-

rately. To ease the reading, in this subsection, we focus on the simulation of the

non observed variables (Xi,0:Ji
, φi) of a single individual. Therefore, we omit

the index i in the following. Moreover, we denote σ and γ the current values of

the parameters and omit the index m of the SAEM algorithm iteration.
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3.2.1 Standard Markov Chain Monte Carlo algorithm

To generate realizations of the distribution of interest p(X0:J , φ|y0:J ; γ, σ), MCMC

algorithms are routinely applied in the literature. These methods alternately

simulate the trajectory X0:J under the distribution p(X0:J |y0:J , φ; γ, σ) and the

parameter φ under the distribution p(φ|y0:J ,X0:J ; γ, σ). Even if we assume

that the transition density (5) is explicit, these two conditional distributions

are likely not to be explicit.

If the conditional distributions p(X0:J |y0:J , φ; γ, σ) and p(φ|y0:J ,X0:J ; γ, σ) are

easily simulated then the algorithm amounts to a Gibbs algorithm (see for in-

stance Example 1 in Section 4). On the contrary, difficulties arise if these dis-

tributions are not explicit or cannot be simulated easily. In that case, we resort

to Metropolis Hastings algorithms for each component of φ and for each time

component of the vector X0:J depending on a proposal distribution. The con-

struction of the proposal distribution has been widely studied in the literature

(see e.g. Gilks et al., 1996). We describe a standard random walk Metropolis-

Hastings algorithm for Example 2 in Section 4. However, it is well known that

the efficiency of these methods is not satisfactory in high dimensional contexts.

Furthermore, it does not take advantage of the temporal behavior of the hid-

den process (Xt). Hidden states are typically updated each time component

Xj individually and iteratively. This leads to a slow mixing MCMC algorithm,

inducing poor convergence properties for the SAEM-MCMC algorithm.

3.2.2 Particle Markov Chain Monte Carlo algorithm

Andrieu et al. (2010) recently proposed an innovative simulation scheme, the

PMCMC algorithm, which takes advantage of the strength of MCMC and Se-

quential Monte Carlo (SMC) algorithms. More precisely, they suggest using this

second class of stochastic methods to design efficient high dimensional proposal

distributions for MCMC algorithms. In the following, we first recall the SMC

algorithm and its inclusion in PMCMC as proposed by Andrieu et al. (2010).

Then we expose its inclusion in the SAEM algorithm.

Sequential Monte Carlo algorithm

The aim of the SMC algorithm is to obtain a set of K particles (X
(k)
0:J)k=1...K

and weights (W
(k)
0:J )k=1...K approximating the conditional distribution p(X0:J |

y0:J , φ; γ, σ). The SMC algorithm is a stochastic version of the filtering pro-

cedure (see Doucet et al., 2001, for a complete review). This algorithm is
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an iterative method supplying at step j, for j = 0, . . . , J , the distribution

p(Xj |y0:j , φ; γ, σ). It relies on a proposal distribution q(Xj |yj , Xj−1, φ; γ, σ).

To avoid the problem of degeneracy of the particles, a resampling step is intro-

duced resulting in the following algorithm:

Algorithm 1 (SMC algorithm)

Approximation of the conditional distribution p(X0:J |y0:J , φ; γ, σ)

• At time j = 0: ∀ k = 1, . . . ,K

(1) sample X
(k)
0 ∼ π0(·|φ)

(2) compute and normalize the weights:

w0

(
X

(k)
0

)
= p

(
y0, X

(k)
0 |φ; γ, σ

)
, W0

(
X

(k)
0

)
=

w0

(
X

(k)
0

)

∑K
k=1 w0

(
X

(k)
0

)

• At time j = 1, . . . , J : ∀ k = 1, . . . ,K

(0) resample the particles, i.e. sample the indices A
(k)
j−1 with a multino-

mial distribution such that

P (A
(k)
j−1 = l) = Wj−1(X

l
0:j−1), ∀ l = 1, . . . ,K

(1) sample X
(k)
j ∼ q

(
·|yj , X

A
(k)
j−1

j−1 , φ; γ, σ

)
and set X

(k)
0:j = (X

A
(k)
j−1

0:j−1, X
(k)
j )

(2) compute and normalize the weights:

wj

(
X

(k)
0:j

)
=

p
(
y0:j ,X

(k)
0:j |φ; γ, σ

)

p

(
y0:j−1,X

A
(k)
j−1

0:j−1|φ; γ, σ

)
q

(
X

(k)
j |yj , X

A
(k)
j−1

j−1 , φ; γ, σ

)

Wj(X
(k)
0:j ) =

wj

(
X

(k)
0:j

)

∑K
k=1 wj

(
X

(k)
0:j

)

Choice of the proposal distribution q(Xj |yj , Xj−1, φ; γ, σ)

As in any importance sampling method, the choice of the proposal distribution

q is crucial to ensure good convergence properties. If possible, the conditional
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posterior

q(Xj |yj , Xj−1, φ; γ, σ) = p(Xj |yj , Xj−1, φ; γ, σ)

∝ p(yj |Xj ;σ)p(Xj |Xj−1, φ; γ),

is the best proposal distribution. If its simulation is intractable, q(Xj |yj , Xj−1, φ;

γ, σ) should be chosen as close as possible to this ideal distribution p(Xj |yj , Xj−1,

φ; γ, σ). In Example 2 of Section 4, we propose a Gaussian approximation of the

posterior conditional distribution. An optimal importance density q is discussed

in Pitt and Shephard (1999) but in many cases the deriving importance weights

{w(k)
j }K

k=1 do not have an explicit expression. Another option can be the predic-

tive distribution p(Xj |Xj−1, φ; γ, σ) as proposal distribution. This non-optimal

choice can work well in particular contexts if the dimension of latent variables is

not too large (Andrieu et al., 2010). However, when combined with an estima-

tion procedure, this choice may be rather suboptimal, as illustrated in Example

1 of Section 4.

Output of the SMC algorithm

The SMC algorithm supplies a set of K particles and weights approximating

the conditional distribution p(X0:J |y0:J , φ; γ, σ). In general, we are interested

in one realization of the trajectory X0:J under the conditional distribution

p(X0:J |y0:J , φ; γ, σ). This is directly achieved by randomly choosing one particle

among the K particles with weights (WJ(X
(k)
0:J))k=1...K .

In the following, we denote by "a run of the SMC algorithm" the generation of

one realization under the approximate SMC distribution.

Approximation of the conditional likelihood p(yj |y0:j−1, φ; γ, σ)

As described in Andrieu et al. (2010), the algorithm also provides an estimation

of the conditional likelihood p(yj |y0:j−1, φ; γ, σ) by:

p̂(y0|φ; γ, σ) = 1
K

∑K
k=1 w0

(
X

(k)
0

)
,

p̂(yj |y0:j−1, φ; γ, σ) = 1
K

∑K
k=1 wj

(
X

(k)
0:j

)
∀ j = 1, . . . , J.

(7)

As the quantity p(y0:J |φ; γ, σ) can be decomposed into the product p(y0:J |φ; γ, σ) =

p(y0|φ; γ, σ)
∏J

j=1 p(yj |y0:j−1, φ; γ, σ), we estimate it by

p̂(y0:J |φ; γ, σ) = p̂(y0|φ; γ, σ)

J∏

j=1

p̂(yj |y0:j−1, φ; γ, σ). (8)
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Remark 2. We are able to estimate the conditional likelihood distribution for

a fixed φ. But we underline that this conditional likelihood differs from the

likelihood (6) since the individual parameter φ has still not been integrated.

Particle Markov Chain Monte Carlo algorithm

The PMCMC algorithm, proposed by Andrieu et al. (2010), is an MCMC algo-

rithm which jointly updates φ and X0:J conditionally to y0:J . A new candidate

(Xc
0:J , φ

c) is generated with a proposal distribution of the type:

q(Xc
0:J , φ

c|X0:J , φ; θ) = q(φc|φ)p(Xc
0:J |y0:J , φ

c; γ, σ).

where q(φc|φ) is the proposal on φ to be designed: φ is a low dimensional

parameter and so does not raise specific difficulties. For instance, a random

walk proposal can be considered (see Section 4). The proposal distribution on

the trajectories p(Xc
0:J |y0:J , φ

c; γ, σ) is (approximately) sampled through the

SMC algorithm presented above.

Consequently, the acceptation probability can be written as follows:

ρ(Xc
0:J , φ

c|X0:J , φ) = min

{
1,
p(Xc

0:J , φ
c|y0:J ; γ, σ)

p(X0:J , φ|y0:J ; γ, σ)

q(φ|φc)p(X0:J |y0:J , φ; γ, σ)

q(φc|φ)p(Xc
0:J |y0:J , φc; γ, σ)

}

= min

{
1,
q(φ|φc)

q(φc|φ)

p(y0:J |φc; γ, σ)p(φc;µ,Ω)

p(y0:J |φ; γ, σ)p(φ;µ,Ω)

}
,

which can be approximated through the SMC algorithm by:

ρ̂(Xc
0:J , φ

c|X0:J , φ) = min

{
1,
q(φ|φc)

q(φc|φ)

p̂(y0:J |φc; γ, σ)p(φc;µ,Ω)

p̂(y0:J |φ; γ, σ)p(φ, µ,Ω)

}
. (9)

The N iterations of the PMCMC algorithm, performed at the S-step of each

iteration of the SAEM algorithm and for each individual i, are finally:

Algorithm 2 (PMCMC algorithm)

Approximation of the conditional distribution p(X0:J , φ|y0:J ; γ, σ)

• Initialization : starting from an arbitrary φ(0), generate X0:J(0) by a run

of SMC algorithm targeting p(X0:J |y0:J , φ(0); γ, σ)

• At iteration ℓ = 1, . . . , N

1. Sample a candidate φc ∼ q(·|φ(ℓ− 1))
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2. By a run of the SMC algorithm, generate Xc
0:J targeting p(·|y0:J , φ

c; γ, σ)

and compute p̂(y0:J |φc; γ, σ).

3. Set (X0:J(ℓ), φ(ℓ)) = (Xc
0:J , φ

c) with probability ρ̂ (Xc
0:J , φ

c|X0:J(ℓ− 1),

φ(ℓ− 1)). If the candidate is not accepted, then set (X0:J(ℓ), φ(ℓ)) =

(X0:J(ℓ− 1), φ(ℓ− 1)).

We denote p̂N (X0:J , φ|y0:J ; γ, σ) the approximated distribution of p(X0:J , φ|
y0:J ; γ, σ) obtained by N iterations of the PMCMC algorithm. Andrieu et al.

(2010) prove the following convergence result for the PMCMC algorithm under

two additional assumptions.

(PMCMC1) For any θ, for any φ, we define the two sets Sφ
j = {x0:j : p(x0:j |y0:j , φ; θ) >

0} and Qφ
j = {x0:j : p(x0:j−1|y0:j−1, φ; θ)q(xj |x0:j−1, yj , φ; θ) > 0}. We

assume that Sφ
j ⊆ Qφ

j for j = 0, . . . , J .

(PMCMC2) The Metropolis-Hasting sampler of target density p(φ|y0:J ; θ) with pro-

posal density q(φc|φ) is irreducible and aperiodic.

Proposition 1 (Andrieu et al. (2010)). Under assumptions (PMCMC1-2), the

PMCMC algorithm generates a sequence of distributions p̂N (X,Φ|y; θ) such that

for all θ ∈ Θ,

||p̂N (X,Φ|y; θ) − p(X,Φ|y; θ)||TV −−−−→
N→∞

0.

where || · ||TV is the total variation distance.

We thus propose to use the PMCMC algorithm to simulate the non-observed

data in the SAEM algorithm resulting into the following SAEM-PMCMC algo-

rithm:

Algorithm 3 (SAEM-PMCMC algorithm)

• Iteration 0: initialization of θ̂0 and s0 = E
[
S(y,X,Φ)|y; θ̂0

]
.

• Iteration m = 1, . . . ,M :

S-Step: ∗ For each individual i,

· Initialize the PMCMC algorithm with φi(0) = µ̂m−1

· Run Nm iterations of the PMCMC algorithm with K parti-

cles at each iteration, approximating p(Xi,0:Ji
, φi|yi,0:Ji

; θ̂m−1)

with the approximate distribution p̂Nm(Xi,0:Ji
, φi|yi,0:Ji

; θ̂m−1)
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∗ Set Xm = (X1,0:J(Nm), . . . ,Xn,0:J(Nm)) and Φm = (φ1(Nm), . . . ,

φn(Nm)) a realization of the non observed variables under the

approximated distribution p̂Nm(X,Φ|y; θ̂m−1)

SA-Step: update of sm−1 using the stochastic approximation scheme:

sm = sm−1 + αm [S(y,Xm,Φm) − sm−1] (10)

M-Step: update of θ̂m by:

θ̂m = arg max
θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

3.3 Convergence of the SAEM-PMCMC estimation algo-

rithm

In the following, we set Z = (X,Φ). The convergence of the SAEM algorithm

combined with the PMCMC is principally based on the work of Delyon et al.

(1999). We first consider the additional regularity assumptions required for the

convergence of the SAEM algorithm (Delyon et al., 1999).

(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on Θ.

(M3) The function s̄ : Θ −→ S defined as s̄(θ) =
∫
S(y, z)p(z|y; θ)dydz is

continuously differentiable on Θ.

(M4) The function ℓ(θ) = log p(y, θ) is continuously differentiable on Θ and

∂θ

∫
p(y, z; θ)dydz =

∫
∂θp(y, z; θ)dydz.

(M5) Define L : S × Θ −→ R as L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a

function θ̂ : S −→ Θ such that

∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation (αm)m≥0

is such that
∑

m αm = ∞ and
∑

m α2
m <∞.

(SAEM2) ℓ : Θ → R and θ̂ : S → Θ are d times differentiable, where d is the

dimension of S(y, z).
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(SAEM3) For any positive Borel function f

E(f(Zm+1)|Fm) =

∫
f(z)p(z|y, θ̂m)dz,

where {Fm} is the increasing family of σ-algebra generated by the random

variables s0, Z1, Z2, . . . , Zm.

(SAEM4) For all θ ∈ Θ,
∫
||S(y, z)||2 p(z|y; θ)dz < ∞ and the function Γ(θ) =

Covθ(S(Z)) is continuous.

Assumptions (M0-5) ensure the convergence of the EM algorithm. Assumptions

(M0-5) and (SAEM1-4) with the fact that (sm)m≥0 takes its values in a compact

subset of S ensure the convergence of the SAEM estimates to a stationary point

of the observed likelihood when the simulation step is exact (Delyon et al., 1999).

However the SAEM-PMCMC algorithm is more complex as the simulation step

is not exact. Indeed, the stochastic approximation scheme differs from the

classic SAEM stochastic approximation scheme by introducing a remainder term

measuring the error induced by the simulation step. More precisely, we can

decompose our stochastic approximation (10) into:

sm+1 = sm + αmh(sm) + αmem + αmrm

with
h(sm) = E(S(y, z)|y, θ̂(sm)) − sm

em = S(y, z(m)) − ENm(S(y, z)|y, θ̂(sm))

rm = ENm(S(y, z)|y, θ̂(sm)) − E(S(y, z)|y, θ̂(sm))

where we denote E(·|y, θ) the expectation under the exact distribution p(z|y, θ)
and ENm(·|y, θ) the expectation under the approximate distribution p̂Nm(z|y, θ)
obtained with Nm iterations of the PMCMC algorithm. Consequently the proof

of the SAEM-PMCMC convergence differs from SAEM-MCMC and is based

on convergence results of the Robbins Monro type stochastic approximation

procedure. We make the following assumptions:

(SAEM-PMCMC1) For all θ ∈ Θ and for all N , the iteration number of the PMCMC algo-

rithm,
∫
||S(y, z)||2p̂N (z|y; θ)dz <∞

(SAEM-PMCMC2) The function S(y, z) is uniformly bounded in y and z.
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Theorem 1. Assume that (M0-5), (SAEM1-2), (PMCMC1-2), (SAEM-PMCMC1-

2) hold. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈
Θ, ∂θℓ(θ) = 0} is the set of stationary points of the log-likelihood ℓ(θ) = log p(y; θ).

Proof Following Theorem 2 of Delyon et al. (1999) on the convergence of

Robbins-Monro scheme, the convergence of SAEM-PMCMC is ensured if we

prove the following assertions:

1. The function V (s) = −ℓ(θ̂(s)) is such that for all s ∈ S, F (s) = 〈∂sV (s), h(s)〉 ≤
0 and such that the set V ({s, F (s) = 0}) is of zero measure.

2. limm→∞

∑m
k=1 αkek exists and is finite with probability 1.

3. limm→∞ rm = 0 with probability 1.

Assertion 1 is proved by Lemma 2 of Delyon et al. (1999) under assumptions

(M0-M5) and (SAEM2).

Assertion 2 is proved similarly as Theorem 5 of Delyon et al. (1999). Indeed,

by construction of the PMCMC algorithm, due to the choice of PMCMC and

its initialization, the equivalent of assumption (SAEM3) is checked for the ap-

proximate distribution p̂N (Z|y, θ̂m). Indeed, the assumption of independence

of the non-observed variables Z1, . . . ,Zm given θ̂0, . . . , θ̂m is verified. As a con-

sequence, we have: for any positive Borel function f , ENm(f(Zm+1)|Fm) =∫
f(z)p̂Nm(z|y, θ̂m)dz. We can then prove that

∑m
k=1 αkek is a martingale,

bounded in L2 under assumptions (M5) and (SAEM1)-(SAEM2).

To verify assertion 3, it is sufficient to prove that E(rm) and V ar(rm) converge

to 0. By assumption (SAEM-PMCMC2), there exists a constant M > 0 such

that

|E(rm)| ≤M ||p̂Nm(z|y; θ̂(sm)) − p(z|y; θ̂(sm))||TV .

By (PMCMC1)-(PMCMC2) and Proposition 1, we deduce the convergence to

0 of E(rm) by choosing an increasing sequence Nm. Similarly, there exists a

constant C > 0 such that

V ar(rm) = E

[{∫
(p̂Nm(z|y; θ̂(sm)) − p(z|y; θ̂(sm))) (S(y, z)−

∫
S(y, z)p(y)dy

)
dz

}2
]

≤ C E
[
||p̂Nm(z|y; θ̂(sm)) − p(z|y; θ̂(sm))||2TV

]

and we deduce the convergence of V ar(rm) to 0. �
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Just as for the SAEM algorithm, we can deduce the algorithm convergence to

a (local) maximum of the likelihood.

Corollary 1

Under assumptions of Theorem 1 and additional assumptions (LOC1)-(LOC3)

proposed by Delyon et al. (1999) on the regularity of the log-likelihood, the se-

quence θ̂m converges with probability 1 to a (local) maximum of the likelihood.

Proof Theorem 6 of Delyon et al. (1999) can be extended without difficulty to

the SAEM-PMCMC algorithm. It proves that under assumptions of Theorem

1 and (LOC1), the sequence θ̂m converges to a fixed point of the EM-mapping

T (θ̂m) = θ̂(s(θ̂m)). Assumptions (LOC2-3), Lemma 3 of Delyon et al. (1999)

and application of Brandière and Duflo (1996) imply that the sequence θ̂m

converges with probability 1 to a proper maximum of the likelihood. �

Assumption (SAEM-PMCMC2) is a strong hypothesis but it is only techni-

cal. This assumption could be relaxed using a principle of random boundaries

presented in Allassonnière et al. (2009).

4 Simulation study

Two models are considered in the simulation study: the Ornstein-Uhlenbeck pro-

cess and the stochastic volatility time-inhomogeneous Gompertz process. For

each mixed SDE model, 100 datasets are generated with n subjects and identical

design with J + 1 data points for all the individuals . Different sets of param-

eters and different values of n and J are used. The corresponding MLE is ob-

tained on each data set using both the SAEM-PMCMC and the SAEM-MCMC

algorithms. Let θ̂r denote the estimate of θ obtained on the r-th simulated

dataset, for r = 1, . . . , 100 by the corresponding algorithm. The relative bias

1
100

∑
r

(bθr−θ)
θ and relative root mean square error (RMSE)

√
1

100

∑
r

(bθr−θ)2

θ2 for

each component of θ are computed for both algorithms.

The implementation of the SAEM algorithm requires initial value θ0 and the

choice of the stochastic approximation sequence (αm)m≥0. The initial values of

the parameters are chosen arbitrarily as the convergence of the SAEM algorithm

little depends on the initialization. The step of the stochastic approximation

scheme is chosen as recommended by Kuhn and Lavielle (2005): αm = 1 during

the first iterations 1 ≤ m ≤ M1, and αm = 1
(m−M1)0.8 during the subsequent
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ones. Indeed, the initial guess θ0 might be far from the maximum likelihood

value and the first iterations with αm = 1 allow the sequence of estimates to

converge to a neighborhood of the maximum likelihood estimate. Subsequently,

smaller step sizes during M −M1 additional iterations ensure the almost sure

convergence of the algorithm to the maximum likelihood estimate. We imple-

ment the SAEM algorithm withM1 = 60 andM = 100 iterations. The PMCMC

algorithm is implemented with K = 50 particles and N = 100 iterations. The

MCMC algorithm is implemented with 50 iterations of the chain. We now detail

the two examples.

4.1 Example 1: Ornstein-Uhlenbeck process

4.1.1 Ornstein-Uhlenbeck mixed model

The Ornstein-Uhlenbeck process has been widely used in neuronal modeling,

biology, and finance (see e.g. Kloeden and Platen, 1992). Consider an SDE

mixed model driven by the Ornstein-Uhlenbeck process and an additive error

model

yij = Xitij
+ εij , εij ∼ N (0, σ2),

dXit = −
(
Xit

τi
− κi

)
dt+ γdBit,

X0 = 0,

where κi ∈ R, τi > 0. We set φi = (log(τi), κi) the vector of individual random

parameters. We assume that

log(τi) ∼i.i.d. N (log(τ), ω2
τ ), κi ∼i.i.d. N (κ, ω2

κ).

The parameter vector is θ = (log τ, κ, ωτ , ωκ, γ, σ). This model can be easily

discretized, resulting in a state-space model with random individual parameters:

yij = Xitij
+ εij , εij ∼ N (0, σ2),

Xitij
= Xi

tij−1
e−∆ijτi − κiτi(1 − e−∆ijτi) + ηij ,

ηij ∼ N
(
0, γ2τi(1 − e−∆ijτi)

)
.
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The vector Xi = (xiti1 , . . . , xitiJ
) conditional on φi is Gaussian with mean vector

miX and covariance matrix GiX equal to

miX =
(
τiκi

(
1 − e

−
ti1
τi

)
, . . . , τiκi

(
1 − e

−
tiJ
τi

))′
, (11)

GiX =

(
τiγ

2

2

(
1 − e

−
2 min(tij ,tik)

τi

)
e
−

|tij−tik|

τi

)

1≤j,k,≤J

, (12)

where ′ is the transposed vector. Remark that we do not consider Xi0 in this

calculus as the initial condition is assumed to be deterministic and equal to 0.

The transition density p(xt, t− s, s|xs, φ) is Gaussian and equals to

log p(xitij
,∆ij , tij−1|xitij−1

, φi; θ) = −1

2
log(πγ2τi(1 − e−2∆ij/τi))

−
(
xitij

− xitij−1
e−∆ijτi − κiτi(1 − e−∆ijτi)

)2

γ2τi(1 − e−∆ijτi)
.

It does not depend on time as the Ornstein-Uhlenbeck process is time-homogeneous.

The conditional expectation and variance of yij are

E(yij |Xi
0 = 0, φi) = τiκi(1 − e

−
tij
τi ),

Var(yij |Xi
0 = 0, φi) =

τiγ
2

2
(1 − e

− t
τi ) + σ2.

Even if this SDE is linear, the transition density p(Xitij
,∆ij , tij−1|Xtij−1

, φi; θ)

is a nonlinear function of φi. Thus, the likelihood has no closed form. The exact

estimator of θ is unavailable and we have to resort either to the SAEM-PMCMC

or the SAEM-MCMC algorithms.

4.1.2 Simulation step of the SAEM algorithm

The S-step of the SAEM algorithm requires the simulation of the non-observed

data under the distributions p(Xi,1:J , φi|yi,0:J ; θ) for each subject. We detail

this S-step for the SAEM-MCMC and SAEM-PMCMC algorithms.

For the S-step of the SAEM-MCMC algorithm, we have to simulate under the

distributions p(Xi,1:J |,yi,0:J , φi; θ) and p(φi|,yi,0:J ,Xi,1:J ; θ) for each subject

iteratively. As the Ornstein-Uhlenbeck is a linear Gaussian model and the error

model is additive, the posterior distribution p(Xi,1:J |,yi,0:J , φi; θ) is explicit,
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Gaussian with mean vector mi,X,post and variance matrix Γi,X,post equal to

Γi,X,post =
(
σ−2IJ +G−1

iX

)−1
,

mi,X,post = Γi,X,post

(
σ−2yi,1:J +G−1

iXmiX

)
.

The conditional simulation of X is thus direct and exact. The posterior dis-

tribution of κi is explicit, Gaussian with mean mi,κ,post and variance Vi,κ,post

equal to

Vi,κ,post =
(
(Hi)

′G−1
iXHi + ω−2

κ

)−1
,

mi,κ,post = Vi,κ,post

(
(Hi)

′G−1
iXXi,1:J + κω−2

κ

)
,

with Hi = (τi(1 − e−ti1/τi), . . . , τi(1 − e−tiJ/τi))′. The posterior distribution of

τi is not explicit. We use a Metropolis-Hastings algorithm with a random walk

proposal to simulate with this distribution.

For the S-step of the SAEM-PMCMC algorithm, we have to choose two propos-

als q(Xtij
| Xtij−1

, yij , φi; θ) and q(·|φi) for each subject. The proposal q(Xtij
|

Xtij−1
, yij , φi; θ) of the SMC within the PMCMC can be the exact posterior

density p(Xtij
|Xtij−1

, yij , φi; θ). Indeed, in the particular case of the Ornstein-

Uhlenbeck, this density is explicit, Gaussian with conditional mean mXij ,post

and variance GXij ,post equal to

GXij ,post =

(
σ−2 +

(
τiγ

2

2
(1 − e−2∆ij/τi)

)−1
)−1

,

mXij ,post = GXij ,post

(
σ−2yij +

(
τiγ

2

2
(1 − e−2∆ij/τi)

)−1 (
e−∆ij/τiXtij−1

+τiκi(1 − e−∆ij/τi)
))

,

As an alternative, we also consider the predictive distribution p(Xtij
|Xtij−1

, φi; θ)

as proposal. The proposal q(·|φ) for the individual parameters φ within the PM-

CMC algorithm is a classical random walk on each component of the vector φ.

4.1.3 Maximization step of the SAEM algorithm

The SAEM algorithm is based on the computation of the sufficient statistics

for the maximization step. The statistics for the parameters µ = (log τ, κ),

Ω = diag(ω2
τ , ω

2
κ) and σ are the three classic ones for mixed models (see e.g.
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Samson et al., 2007):

S1(y,X,Φ) =

n∑

i=1

φi, S2(y,X,Φ) =

n∑

i=1

φiφ
′
i, (13)

S3(y,X,Φ) =

n∑

i=1

(yi −Xi)
′(yi −Xi). (14)

Let s1m, s2m, s3m denote the corresponding stochastic approximated conditional

expectations at iteration m of the SAEM algorithm. The M step for these three

parameters reduces to

µ̂(m) =
1

n
s1m, (15)

Ω̂(m) =
1

n
s2m − 1

n2
s1ms

′
1m, (16)

σ̂(m) =

√
1

n
s3m. (17)

The sufficient statistic corresponding to the parameter γ depends on the SDE.

For the Ornstein-Uhlenbeck, we have

S4(y,X,Φ) =

n∑

i=1

J∑

j=1

(
Xi

itij
−Xi

itij−1
e−∆ijτi − κiτi(1 − e−∆ijτi)

)2

. (18)

The M step is thus

γ̂(m) =

√
1

nJ
s4m. (19)

4.1.4 Simulation design and results

Two different designs are used for the simulations with equally spaced observa-

tion times: n = 20, J = 40, ∆ = 0.5 and n = 40, J = 20, ∆ = 1, t0 = 0. Two

sets of parameter values are used. The first set is log(τ) = 0.6, κ = 1, ωτ = 0.1,

ωκ = 0.1, γ = 0.05, σ = 0.05. The second set uses greater variances and is

log(τ) = log(10), κ = 1, ωτ = 0.1, ωκ = 0.1, γ = 1, σ = 1. For each design and

each set of parameter values, one hundred datasets are simulated.

The SAEM-PMCMC and SAEM-MCMC algorithms have to be initialized. For

the first set of parameters, we set l̂og(τ)0 = 1.1, κ̂0 = 1.5, ω̂τ 0 = 0.5, ω̂κ0 = 0.5,

γ̂0 = 0.25 and σ̂0 = 0.25, i.e. the initial standard deviations are 5 times greater

than the true standard deviations. For the second set of parameters, we set

l̂og(τ)0 = log(10) + 0.5, κ̂0 = 1.5, ω̂τ 0 = 0.5, ω̂κ0 = 0.5, γ̂0 = 5 andσ̂0 = 5.
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Table 1 presents the bias and RMSE (%) of the SAEM-PMCMC and SAEM-

MCMC algorithms obtained for the two designs and two sets of parameters. The

results are almost identical for both algorithms and very satisfactory (bias less

than 3% and RMSE less than 10%). The SAEM-PMCMC algorithm has slightly

greater bias than SAEM-MCMC for the standard deviations of the random

effects (ωτ and ωκ). On the contrary, the bias for γ and σ are always lower with

SAEM-PMCMC than with SAEM-MCMC. The design (n, J) of the study affects

very little the estimation quality when γ and σ are small (first set of parameters).

On the contrary, when γ and σ are larger (second set of parameters), the RMSE

are greater with fewer measures per subject (n = 40, J = 20) than with more

(n = 20, J = 40). Figure 1 shows the density of the estimators obtained by both

algorithms with n = 40, J = 20 and the second set of parameters. Densities are

estimated non-parametrically with a Gaussian kernel. This illutrates again the

small bias of SAEM-PMCMC for the parameters γ and σ.

The choice of the number of particles K in the SMC algorithm may seem cru-

cial but it is not. Table 2 presents the bias and RMSE obtained on the 100

datasets simulated with the first set of parameters, n = 40, J = 20 and different

implementations of the SAEM-PMCMC algorithm. We successively implement

the PMCMC algorithm with K = 25, K = 50 and K = 100 particles using the

exact posterior distribution q(Xtij
|Xtij−1

, yij , φi; θ) = p(Xtij
|Xtij−1

, yij , φi; θ).

The results are almost identical. On the contrary, the choice of the proposal

q(Xj |yj , Xj−1, φ; γ, σ) in the SMC algorithm may affect the result. Table 2

presents results obtained with the predictive distribution p(Xj |Xj−1, φ; γ, σ)

as proposal q. The algorithm fails to converge due to the degeneracy of the

particles. We present the results obtained by increasing significantly the num-

ber of particles (K = 1000). Even in this case, we observe the degeneracy

of the algorithm on 90% of the simulated datasets. Morevoer, the bias and

RMSE are significantly greater than with the posterior conditional distribution

p(Xj |yj , Xj−1, φ; γ, σ).

[Table 1 about here.]

[Table 2 about here.]

[Figure 1 about here.]
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4.2 Example 2: stochastic volatility Gompertz model

4.2.1 Stochastic volatility Gompertz mixed model

The Gompertz model is a well-known growth model (see e.g. Jaffrézic and Foul-

ley, 2006). Recently, Donnet et al. (2010) proposed a stochastic version of this

model to take into account random fluctuations in growth process. The stochas-

tic volatility Gompertz mixed model is the following one:

yij = Xitij
(1 + εij), εij ∼ N (0, σ2),

dXit = BiCie
−CitXitdt+ γXitdBit, (20)

Xi0 = Aie
−Bi ,

where Ai > 0, Bi > 0, Ci > 0. We set φi = (logAi, logBi, logCi) the vector of

individual random parameters. The SDE (20) is a time-inhomogeneous SDE.

The initial conditional is a function of the random individual parameters φi.

We assume that

logAi ∼i.i.d. N (logA,ω2
A), logBi ∼i.i.d. N (logB,ωB),

logCi ∼i.i.d. N (logC,ω2
C),

and the parameter of interest is θ = (logA, logB, logC,ωA, ωB , ωC , γ, σ). The

transition density of the process (Xt) is not explicit. However, by the Itô for-

mula, the conditional expectation and variance of log(Xit)|φi, for t ≥ 0, are

E(logXit|φi) = logAi −Bie
−Cit − 1

2
γ2t,

Var(logXit|φi) = γ2t.

The transition density of (log(Xt)) is explicit, Gaussian and equals to

log p(logXitij
,∆ij , tij−1| logXitij−1

, φi; θ) = − 1
2 log(2πγ2∆ij)

− 1
2

(log Xitij
−log Xitij−1

+Bie
−Ctij−1 (e−Ci∆ij −1)− 1

2 γ2∆ij)
2

γ2∆ij
.

As the transition density p(Xitij
,∆ij , tij−1|Xitij−1 , φi; θ) is a nonlinear func-

tion of φi, the likelihood has no closed form and the exact estimator of θ is

unavailable. We resort to the SAEM algorithm.
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4.2.2 Simulation step of the SAEM algorithm

The S-step of the SAEM algorithm requires the simulation of the non-observed

data under the distribution p(Xi,0:J , φi|yi,0:J ; θ) for each subject. We detail this

step for the SAEM-MCMC and SAEM-PMCMC algorithms.

For the S step of the SAEM-MCMC algorithm, we implement a standard Metropolis-

Hastings-within-Gibbs algorithm. More precisely, we use a random walk pro-

posal to simulate the trajectories Xi,0:J conditionally to the observations yi,0:J ,

updating the components of Xi,0:J time by time. A random walk proposal is also

used to simulate the individual parameters φi from the conditional distribution.

For the S step of the SAEM-PMCMC algorithm, the proposal q(Xitij
|Xitij−1

, yij ,

φi; θ) has to be chosen. Contrary to Example 1, the exact posterior distribu-

tion p(Xitij
|Xitij−1

, yij , φi; θ) is not explicit. We propose to approximate this

distribution by a Gaussian distribution with mean and variance deduced from

the true ones. More precisely, we consider the following proposal

q(logXtij
| logXitij−1

, yij , φi; θ) = N (mXij ,post,ΓXij ,post),

on logXtij
with

ΓXij ,post =
(
σ−2 + (γ2∆ij)

−1
)−1

,

mXij ,post = ΓXij ,post µXij ,post,

µXij ,post =

(
log yij

σ2
+

1

γ2∆ij

(
logXitij−1

−Bie
−Citij−1(e−Ci∆ij − 1) − γ2∆ij

2

))
.

and then take the exponential to obtain a candidate forXtij
. The proposal q(·|φ)

for the individual parameters φ within the PMCMC algorithms is a classical

random walk on each component of the vector φ.

4.2.3 Maximization step of the SAEM algorithm

Within the SAEM algorithm, for parameters µ = (logA, logB, logC), Ω =

diag(ω2
A, ω

2
B , ω

2
C) and σ, the sufficient statistics and the M step are the same as

in Example 1 (see equations (13)-(17)). In this particular model, the parameter

γ appears both in the expectation and the variance of log(Xt)|φ and thus its

estimator is not the same as in Example 1. The sufficient statistic corresponding
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to γ is

S4(y, log X,Φ) =

n∑

i=1

J∑

i=1

∆ij

(
logXitij

− logXitij−1
+Bie

−Citij−1(e−Ci∆ij − 1)
)2
.

Let s4m denote the stochastic approximation of this sufficient statistic at itera-

tion m of the SAEM algorithm. For the sake of simplicity, we assume that the

step size ∆ij is a constant ∆. The estimator γ̂m at iteration m is deduced by

maximizing the complete likelihood:

γ̂m =

√
2

∆

(
−1 +

√
1 +

s4m

nJ

)

When ∆ij is not a constant, the estimator is more complex but also explicit.

4.2.4 Simulation results

We propose to simulate two experimental designs with the same observation

times for all individuals: n = 20, J = 40,∆ = 0.01 and n = 40, J = 20,∆ =

0.02 (t0 = 0), respectively. As in Donnet et al. (2010), we use the following

population parameters:

logA = log(3000), logB = log(5), logC = log(14),

ωA = 0.1, ωA = 0.1, ωC = 0.1

We propose two levels of variability, i.e. γ and σ are taken respectively equal

to
(
0.4, 1/

√
20
)

and
(
0.8, 1/

√
15
)

and referred to as first and second set of pa-

rameters thereafter. For each design and each set of parameters, 100 datasets

are simulated and θ is estimated with the two algorithms (SAEM-PMCMC and

SAEM-MCMC). The SAEM algorithm is initialized with l̂ogA0 = 8.21, l̂ogB0 =

1.81, l̂ogC0 = 2.84, ω̂A0 = 0.5, ω̂B0 = 0.5, ω̂C0 = 0.5, γ̂0 = 1.2, γ̂0 = 0.66. Bias

and RMSE (%) are presented in Table 3.

[Table 3 about here.]

Both algorithms give satisfactory results overall (bias and RSME ≤ 20% except

for γ). Nevertheless, we clearly see that the SAEM-PMCMC algorithm performs

better than the SAEM-MCMC algorithm. Indeed, for the population means

(logA, logB, logC), the population standard deviations (ωA, ωB , ωC) and σ, the

bias and RMSE are smaller for SAEM-PMCMC even if SAEM-MCMC results
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are already small. The difference is obvious for γ, which is estimated with a large

bias by SAEM-MCMC (up to a bias of 77%) while this is not the case for SAEM-

PMCMC (bias < 7%). This phenomenon is accentuated when the variabilities γ

and σ increase (second set of parameters). The better performances of SAEM-

PMCMC versus SAEM-MCMC can also be observed in Figure 5 where we plot

the kernel estimated densities of the parameters θ̂ among the 100 simualted

datasets for the second set of parameters with n = 20 and J = 40.

[Figure 2 about here.]

The improved quality of estimation has a computational cost since it takes less

than 8 minutes for the SAEM-MCMC and nearly 23 minutes for the SAEM-

PMCMC algorithm to supply results. However, estimating precisely the popula-

tion parameters is a key issue in population studies (such a genetic specification)

and a bias can have real consequences on the conclusions.

5 Discussion

The stochastic differential mixed-effects models are quite widespread in the ap-

plied statistics field. However, in the absence of efficient and computationally

reasonable estimation methods, a simplifying assumption is often made: either

the observation noise or the volatility term are standardly neglected.

In this paper we present an EM algorithm combined with a Particular Monte

Carlo Markov Chain method to estimate parameters in stochastic differential

mixed-effects models including observation noise. We prove the convergence of

the algorithm towards the maximum likelihood estimator. The convergence

of the SAEM-MCMC algorithm is different and has been studied by Kuhn

and Lavielle (2005). In the SAEM-MCMC, the simulation step is performed

with an MCMC algorithm, implying a dependence between the simulated vari-

ables contrary to the SAEM algorithm (assumption SAEM3). Consequently,

Kuhn and Lavielle (2005) prove the convergence of the SAEM-MCMC under

the (strong) assumption of geometric ergodicity of the Markov Chain gener-

ated along the SAEM iterations. This cannot be applied to prove the con-

vergence of the SAEM-PMCMC algorithm as Andrieu et al. (2010) prove that

this assumption is not checked by the PMCMC algorithm we focus on. For

the SAEM-PMCMC algorithm, we use the convergence results of more general

stochastic approximation schemes, the SAEM algorithm being a Robbins-Monro
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type procedure. Our proof is based on results proposed by Delyon et al. (1999)

when the stochastic approximation scheme includes a remainder term, namely

the error induced by the PMCMC algorithm in the SAEM-PMCMC algorithm.

The PMCMC convergence results proposed by Andrieu et al. (2010) yield the

convergence of the estimation algorithm.

The suggested method supplies accurate parameter estimation in a really mod-

erate computational time on practical examples. On various simulated datasets,

we illustrate the superiority of this method over the SAEM algorithm combined

with a standard MCMC algorithm. This efficiency is due to the fact that the

PMCMC algorithm takes advantage of the Markovian properties of the non-

observed process.

A major advantage of this methodology is its automatic implementation. Indeed

the generation of the non-observed process does not involve any tuning param-

eters, such as the size of the random move in the random walk Metropolis-

Hastings algorithm. For example, the number of particles is not crucial, as

illustrated in Example 1. In this paper we present a PMCMC algorithm where

all the particles are re-sampled at each iteration. Many other resampling dis-

tributions have been proposed in the literature, trying to achieve an optimal

procedure. West (1993) developed an effective method of adaptive importance

sampling to address this issue. The procedure developed by Pitt and Shephard

(2001) is similar in spirit and has real computational advantages. A stratified re-

sampling is proposed in Kitawaga (1996). Each resampling distribution implies

a specific update of the weights.

Several major assumptions are made in this paper. Assumption (M0) requires

the existence of an explicit transition density for the non-observed random pro-

cess. If this assumption is not fulfilled then a Euler approximation can be

considered. In this context, the Markovian structure is still guaranted and

the PMCMC strategy should prove its efficiency too. The relaxation of this

assumption opens great perspectives but is beyond the scope of this paper. As-

sumption (M1) requires the exponential form of the complete likelihood which

essentially contrains the structure of the noise observation and of the random

effects. This hypothesis could be relaxed using another stochastic version of the

EM algorithm such as that of Celeux and Diebolt (1992). Assumption (SAEM-

PMCMC2) is a strong hypothesis but it is only technical. This assumption could

be relaxed using a principle of random boundaries presented in Allassonnière

et al. (2009). Additional assumptions are rather classical and not restrictive.

SDEs have been recently developed for medical applications in glucose dynamics
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(Picchini et al., 2008), in neuron potential dynamics (Höpfner, 2007), in phar-

macokinetics (Ditlevsen et al., 2005; Donnet and Samson, 2008), or in growth

curve data (Donnet et al., 2010). These applications of SDEs show that stochas-

tic versions of physiological/biological models improve data fitting and stabilize

parameter estimations. However, most of these applications are restricted to

the analysis of single-individual data or ignore the measurement noise. The

extension of this work to these real data analysis should be of great interest.
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Figure 1: Ornstein-Uhlenbeck mixed model, n = 40, J = 20 and second set of
parameters. Densities of the estimators θ̂ obtained with the SAEM-PMCMC
algorithm (plain line) and the SAEM-MCMC algorithm (dashed line) on 100
simulated datasets, for each component of (log τ, κ, ωτ , ωκ, γ, σ). The true pa-
rameter value is in vertical line.
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Figure 2: Stochastic volatility Gompertz mixed model, n = 20, J =
40 and second set of parameters. Densities of the estimators θ̂ obtained
with the SAEM-PMCMC algorithm (plain line) and the SAEM-MCMC al-
gorithm (dashed line) on 100 simulated datasets, for each component of
(logA, logB, logC,ωA, ωB , ωC , γ, σ). The true parameter value is in vertical
line.
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Parameters log(τ) κ ωτ ωκ γ σ

True value 0.62 1.00 0.10 0.10 0.05 0.05
n = 20, J = 40
SAEM-PMCMC Bias 0.38 0.05 -2.55 -3.29 -0.84 0.07

RMSE 0.48 0.30 1.22 1.34 0.93 0.44
SAEM-MCMC Bias -0.02 0.29 -0.60 -2.38 3.34 -1.43

RMSE 0.49 0.30 1.23 1.29 0.96 0.45
n = 40, J = 20
SAEM-PMCMC Bias 0.11 0.01 -2.75 -1.59 -0.73 0.50

RMSE 0.33 0.20 0.82 0.99 0.94 0.52
SAEM-MCMC Bias -0.24 0.22 -1.46 -1.12 2.96 -1.37

RMSE 0.34 0.21 0.81 1.02 0.96 0.55

True value 2.30 1.00 0.10 0.10 1.00 1.00
n = 20, J = 40
SAEM-PMCMC Bias 0.55 -0.63 -1.49 -1.92 0.15 -1.33

RMSE 0.42 0.97 0.51 0.55 0.64 0.81
SAEM-MCMC Bias -0.41 1.24 -0.62 -1.25 0.44 -1.61

RMSE 0.35 0.84 0.52 0.54 0.56 0.72
n = 40, J = 20
SAEM-PMCMC Bias 0.28 -0.18 -0.73 -1.04 -0.47 -0.03

RMSE 3.19 7.03 3.91 4.38 5.45 9.81
SAEM-MCMC Bias 0.26 -0.19 -0.99 -1.17 -1.59 2.64

RMSE 2.32 5.39 3.89 4.05 4.96 9.42

Table 1: Ornstein-Uhlenbeck mixed model: biais and RMSE (%) for the esti-
mation of θ obtained by the SAEM-PMCMC and SAEM-MCMC algorithms on
100 simulated datasets with two designs (n = 20, J = 40 and n = 40, J = 20)
and two sets of parameters. PMCMC is implemented with K = 50 particles and
the exact posterior proposal q(Xtij

|Xtij−1 , yij , φi; θ) = p(Xtij
|Xtij−1 , yij , φi; θ).
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Parameters log(τ) κ ωτ ωκ γ σ

True value 0.62 1.00 0.10 0.10 0.05 0.05
SAEM-PMCMC with posterior proposal, K = 25

Bias 0.26 0.11 0.32 -4.84 0.64 -0.41
RMSE 0.49 0.30 1.28 1.30 1.04 0.45

SAEM-PMCMC with posterior proposal, K = 50
Bias 0.38 0.05 -2.55 -3.29 -0.84 0.07

RMSE 0.48 0.30 1.22 1.34 0.93 0.44
SAEM-PMCMC with posterior proposal, K = 100

Bias 0.29 0.10 -0.37 -4.35 -0.09 -0.30
RMSE 0.48 0.30 1.25 1.32 1.01 0.46

SAEM-PMCMC with prior proposal, K = 1000
Bias -0.63 0.66 -2.78 -4.73 15.42 -5.44

RMSE 0.53 0.34 1.43 1.77 2.17 0.83

Table 2: Ornstein-Uhlenbeck mixed model: biais and RMSE (%) for the estima-
tion of θ obtained by the SAEM-PMCMC algorithm on 100 simulated datasets
with n = 20, J = 40. The PMCMC algorithm is successively implemented with
posterior proposal q(Xtij

|Xtij−1
, yij , φi; θ) = p(Xtij

|Xtij−1
, yij , φi; θ) and K =

25, K = 50 and K = 100 particles, and prior proposal q(Xtij
|Xtij−1

, yij , φi; θ) =
p(Xtij

|Xtij−1 , φi; θ) and K = 1000 particles.
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Parameters logA logB logC ωA ωB ωC γ σ

True value 8.01 1.61 2.64 0.10 0.10 0.10 0.40 0.22
n = 20, J = 40
SAEM-PMCMC Bias 0.01 -0.07 0.03 -0.69 -2.31 -1.79 2.77 -0.04

RMSE 0.61 1.16 0.91 2.90 9.71 5.98 11.15 3.15
SAEM-MCMC Bias 2.04 1.713 -1.99 -8.00 -5.00 -7.55 61.93 -2.56

RMSE 2.16 2.07 2.19 8.15 10.87 9.14 63.78 4.30
n = 40, J = 20
SAEM-PMCMC Bias 0.05 -0.30 0.12 -1.92 -2.38 -1.41 6.79 -0.81

RMSE 0.797 1.64 1.36 4.53 14.88 9.10 18.54 3.31
SAEM-MCMC Bias 2.37 1.90 -1.98 -6.76 -4.58 -8.17 77.66 -2.00

RMSE 2.52 2.43 2.33 7.20 14.80 10.73 79.74 4.01

True value 8.01 1.61 2.64 0.10 0.10 0.10 0.80 0.26
n = 20, J = 40
SAEM-PMCMC Bias 0.56 0.72 -0.44 -1.11 -6.56 -1.97 1.67 -0.15

RMSE 1.47 1.90 1.67 3.90 13.10 6.33 11.20 3.20
SAEM-MCMC Bias 4.76 4.64 -3.67 -7.58 -11.92 -11.49 62.90 -2.60

RMSE 4.92 4.95 4.01 7.83 16.55 12.08 75.11 4.84
n = 40, J = 20
SAEM-PMCMC Bias 0.36 0.38 -0.47 -0.70 -2.16 -1.31 0.37 0.82

RMSE 1.07 1.41 1.43 2.21 8.84 4.64 9.55 3.57
SAEM-MCMC Biais 4.37 4.11 -3.60 -8.15 -8.05 -10.05 49.70 -4.33

RMSE 4.46 4.31 3.81 8.26 11.38 10.55 52.36 5.64

Table 3: Stochastic volatility Gompertz mixed model: bias and RMSE (%)
of the estimation of θ obtained by the SAEM-PMCMC and SAEM-MCMC
algorithms, on the 100 datasets with two designs (n = 20, J = 40 and n = 40,
J = 20) and two sets of parameters.
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